Electrochemical Testing of a New Polyimide Thin Film Electrode for Stimulation, Recording, and Monitoring of Brain Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrodes
2.2. Testing Paradigms
2.3. Electrochemical Impedance Spectroscopy
2.4. Cyclic Voltammetry
2.5. Voltage Transients
2.6. Visual Inspection
2.7. Statistical Analysis
3. Results
3.1. Short-Term Electrochemical Testing
3.2. Long-Term Electrochemical Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, L.H.; Parker, J.J.; Ho, A.L.; Feng, A.Y.; Kumar, K.K.; Chen, K.S.; Ojukwu, D.I.; Shuer, L.M.; Grant, G.A.; Graber, K.D.; et al. Contemporaneous evaluation of patient experience, surgical strategy, and seizure outcomes in patients undergoing stereoelectroencephalography or subdural electrode monitoring. Epilepsia 2021, 62, 74–84. [Google Scholar] [CrossRef]
- Kim, L.H.; Parker, J.J.; Ho, A.L.; Pendharkar, A.V.; Sussman, E.S.; Halpern, C.H.; Porter, B.; Grant, G.A. Postoperative outcomes following pediatric intracranial electrode monitoring: A case for stereoelectroencephalography (SEEG). Epilepsy Behav. 2020, 104, 106905. [Google Scholar] [CrossRef] [PubMed]
- Mullin, J.P.; Shriver, M.; Alomar, S.; Najm, I.; Bulacio, J.; Chauvel, P.; Gonzalez-Martinez, J. Is SEEG safe? A systematic review and meta-analysis of stereo-electroencephalography-related complications. Epilepsia 2016, 57, 386–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Punia, V.; Bulacio, J.; Gonzalez-Martinez, J.; Abdelkader, A.; Bingaman, W.; Najm, I.; Stojic, A. Extra operative intracranial EEG monitoring for epilepsy surgery in elderly patients. Epilepsy Behav. Case Rep. 2018, 10, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Sacino, M.F.; Huang, S.S.; Schreiber, J.; Gaillard, W.D.; Oluigbo, C.O. Is the use of Stereotactic Electroencephalography Safe and Effective in Children? A Meta-Analysis of the use of Stereotactic Electroencephalography in Comparison to Subdural Grids for Invasive Epilepsy Monitoring in Pediatric Subjects. Neurosurgery 2019, 84, 1190–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, N.J.; Gupta, D.; Brunner, P.; Gunduz, A.; Adamo, M.A.; Ritaccio, A.; Schalk, G. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping. J. Vis. Exp. 2012, 64, e3993. [Google Scholar] [CrossRef] [Green Version]
- Jayakar, P.; Gotman, J.; Harvey, A.S.; Palmini, A.; Tassi, L.; Schomer, D.; Dubeau, F.; Bartolomei, F.; Yu, A.; Krsek, P.; et al. Diagnostic utility of invasive EEG for epilepsy surgery: Indications, modalities, and techniques. Epilepsia 2016, 57, 1735–1747. [Google Scholar] [CrossRef]
- Lachaux, J.P.; Axmacher, N.; Mormann, F.; Halgren, E.; Crone, N.E. High-frequency neural activity and human cognition: Past, present and possible future of intracranial EEG research. Prog. Neurobiol. 2012, 98, 279–301. [Google Scholar] [CrossRef] [Green Version]
- Miller, K.J.; Honey, C.J.; Hermes, D.; Rao, R.P.; denNijs, M.; Ojemann, J.G. Broadband changes in the cortical surface potential track activation of functionally diverse neuronal populations. Neuroimage 2014, 85 Pt 2, 711–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roland, J.; Brunner, P.; Johnston, J.; Schalk, G.; Leuthardt, E.C. Passive real-time identification of speech and motor cortex during an awake craniotomy. Epilepsy Behav. 2010, 18, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Taplin, A.M.; de Pesters, A.; Brunner, P.; Hermes, D.; Dalfino, J.C.; Adamo, M.A.; Ritaccio, A.L.; Schalk, G. Intraoperative mapping of expressive language cortex using passive real-time electrocorticography. Epilepsy Behav. Case Rep. 2016, 5, 46–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worrell, G.; Gotman, J. High-frequency oscillations and other electrophysiological biomarkers of epilepsy: Clinical studies. Biomark. Med. 2011, 5, 557–566. [Google Scholar] [CrossRef] [Green Version]
