Ag-Ion-Based Transparent Threshold Switching Selector with Filament-Size-Dependent Rectifying Behavior
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, G.; Lee, C.; Lee, J.E.; Seo, J.; Kim, M.; Song, Y.; Seo, Y.H.; Lee, D. Alternative negative weight for simpler hardware implementation of synapse device based neuromorphic system. Sci. Rep. 2021, 11, 23198. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lee, J.E.; Lee, C.; Song, Y.; Han, G.; Seo, J.; Kim, D.W.; Seo, Y.H.; Hwang, H.; Lee, D. Multinary data processing based on nonlinear synaptic devices. J. Electron. Mater. 2021, 50, 3471–3477. [Google Scholar] [CrossRef]
- Lee, C.; Lee, J.E.; Kim, M.; Song, Y.; Han, G.; Seo, J.; Kim, D.W.; Seo, Y.H.; Hwang, H.; Lee, D. Li memristor-based MOSFET synapse for linear I–V characteristic and processing analog input neuromorphic system. Jpn. J. Appl. Phys. 2021, 60, 024003. [Google Scholar] [CrossRef]
- Seo, J.; Han, G.; Lee, D. Novel training method for metal-oxide memristive synapse device to overcome trade-off between linearity and dynamic range. Nanotechnology 2022, 33, 365202. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.H.; Huang, J.S.; Lai, C.C.; Huang, H.W.; Lin, S.J.; Chueh, Y.L. Manipulated transformation of filamentary and homogeneous resistive switching on ZnO thin film memristor with controllable multistate. ACS Appl. Mater. Interfaces 2013, 5, 6017–6023. [Google Scholar] [CrossRef] [PubMed]
- Saleem, A.; Simanjuntak, F.M.; Chandrasekaran, S.; Rajasekaran, S.; Tseng, T.Y.; Prodromakis, T. Transformation of digital to analog switching in TaOx-based memristor device for neuromorphic applications. Appl. Phys. Lett. 2021, 118, 112103. [Google Scholar] [CrossRef]
- Rajasekaran, S.; Simanjuntak, F.M.; Panda, D.; Chandrasekaran, S.; Aluguri, R.; Saleem, A.; Tseng, T.Y. Fast, Highly Flexible, and Transparent TaOx-Based Environmentally Robust Memristors for Wearable and Aerospace Applications. ACS Appl. Electron. Mater. 2020, 2, 3131–3140. [Google Scholar] [CrossRef]
- Simanjuntak, F.M.; Chandrasekaran, S.; Lin, C.C.; Tseng, T.Y. Switching failure mechanism in zinc peroxide-based programmable metallization cell. Nanoscale Res. Lett. 2018, 13, 327. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Park, J.; Kim, S.; Woo, J.; Shin, J.; Choi, G.; Park, S.; Lee, D.; Cha, E.; Lee, B.H.; et al. High current density and nonlinearity combination of selection device based on TaOx/TiO2/TaOx structure for one selector–one resistor arrays. ACS Nano 2012, 6, 8166–8172. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.; Song, J.; Moon, K.; Lee, J.H.; Cha, E.; Prakash, A.; Lee, D.; Lee, S.; Park, J.; Koo, Y.; et al. Electrical and reliability characteristics of a scaled ( 30 nm) tunnel barrier selector (W/Ta2O5/TaOx/TiO2/TiN) with excellent performance (JMAX > 107 A/cm2). In Proceedings of the 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers, Honolulu, HI, USA, 9–12 June 2014; pp. 1–2. [Google Scholar]
- Liu, X.; Sadaf, S.M.; Park, S.; Kim, S.; Cha, E.; Lee, D.; Jung, G.Y.; Hwang, H. Complementary resistive switching in niobium oxide-based resistive memory devices. IEEE Electron Device Lett. 2013, 34, 235–237. [Google Scholar] [CrossRef]
- Lee, D.; Park, J.; Park, J.; Woo, J.; Cha, E.; Lee, S.; Moon, K.; Song, J.; Koo, Y.; Hwang, H. Structurally engineered stackable and scalable 3D titanium-oxide switching devices for high-density nanoscale memory. Adv. Mater. 2015, 27, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Koo, Y.; Baek, K.; Hwang, H. Te-based amorphous binary OTS device with excellent selector characteristics for x-point memory applications. In Proceedings of the 2016 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 14–16 June 2016; pp. 1–2. [Google Scholar]
