Research Advances of Soil Corrosion of Grounding Grids
Abstract
:1. Introduction
2. The Formation Mechanism and Influencing Factors of Soil Corrosion
2.1. The Function and Structure of the Grounding Grid
2.2. Material Selection of Grounding Conductor
- Conductivity: The grounding conductors must have good electrical conductivity to meet the function of voltage equalization and current release. The lower the material resistivity, the better the discharge effect of the grounding grid.
- Corrosion resistance: Given that grounding conductors are placed for a long time under a soil environment with complex physical and chemical properties, the corrosion resistance of the grounding conductor directly affects its work efficiency and service life.
- Thermal stability: When power equipment is struck by lightning or when a short-circuit fault occurs, the instantaneous large current passing through the grounding grid increases the temperature of the grounding conductor. Therefore, thermal stability verification must be carried out when designing the grounding grid and selecting the grounding conductor.
- Mechanical properties: Grounding conductors can be divided into two types, i.e., horizontal grounding conductors and vertical grounding conductors. When horizontal grounding conductors are buried in the ground, they are subjected to certain pressure from above. For vertical grounding conductors, they bear a certain impact load when driven into the ground. Therefore, the mechanical strength of the grounding conductor should be considered.
2.2.1. Copper
2.2.2. Carbon Steel
2.2.3. Galvanized Steel
2.2.4. Other Grounding Materials
2.3. Working Environment of Grounding Grid
2.3.1. Soil Environment
2.3.2. Working Conditions
- Metal casings of electrical devices, components of power distribution devices, etc., may become charged due to leakage and accumulation of electrostatic charges. Safety protection devices that are set up to prevent them from harming equipment and personal safety might introduce stray currents.
- A lightning protection device designed to discharge lightning current to the earth will introduce stray current.
- The working ground for maintaining the stability of the system, such as the neutral grounding of the transformer, will introduce stray current.
- In the cathodic protection system, the anode serves as the current output terminal to provide protection current to the protected cathode metal structure. If there are other metal structures near the anode, the anode current will preferentially flow into the metal structure from the channel with the lowest resistance between the metal structure and the anode. This part of the current flowing into the metal structure becomes stray current.
- Due to the increase in the construction of electrified railways and urban subways, grounding grids inevitably appear near electrified railways and subways. Therefore, the stray current leaking from the walking rails to the ground inevitably affects the safety of nearby grounding grids.
2.4. Corrosion Mechanism of Soil Corrosion
- Anode reaction
- 2.
- Cathodic reaction
2.5. The Corrosion Type of Soil Corrosion
2.5.1. Macro Cell Corrosion
2.5.2. Micro Cell Corrosion
2.5.3. Stray Current Corrosion
2.5.4. Microbial Corrosion
2.6. Influencing Factors of Soil Corrosion
2.6.1. Physical and Chemical Properties of Soil
2.6.2. Stray Current
2.6.3. Climatic Conditions
3. The Detection Technology and Protection Measures of Soil Corrosion
3.1. Detection Technology of Soil Corrosion
3.1.1. Electromagnetic Field Method
3.1.2. Electrical Network Method
3.1.3. Electrochemical Method
3.2. Protection Measures of Soil Corrosion
3.2.1. Increase the Cross-Sectional Area of the Grounding Conductor
3.2.2. Cathodic Protection Technology
3.2.3. Conductive Anticorrosion Coating
3.2.4. New Corrosion-Resistant Grounding Material
4. Conclusions and Prospects
- At present, most studies on soil corrosion of grounding grids focus on soil factors (such as moisture content, oxygen content, salt content, etc.) and ignore the influence of grounding grid working conditions (stray current, high current, impulse current, etc.) on the corrosion process. Combining working conditions with soil factors can reflect the actual corrosion situation of the grounding grid.
- In the field of grounding grid fault diagnosis, sensors play an important role in sensing current, electromagnetic field, impedance, and transmitting information. Therefore, the development of new sensors or new ways of transmitting information that can resist interference and accurately transmit information is of great significance for improving the accuracy of grounding grid fault diagnosis.