- Kuncel, A.M.; Grill, W.M. Selection of stimulus parameters for deep brain stimulation. Clin. Neurophysiol. 2004, 115, 2431–2441. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.R.; Allitt, B.J.; Paolini, A.G. Predicting neural recording performance of implantable electrodes. Analyst 2019, 144, 2973–2983. [Google Scholar] [CrossRef] [PubMed]
- Lempka, S.F.; Johnson, M.D.; Barnett, D.W.; Moffitt, M.A.; Otto, K.J.; Kipke, D.R.; McIntyre, C.C. Optimization of microelectrode design for cortical recording based on thermal noise considerations. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2006, 2006, 3361–3364. [Google Scholar] [CrossRef]
- McCreery, D.B.; Agnew, W.F.; Yuen, T.G.; Bullara, L. Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans. Biomed. Eng. 1990, 37, 996–1001. [Google Scholar] [CrossRef] [PubMed]
- Shannon, R.V. A model of safe levels for electrical stimulation. IEEE Trans. Biomed. Eng. 1992, 39, 424–426. [Google Scholar] [CrossRef]
- Szabo, B.; Gueli, C.; Eickenscheidt, M.; Stieglitz, T. Polyimide-based Thin Film Conductors for High Frequency Data Transmission in Ultra-Conformable Implants. Curr. Dir. Biomed. Eng. 2020, 6, 481–485. [Google Scholar] [CrossRef]
- Araki, T.; Otsubo, H.; Makino, Y.; Elliott, I.; Iida, K.; Ochi, A.; Weiss, S.K.; Chuang, S.H.; Rutka, J.T.; Snead, O.C. Efficacy of dexamathasone on cerebral swelling and seizures during subdural grid EEG recording in children. Epilepsia 2006, 47, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Carnicer-Lombarte, A.; Chen, S.T.; Malliaras, G.G.; Barone, D.G. Foreign Body Reaction to Implanted Biomaterials and Its Impact in Nerve Neuroprosthetics. Front. Bioeng. Biotechnol. 2021, 9, 622524. [Google Scholar] [CrossRef] [PubMed]
- Fong, J.S.; Alexopoulos, A.V.; Bingaman, W.E.; Gonzalez-Martinez, J.; Prayson, R.A. Pathologic findings associated with invasive EEG monitoring for medically intractable epilepsy. Am. J. Clin. Pathol. 2012, 138, 506–510. [Google Scholar] [CrossRef] [PubMed]
- Mocco, J.; Komotar, R.J.; Ladouceur, A.K.; Zacharia, B.E.; Goodman, R.R.; McKhann, G.M. Radiographic characteristics fail to predict clinical course after subdural electrode placement. Neurosurgery 2006, 58, 120–125; discussion 120–125. [Google Scholar] [CrossRef] [PubMed]
- Nagahama, Y.; Dlouhy, B.J.; Nakagawa, D.; Kamm, J.; Hasan, D.; Howard, M.A.; Kawasaki, H. Bone flap elevation for intracranial EEG monitoring: Technical note. J. Neurosurg. 2018, 129, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Tong, B.A.; Esquenazi, Y.; Johnson, J.; Zhu, P.; Tandon, N. The Brain is Not Flat: Conformal Electrode Arrays Diminish Complications of Subdural Electrode Implantation, A Series of 117 Cases. World Neurosurg. 2020, 144, e734–e742. [Google Scholar] [CrossRef] [PubMed]
- Van Gompel, J.J.; Worrell, G.A.; Bell, M.L.; Patrick, T.A.; Cascino, G.D.; Raffel, C.; Marsh, W.R.; Meyer, F.B. Intracranial electroencephalography with subdural grid electrodes: Techniques, complications, and outcomes. Neurosurgery 2008, 63, 498–505; discussion 505–506. [Google Scholar] [CrossRef] [PubMed]