- Heo, S.; Lee, J.; Lee, S.; Lee, S.; Lee, C.; Baek, R.H.; Hwang, H. High-Speed Ternary CMOS Inverter by Monolithic Integration of NbO2 Threshold Switch with MOSFET. In Proceedings of the 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 11–16 December 2021; pp. 32.2.1–32.2.4. [Google Scholar]
- Banerjee, W.; Karpov, I.V.; Agrawal, A.; Kim, S.; Lee, S.; Lee, S.; Lee, D.; Hwang, H. Highly-stable (<3% fluctuation) Ag-based threshold switch with extreme-low OFF current of 0.1 pA, extreme-high selectivity of 109 and high endurance of 109 cycles. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; pp. 28.4.1–28.4.4. [Google Scholar]
- Kim, K.M.; Park, T.H.; Hwang, C.S. Dual conical conducting filament model in resistance switching TiO2 thin films. Sci. Rep. 2015, 5, 7844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, Y.T.; Tsai, T.M.; Chang, T.C.; Shih, C.C.; Chang, K.C.; Zhang, R.; Chen, K.H.; Chen, J.H.; Li, Y.C.; Lin, C.Y.; et al. Complementary resistive switching behavior induced by varying forming current compliance in resistance random access memory. Appl. Phys. Lett. 2015, 106, 213505. [Google Scholar] [CrossRef]
- Kim, J.H.; Nam, K.H.; Hwang, I.; Cho, W.J.; Park, B.; Chung, H.B. Improved bipolar resistive switching memory characteristics in Ge0.5Se0.5 solid electrolyte by using dispersed silver nanocrystals on bottom electrode. J. Nanosci. Nanotechnol. 2014, 14, 9498–9503. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, S.Z.; Maikap, S.; Tien, T.C.; Lee, H.Y.; Chen, W.S.; Chen, F.T.; Kao, M.J.; Tsai, M.J. Excellent resistive memory characteristics and switching mechanism using a Ti nanolayer at the Cu/TaOx interface. Nanoscale Res. Lett. 2012, 7, 345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, J.; Woo, J.; Song, J.; Hwang, H. Threshold switching behavior of Ag-Si based selector device and hydrogen doping effect on its characteristics. AIP Adv. 2015, 5, 127221. [Google Scholar] [CrossRef] [Green Version]
- Zazpe, R.; Stoliar, P.; Golmar, F.; Llopis, R.; Casanova, F.; Hueso, L. Resistive switching in rectifying interfaces of metal-semiconductor-metal structures. Appl. Phys. Lett. 2013, 103, 073114. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Fu, Y.; Ma, G.; Yang, G.; Liu, N.; Zhao, X.; Zhang, Z.; Tao, L.; Wan, H.; Rao, Y.; et al. The co-improvement of selectivity and uniformity on NbOx-based selector by Al-doping. IEEE Electron Device Lett. 2022, 43, 21728876. [Google Scholar] [CrossRef]
- Jo, M.; Seong, D.J.; Kim, S.; Lee, J.; Lee, W.; Park, J.B.; Park, S.; Jung, S.; Shin, J.; Lee, D.; et al. Novel cross-point resistive switching memory with self-formed Schottky barrier. In Proceedings of the 2010 Symposium on VLSI Technology, Honolulu, HI, USA, 15–17 June 2010; pp. 53–54. [Google Scholar]
w Rectifying Characteristics | w/o Rectifying Characteristics | |
---|---|---|
R | 1.02 M | 1.02 M |
R | 1.25 M | 1.25 M |
R | 144.38 M | 144.38 M |
R | 73.48 G | 144.38 M |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, J.; Han, G.; Kim, H.; Lee, D. Ag-Ion-Based Transparent Threshold Switching Selector with Filament-Size-Dependent Rectifying Behavior. Micromachines 2022, 13, 1874. https://doi.org/10.3390/mi13111874
Seo J, Han G, Kim H, Lee D. Ag-Ion-Based Transparent Threshold Switching Selector with Filament-Size-Dependent Rectifying Behavior. Micromachines. 2022; 13(11):1874. https://doi.org/10.3390/mi13111874
Chicago/Turabian StyleSeo, Jongseon, Geonhui Han, Hyejin Kim, and Daeseok Lee. 2022. "Ag-Ion-Based Transparent Threshold Switching Selector with Filament-Size-Dependent Rectifying Behavior" Micromachines 13, no. 11: 1874. https://doi.org/10.3390/mi13111874
APA StyleSeo, J., Han, G., Kim, H., & Lee, D. (2022). Ag-Ion-Based Transparent Threshold Switching Selector with Filament-Size-Dependent Rectifying Behavior. Micromachines, 13(11), 1874. https://doi.org/10.3390/mi13111874