# Fabrication of Chiral 3D Microstructure Using Tightly Focused Multiramp Helico-Conical Optical Beams

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Theory

## 3. Numerical Simulations and Experimental Results

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Appendix A. Chiral Microstructure Fabricated by Conventional Point-by-Point Scanning TPP

**Figure A1.**SEM photo of 3D chiral microstructure fabricated by conventional point-by-point scanning TPP.

## References

- Sun, D.; Jiang, X.; Sun, H.; Fang, Y.; Song, T. Effect of SiCP Content on the Microstructure and Mechanical Properties of Fe-Based Cermets. Int. J. Adv. Manuf. Technol.
**2022**, 118, 2539–2557. [Google Scholar] [CrossRef] - Wang, X.; Hua, L. Finite Element Study on Microstructure Evolution and Grain Refinement in the Forging Process of Automotive Front Axle Beam. Int. J. Adv. Manuf. Technol.
**2021**, 114, 1179–1187. [Google Scholar] [CrossRef] - Yuan, J.; Chen, X.; Zhao, Z.; Sun, B.; Shu, X. Numerical and Experimental Study on Microstructure Evolution of Ti-6Al-4 V Alloy Shaft Preform in Cross-Wedge Rolling Process. Int. J. Adv. Manuf. Technol.
**2022**, 119, 3785–3801. [Google Scholar] [CrossRef] - Zhu, C.; Wan, Y.; Wang, L.; Ye, Y.; Yu, H.; Yang, J. Strength Characteristics and Microstructure Analysis of Alkali-Activated Slag–Fly Ash Cementitious Material. Materials
**2022**, 15, 6169. [Google Scholar] [CrossRef] [PubMed] - Pugliese, R.; Regondi, S. Artificial Intelligence-Empowered 3D and 4D Printing Technologies toward Smarter Biomedical Materials and Approaches. Polymers
**2022**, 14, 2794. [Google Scholar] [CrossRef] - Deubel, M.; Wegener, M.; Linden, S.; Von Freymann, G.; John, S. 3D-2D-3D photonic crystal heterostructures fabricated by direct laser writing. Opt. Lett.
**2006**, 31, 805–807. [Google Scholar] [CrossRef] - Thiel, M.; Decker, M.; Deubel, M.; Wegener, M.; Linden, S.; von Freymann, G. Polarization Stop Bands in Chiral Polymeric Three-Dimensional Photonic Crystals. Adv. Mater.
**2007**, 19, 207–210. [Google Scholar] [CrossRef] - Maruo, S.; Nakamura, O.; Kawata, S. Three-Dimensional Microfabrication with Two-Photon-Absorbed Photopolymerization. Opt. Lett.
**1997**, 22, 132–134. [Google Scholar] [CrossRef] - Lian, M.-Q.; Lei, J.-G.; Wu, X.-Y.; Luo, F.; Luo, H.-X.; Xu, B. Micro-EDM of 3D Microstructure on Micro-Shaft Based on the Rotation of Micro-Shaft. Int. J. Adv. Manuf. Technol.
**2022**, 121, 5537–5548. [Google Scholar] [CrossRef] - Zhao, D.; Zhu, H.; Zhang, Z.; Xu, K.; Gao, J.; Dai, X.; Huang, L. Influence of Electrochemical Discharge Machining Parameters on Machining Quality of Microstructure. Int. J. Adv. Manuf. Technol.
**2022**, 119, 841–854. [Google Scholar] [CrossRef] - Vlnieska, V.; Gilshtein, E.; Kunka, D.; Heier, J.; Romanyuk, Y.E. Aerosol Jet Printing of 3D Pillar Arrays from Photopolymer Ink. Polymers
**2022**, 14, 3411. [Google Scholar] [CrossRef] [PubMed] - Thiel, M.; Rill, M.S.; von Freymann, G.; Wegener, M. Three-Dimensional Bi-Chiral Photonic Crystals. Adv. Mater.
**2009**, 21, 4680–4682. [Google Scholar] [CrossRef] - Wiesbauer, M.; Wollhofen, R.; Vasic, B.; Schilcher, K.; Jacak, J.; Klar, T.A. Nano-Anchors with Single Protein Capacity Produced with STED Lithography. Nano Lett.
**2013**, 13, 5672–5678. [Google Scholar] [CrossRef] - Ren, H.; Fang, X.; Jang, J.; Bürger, J.; Rho, J.; Maier, S.A. Complex-Amplitude Metasurface-Based Orbital Angular Momentum Holography in Momentum Space. Nat. Nanotechnol.
**2020**, 15, 948–955. [Google Scholar] [CrossRef] [PubMed] - Oh, D.K.; Lee, T.; Ko, B.; Badloe, T.; Ok, J.G.; Rho, J. Nanoimprint Lithography for High-Throughput Fabrication of Metasurfaces. Front. Optoelectron.