- Kullmann, A.; Kridner, D.; Mertens, S.; Christianson, M.; Rosa, D.; Diaz-Botia, C.A. First Food and Drug Administration Cleared Thin-Film Electrode for Intracranial Stimulation, Recording, and Monitoring of Brain Activity-Part 1: Biocompatibility Testing. Front. Neurosci. 2022, 16, 876877. [Google Scholar] [CrossRef]
- Boehler, C.; Carli, S.; Fadiga, L.; Stieglitz, T.; Asplund, M. Tutorial: Guidelines for standardized performance tests for electrodes intended for neural interfaces and bioelectronics. Nat. Protoc. 2020, 15, 3557–3578. [Google Scholar] [CrossRef]
- Gardner, A.T.; Strathman, H.J.; Walker, R.M. A multiplexed electrochemical measurement system for characterization of implanted electrodes. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020. [Google Scholar] [CrossRef]
- Lempka, S.F.; Miocinovic, S.; Johnson, M.D.; Vitek, J.L.; McIntyre, C.C. In vivo impedance spectroscopy of deep brain stimulation electrodes. J. Neural Eng. 2009, 6, 046001. [Google Scholar] [CrossRef] [Green Version]
- Wilks, S.J.; Richner, T.J.; Brodnick, S.K.; Kipke, D.R.; Williams, J.C.; Otto, K.J. Voltage biasing, cyclic voltammetry, & electrical impedance spectroscopy for neural interfaces. J. Vis. Exp. 2012, 60, e3566. [Google Scholar] [CrossRef]
- Doering, M.; Kieninger, J.; Urban, G.A.; Weltin, A. Electrochemical microelectrode degradation monitoring: In situ investigation of platinum corrosion at neutral pH. J. Neural Eng. 2022, 19, 016005. [Google Scholar] [CrossRef]
- Jiang, X.; Sui, X.; Lu, Y.; Yan, Y.; Zhou, C.; Li, L.; Ren, Q.; Chai, X. In vitro and in vivo evaluation of a photosensitive polyimide thin-film microelectrode array suitable for epiretinal stimulation. J. Neuroeng. Rehabil. 2013, 10, 48. [Google Scholar] [CrossRef] [Green Version]
- Sun, A.; Franc, J.; Macdonald, D.D. Growth and Properties of Oxide Films on Platinum: I. EIS and X-Ray Photoelectron Spectroscopy Studies. J. Electrochem. Soc. 2006, 153, B260. [Google Scholar] [CrossRef]
- Merrill, D.R.; Bikson, M.; Jefferys, J.G. Electrical stimulation of excitable tissue: Design of efficacious and safe protocols. J. Neurosci. Methods 2005, 141, 171–198. [Google Scholar] [CrossRef] [PubMed]
- Ghazavi, A.; Cogan, S.F. Electrochemical characterization of high frequency stimulation electrodes: Role of electrode material and stimulation parameters on electrode polarization. J. Neural Eng. 2018, 15, 036023. [Google Scholar] [CrossRef] [PubMed]
- Hudak, E.M.; Kumsa, D.W.; Martin, H.B.; Mortimer, J.T. Electron transfer processes occurring on platinum neural stimulating electrodes: Calculated charge-storage capacities are inaccessible during applied stimulation. J. Neural Eng. 2017, 14, 046012. [Google Scholar] [CrossRef] [PubMed]
- Weiland, J.D.; Anderson, D.J. Chronic neural stimulation with thin-film, iridium oxide electrodes. IEEE Trans. Biomed. Eng. 2000, 47, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Perez, A.; Gabriel, G.; Rebollo, B.; Illa, X.; Guimera-Brunet, A.; Hernandez-Ferrer, J.; Martinez, M.T.; Villa, R.; Sanchez-Vives, M.V. Quantification of Signal-to-Noise Ratio in Cerebral Cortex Recordings Using Flexible MEAs With Co-localized Platinum Black, Carbon Nanotubes, and Gold Electrodes. Front. Neurosci. 2018, 12, 862. [Google Scholar] [CrossRef]
- Fontes, M.B.A. Electrodes for bio-application: Recording and stimulation. J. Phys. Conf. Ser. 2013, 421, 012019. [Google Scholar] [CrossRef] [Green Version]
- Kyaw, T.T.; Hanawa, T.; Kasugai, S. Investigation of different electrochemical cleaning methods on contaminated healing abutments in vitro: An approach for metal surface decontamination. Int. J. Implant. Dent. 2020, 6, 64. [Google Scholar] [CrossRef]
- Harris, A.T. Current perspectives on the safe electrical stimulation of peripheral nerves with platinum electrodes. Bioelectron. Med. 2020, 3, 199–211. [Google Scholar] [CrossRef]
- Fan, B.; Rodriguez, A.V.; Vercosa, D.G.; Kemere, C.; Robinson, J.T. Sputtered porous Pt for wafer-scale manufacture of low-impedance flexible microelectrodes. J. Neural Eng. 2020, 17, 036029. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, H.; Bhonsle, S.P.; Wang, Y.; Davalos, R.V.; Yao, C. Ablation outcome of irreversible electroporation on potato monitored by impedance spectrum under multi-electrode system. Biomed. Eng. Online 2018, 17, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, R.A.; Matteucci, P.B.; Dodds, C.W.; Palmer, J.; Dueck, W.F.; Hassarati, R.T.; Byrnes-Preston, P.J.; Lovell, N.H.; Suaning, G.J. Laser patterning of platinum electrodes for safe neurostimulation. J. Neural Eng. 2014, 11, 056017. [Google Scholar] [CrossRef] [PubMed]
100 Hz | 1 kHz | |||
---|---|---|---|---|
Magnitude (Ω) | Phase (°) | Magnitude (Ω) | Phase (°) | |
Before | 218.72 ± 39.29 | −37.22 ± 5.72 | 133.02 ± 8.33 | −10.88 ± 2.78 |
After | 146.83 ± 5.43 * | −20.46 ± 0.74 * | 127.32 ± 5.48 | −4.29 ± 0.25 * |
Before Stimulation | After Stimulation | Relevant Reaction | ||
---|---|---|---|---|
Peak Voltage (V) | Peak Current (mA) | Peak Voltage (V) | Peak Current (mA) | |
−0.25 | −0.18 | −0.22 | −0.21 | Pt-O reduction |
−0.70 | −0.14 | −0.70 | −0.17 | Pt-H reduction |
−0.52 | 0.08 | −0.51 | 0.10 | Pt-H oxidation |
−0.45 | 0.07 | −0.45 | 0.08 | Pt-H oxidation |
100 Hz | 1 kHz | |||
---|---|---|---|---|
Magnitude (Ω) | Phase (°) | Magnitude (Ω) | Phase (°) | |
Before | 211.23 ± 39.29 | −39.20 ± 5.72 | 124.01 ± 8.33 | −11.75 ± 2.78 |
After | 133.81 ± 5.43 * | −16.39 ± 0.74 * | 120.39 ± 5.48 * | −3.28 ± 0.25 * |
Before Stimulation | After Stimulation | Relevant Reaction | ||
---|---|---|---|---|
Peak Voltage (V) | Peak Current (mA) | Peak Voltage (V) | Peak Current (mA) | |
−0.25 | −0.18 | −0.23 | −0.17 | Pt-O reduction |
−0.75 | −0.17 | −0.76 | −0.16 | Pt-H reduction |
−0.55 | 0.07 | −0.55 | 0.08 | Pt-H oxidation |
−0.42 | 0.08 | −0.40 | 0.06 | Pt-H oxidation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ong, S.; Kullmann, A.; Mertens, S.; Rosa, D.; Diaz-Botia, C.A. Electrochemical Testing of a New Polyimide Thin Film Electrode for Stimulation, Recording, and Monitoring of Brain Activity. Micromachines 2022, 13, 1798. https://doi.org/10.3390/mi13101798
Ong S, Kullmann A, Mertens S, Rosa D, Diaz-Botia CA. Electrochemical Testing of a New Polyimide Thin Film Electrode for Stimulation, Recording, and Monitoring of Brain Activity. Micromachines. 2022; 13(10):1798. https://doi.org/10.3390/mi13101798
Chicago/Turabian StyleOng, Samuel, Aura Kullmann, Steve Mertens, Dave Rosa, and Camilo A Diaz-Botia. 2022. "Electrochemical Testing of a New Polyimide Thin Film Electrode for Stimulation, Recording, and Monitoring of Brain Activity" Micromachines 13, no. 10: 1798. https://doi.org/10.3390/mi13101798