**2021**, 14, 229–251. [Google Scholar] [CrossRef] - Liu, Z.P.; Li, Y.; Xiao, Y.F.; Li, B.B.; Jiang, X.F.; Qin, Y.; Feng, X.X.; Yang, H.; Gong, Q.H. Direct laser writing of whispering gallery microcavities by two-photon polymerization. Appl. Phys. Lett.
**2010**, 97, 211105. [Google Scholar] [CrossRef] - Zhang, C.; Zhang, J.; Chen, R.; Li, J.; Wang, C.; Cao, R.; Zhang, J.; Ye, H.; Zhai, H.; Sugioka, K. Rapid Fabrication of High-Resolution Multi-Scale Microfluidic Devices Based on the Scanning of Patterned Femtosecond Laser. Opt. Lett.
**2020**, 45, 3929. [Google Scholar] [CrossRef] [PubMed] - Straub, M.; Gu, M. Near-Infrared Photonic Crystals with Higher-Order Bandgaps Generated by Two-Photon Photopolymerization. Opt. Lett.
**2002**, 27, 1824. [Google Scholar] [CrossRef] - Lasagni, A.; Yuan, D.; Shao, P.; Das, S. Fabrication of Periodic Microstructures in Pentaerythritol Triacrylate Through Femtosecond Laser Interference Two-Photon Polymerization. Adv. Eng. Mater.
**2009**, 11, 595–599. [Google Scholar] [CrossRef] - Zhang, Z.-Y.; Zhang, C.-C.; Hu, Y.-L.; Wang, C.-W.; Li, J.-W.; Su, Y.-H.; Chu, J.-R.; Wu, D. Highly Uniform Parallel Microfabrication Using a Large Numerical Aperture System. Appl. Phys. Lett.
**2016**, 109, 021109. [Google Scholar] [CrossRef] - Gittard, S.D.; Nguyen, A.; Obata, K.; Koroleva, A.; Narayan, R.J.; Chichkov, B.N. Fabrication of Microscale Medical Devices by Two-Photon Polymerization with Multiple Foci via a Spatial Light Modulator. Biomed. Opt. Express
**2011**, 2, 3167. [Google Scholar] [CrossRef] [PubMed] - Yang, L.; El-Tamer, A.; Hinze, U.; Li, J.; Hu, Y.; Huang, W.; Chu, J.; Chichkov, B.N. Parallel Direct Laser Writing of Micro-Optical and Photonic Structures Using Spatial Light Modulator. Opt. Lasers Eng.
**2015**, 70, 26–32. [Google Scholar] [CrossRef] - Li, X.; Cao, Y.; Tian, N.; Fu, L.; Gu, M. Multifocal Optical Nanoscopy for Big Data Recording at 30 TB Capacity and Gigabits/Second Data Rate. Optica
**2015**, 2, 567. [Google Scholar] [CrossRef] - Geng, Q.; Wang, D.; Chen, P.; Chen, S.-C. Ultrafast Multi-Focus 3-D Nano-Fabrication Based on Two-Photon Polymerization. Nat. Commun.
**2019**, 10, 2179. [Google Scholar] [CrossRef] [PubMed] - Maibohm, C.; Silvestre, O.F.; Borme, J.; Sinou, M.; Heggarty, K.; Nieder, J.B. Multi-beam two-photon polymerization for fast large area 3D periodic structure fabrication for bioapplications. Sci. Rep.
**2020**, 10, 8740. [Google Scholar] [CrossRef] [PubMed] - Shusteff, M.; Browar, A.E.M.; Kelly, B.E.; Henriksson, J.; Weisgraber, T.H.; Panas, R.M.; Fang, N.X.; Spadaccini, C.M. One-Step Volumetric Additive Manufacturing of Complex Polymer Structures. Sci. Adv.
**2017**, 3, eaao5496. [Google Scholar] [CrossRef] - Zhang, C.; Hu, Y.; Li, J.; Li, G.; Chu, J.; Huang, W. A Rapid Two-Photon Fabrication of Tube Array Using an Annular Fresnel Lens. Opt. Express
**2014**, 22, 3983. [Google Scholar] [CrossRef] - Yang, L.; El-Tamer, A.; Hinze, U.; Li, J.; Hu, Y.; Huang, W.; Chu, J.; Chichkov, B.N. Two-Photon Polymerization of Cylinder Microstructures by Femtosecond Bessel Beams. Appl. Phys. Lett.
**2014**, 105, 041110. [Google Scholar] [CrossRef] - Yang, L.; Qian, D.; Xin, C.; Hu, Z.; Ji, S.; Wu, D.; Hu, Y.; Li, J.; Huang, W.; Chu, J. Two-Photon Polymerization of Microstructures by a Non-Diffraction Multifoci Pattern Generated from a Superposed Bessel Beam. Opt. Lett.
**2017**, 42, 743. [Google Scholar] [CrossRef] - Zhang, S.-J.; Li, Y.; Liu, Z.-P.; Ren, J.-L.; Xiao, Y.-F.; Yang, H.; Gong, Q. Two-Photon Polymerization of a Three Dimensional Structure Using Beams with Orbital Angular Momentum. Appl. Phys. Lett.
**2014**, 105, 061101. [Google Scholar] [CrossRef] - Ni, J.; Wang, C.; Zhang, C.; Hu, Y.; Yang, L.; Lao, Z.; Xu, B.; Li, J.; Wu, D.; Chu, J. Three-Dimensional Chiral Microstructures Fabricated by Structured Optical Vortices in Isotropic Material. Light Sci. Appl.
**2017**, 6, e17011. [Google Scholar] [CrossRef] [PubMed] - Xin, C.; Yang, L.; Li, J.; Hu, Y.; Qian, D.; Fan, S.; Hu, K.; Cai, Z.; Wu, H.; Wang, D.; et al. Conical Hollow Microhelices with Superior Swimming Capabilities for Targeted Cargo Delivery. Adv. Mater.
**2019**, 31, 1808226. [Google Scholar] [CrossRef] [PubMed] - Yang, L.; Chen, X.; Wang, L.; Hu, Z.; Xin, C.; Hippler, M.; Zhu, W.; Hu, Y.; Li, J.; Wang, Y.; et al. Targeted Single-Cell Therapeutics with Magnetic Tubular Micromotor by One-Step Exposure of Structured Femtosecond Optical Vortices. Adv. Funct. Mater.
**2019**, 29, 1905745. [Google Scholar] [CrossRef] - Pan, D.; Liu, S.; Li, J.; Ni, J.; Xin, C.; Ji, S.; Lao, Z.; Zhang, C.; Xu, B.; Li, R.; et al. Rapid Fabrication of 3D Chiral Microstructures by Single Exposure of Interfered Femtosecond Vortex Beams and Capillary-Force-Assisted Self-Assembly. Adv. Funct. Mater.
**2022**, 32, 2106917. [Google Scholar] [CrossRef] - Cheng, H.; Golvari, P.; Xia, C.; Sun, M.; Zhang, M.; Kuebler, S.M.; Yu, X. High-Throughput Microfabrication of Axially Tunable Helices. Photon. Res.
**2022**, 10, 303. [Google Scholar] [CrossRef] - Alonzo, C.A.; Rodrigo, P.J.; Glückstad, J. Helico-Conical Optical Beams: A Product of Helical and Conical Phase Fronts. Opt. Express
**2005**, 13, 1749. [Google Scholar] [CrossRef] - Hermosa, N.P.; Manaois, C.O. Phase Structure of Helico-Conical Optical Beams. Opt. Commun.
**2007**, 271, 178–183. [Google Scholar] [CrossRef] - Singh, B.K.; Mehta, D.S.; Senthilkumaran, P. Vortices in Helico-Conical Beam and Fractional Vortex Beam. In Proceedings of the Workshop on Recent Advances in Photonics (WRAP), New Delhi, India, 17–18 December 2013; pp. 1–2. [Google Scholar]
- Bareza, N.; Hermosa, N. Propagation Dynamics of Vortices in Helico-Conical Optical Beams. Opt. Commun.
**2015**, 356, 236–242. [Google Scholar] [CrossRef] - Daria, V.R.; Palima, D.Z.; Glückstad, J. Optical Twists in Phase and Amplitude. Opt. Express
**2011**, 19, 476. [Google Scholar] [CrossRef] - Singh, B.K.; Mehta, D.S.; Senthilkumaran, P. Conical Light Sword Optical Beam and Its Healing Property. Opt. Lett.
**2014**, 39, 2064. [Google Scholar] [CrossRef] - Hermosa, N.; Rosales-Guzmán, C.; Torres, J.P. Helico-Conical Optical Beams Self-Heal. Opt. Lett.
**2013**, 38, 383. [Google Scholar] [CrossRef] [PubMed] - Shen, H.; Rui, F. Focusing of Helico-Conical Cosh-Gaussian Beam. Optik
**2013**, 124, 5945–5947. [Google Scholar] [CrossRef] - Cheng, S.; Xia, T.; Liu, M.; Jin, Y.; Zhang, G.; Xiong, Y.; Tao, S. Power-Exponent Helico-Conical Optical Beams. Opt. Laser Technol.
**2019**, 117, 288–292. [Google Scholar] [CrossRef] - Zeng, J.; Cheng, S.; Liu, S.; Zhang, G.; Tao, S.; Yang, W. Self-Healing of the Bored Helico-Conical Beam. Opt. Express
**2022**, 30, 9924. [Google Scholar] [CrossRef] [PubMed] - Zhang, Y.; Yang, X.; Gao, J. Twisting Phase and Intensity of Light with Plasmonic Metasurfaces. Sci. Rep.
**2018**, 8, 4884. [Google Scholar] [CrossRef] [PubMed] - Richards, B.; Wolf, E. Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system. Proc. R. Soc. A
**1959**, 253, 358–379. [Google Scholar] [CrossRef] - Hentschel, M.; Schäferling, M.; Duan, X.; Giessen, H.; Liu, N. Chiral Plasmonics. Sci. Adv.
**2017**, 3, 1602735. [Google Scholar] [CrossRef]

**Figure 2.**Phase distributions of (

**a**) MHCBs with $K=0,m=1,\alpha =6$ and (

**b**) MHCBs with $K=0,m=3,\alpha =6$.

**Figure 3.**Experimental setup for laser direct writing by MHCBs. Other notations are: HWP, half-wave plate; PBS, polarized beam splitter; M, mirror; SLM, spatial light modulator; QWP, quarter-wave plate; L, lens; AOM, acoustic–optical modulator; PR, prism reflector; OL, objective lens; DM, dichromatic mirror; ND, neutral density filter.

**Figure 4.**Simulated light field of MHCBs at the focal region of high numerical aperture (NA = 1.45) oil-immersion objective lens. From top to bottom, the tightly focused MHCBs with parameter (

**a1**–

**a5**) $m=1,\alpha =6$ and (

**b1**–

**b5**) $m=3,\alpha =6$. Simulated cross-sectional intensity profiles for the MHCBs at different positions through the objective lens (

**a1**,

**b1**) $z=-2\lambda $, (

**a2**,

**b2**) $z=-\lambda $, (

**a3**,

**b3**) $z=0$, (

**a4**,

**b4**) $z=\lambda $, (

**a5**,

**b5**) $z=2\lambda $.

**Figure 5.**Measured and numerical calculated intensity profiles of MHCBs with parameter (

**a**,

**c**) $m=1,\alpha =6$ and (

**b**,

**d**) $m=3,\alpha =6$ at the focal plane of the objective lens.

**Figure 6.**The 3D structure of light field of the MHCBs and corresponding fabricated chiral structure. The 3D intensity distribution of the MHCBs with (

**a**) $m=1,\alpha =6$ and (

**d**) $m=3,\alpha =6$. SEM photos of the fabricated 3D chiral microstructures via tightly focused MHCBs with (

**b**) $m=1,\alpha =6$ and (

**e**) $m=3,\alpha =6$. SEM photos of the fabricated 3D chiral microstructures array via MHCBs with (

**c**) $m=1,\alpha =6$ and (

**f**) $m=3,\alpha =6$.

**Figure 7.**SEM photos of the fabricated 3D chiral microstructures under different exposure times. (

**a**) The exposure time increases with a step of 50 ms along the white arrow. (

**b**) Two Chiral microstructures were fabricated under an exposure time of 50 ms.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wen, J.; Sun, Q.; Luo, M.; Ma, C.; Yang, Z.; Su, C.; Cao, C.; Zhu, D.; Ding, C.; Xu, L.; Kuang, C.; Liu, X. Fabrication of Chiral 3D Microstructure Using Tightly Focused Multiramp Helico-Conical Optical Beams. *Micromachines* **2022**, *13*, 1771.
https://doi.org/10.3390/mi13101771

**AMA Style**

Wen J, Sun Q, Luo M, Ma C, Yang Z, Su C, Cao C, Zhu D, Ding C, Xu L, Kuang C, Liu X. Fabrication of Chiral 3D Microstructure Using Tightly Focused Multiramp Helico-Conical Optical Beams. *Micromachines*. 2022; 13(10):1771.
https://doi.org/10.3390/mi13101771

**Chicago/Turabian Style**

Wen, Jisen, Qiuyuan Sun, Mengdi Luo, Chengpeng Ma, Zhenyao Yang, Chenyi Su, Chun Cao, Dazhao Zhu, Chenliang Ding, Liang Xu, Cuifang Kuang, and Xu Liu. 2022. "Fabrication of Chiral 3D Microstructure Using Tightly Focused Multiramp Helico-Conical Optical Beams" *Micromachines* 13, no. 10: 1771.
https://doi.org/10.3390/mi13101771