- At present, the main protection measures against grounding grid corrosion in engineering are to increase the cross-sectional area of the grounding conductor or use galvanized steel as a substitute for carbon steel. These methods have limited protection effects and do not completely solve the corrosion problem. The cathodic protection method also limits its application due to its limited protection effect or excessive maintenance cost. Therefore, the development of an efficient and practical protection method (such as new anticorrosion materials, conductive anticorrosion coatings) is a possible future research hotspot.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zhang, B.; He, J.; Jiang, Y. Safety performance of large grounding grid with fault current injected from multiple grounding points. IEEE Trans. Ind. Appl. 2015, 51, 5116–5122. [Google Scholar] [CrossRef]
- Hu, H.; Luo, R.; Fang, M.; Zeng, S.; Hu, F. A new optimization design for grounding grid. Int. J. Electr. Power Energy Syst. 2019, 108, 61–71. [Google Scholar] [CrossRef]
- Abdel-Salam, M.; Ahmed, A.; Nayel, M.; Zidan, A. Surface potential and resistance of grounding grid systems in homogeneous soil. Electr. Power Compon. Syst. 2007, 35, 1093–1109. [Google Scholar] [CrossRef]
- Yi, Q.; Xu, S.; Li, X.; Feng, B.; Hu, B. Corrosion characteristics of grounding grid in resistance-reducing agents. Adv. Mater. Res. 2014, 887–888, 947–950. [Google Scholar] [CrossRef]
- Datta, A.J.; Taylor, R.; Will, G.; Ledwich, G. An investigation of earth grid performance using graphene-coated copper. IEEE Access 2015, 3, 1042–1050. [Google Scholar] [CrossRef] [Green Version]
- Kamel, R.M. Three fault ride through controllers for wind systems running in isolated micro-grid and Effects of fault type on their performance: A review and comparative study. Renew. Sustain. Energy Rev. 2014, 37, 698–714. [Google Scholar] [CrossRef]
- Lan, W.; Zheng, Y.; Li, L.; Wang, X.; Yao, G.; Zhang, Y. Fault diagnosis of grounding grid based on self-adaptive particle swarm optimization. Appl. Mech. Mater. 2014, 448–453, 1937–1940. [Google Scholar] [CrossRef]
- Rajan, S.; Venugopalan, S.I. Corrosion and grounding systems. IEEE Trans. Ind. Appl. 1977, 13, 297–306. [Google Scholar] [CrossRef]
- Lawson, V.R. Problems and detection of line anchor and substation ground grid corrosion. IEEE Trans. Ind. Appl. 1988, 24, 25–32. [Google Scholar] [CrossRef]
- Hou, Z.-E.; Duan, F.-J.; Zhang, K.-C. The neural network method of corrosion diagnosis for grounding grid. AIP Conf. Proc. 2008, 1060, 353. [Google Scholar]
- Xu, S.; Xie, R.; Na, L. Corrosion behavior analysis of various ions in the soil to the X80 buried pipeline. Adv. Mater. Res. 2012, 535–537, 701. [Google Scholar] [CrossRef]
- Sun, C.; Xu, J.; Wang, F.H.; Yu, C.K. Effect of sulfate reducing bacteria on corrosion of stainless steel 1Cr18Ni9Ti in soils containing chloride ions. Mater. Chem. Phys. 2011, 126, 330–336. [Google Scholar] [CrossRef]
- Rafael Lizarraga, C.; Perez, T.; Galvan-Martinez, R.; Manuel Quej-Ake, L.; Contreras, A. Stress-corrosion-cracking assessment of X52 pipeline steel exposed to Mexican soils. Mater. Tehnol. 2019, 53, 81–86. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, Y.; Chen, S.; Du, S.; Lyu, W.; Chen, L. Characteristics of Two Ground Grid Potentials After a Triggered Lightning Stroke. IEEE Access 2020, 8, 171001–171008. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, J.; Liu, Y.; Xiang, N.; Sun, Z.; Chen, J.; Fang, C. Causes, Forms and Remedies of Substation Grounding Grid Corrosion; IEEE: Piscataway, NJ, USA, 2008; pp. 186–189. [Google Scholar]
- Lv, K.; Xu, S.; Liu, L.; Wang, X.; Li, C.; Wu, T.; Yin, F. Comparative study on the corrosion behaviours of high-silicon chromium iron and Q235 steel in a soil solution. Int. J. Electrochem. Sci. 2020, 15, 5193–5207. [Google Scholar] [CrossRef]
- Afonso, F.S.; Neto, M.M.M.; Mendonca, M.H.; Pimenta, G.; Proenca, L.; Fonseca, I.T.E. Copper corrosion in soil: Influence of chloride contents, aeration and humidity. J. Solid State Electrochem. 2009, 13, 1757–1765. [Google Scholar] [CrossRef]
- Souissi, N.; Triki, E. Early stages of copper corrosion behaviour in a Tunisian soil. Mater. Corros. Werkst. Und Korros. 2010, 61, 695–701. [Google Scholar] [CrossRef]
- Shao, Y.; Mu, M.; Zhang, B.; Nie, K.; Liao, Q. Corrosion behavior of copper-clad steel bars with unclad two-end faces for grounding grids in the red clay soil. J. Mater. Eng. Perform. 2017, 26, 1751–1757. [Google Scholar] [CrossRef]
- Tan, Y.; Liu, X.; Ma, L.; Li, X.; Liao, Q. The effect of hematite on the corrosion behavior of copper in saturated red soil solutions. J. Mater. Eng. Perform. 2020, 29, 2324–2334. [Google Scholar] [CrossRef]
- Wu, Y.H.; Luo, S.X.; Gou, H. The corrosion behavior of copper in acid soil during soil acidification by simulated acid rain. Mater. Und Werkst. 2012, 43, 1074–1079. [Google Scholar] [CrossRef]
- Zhu, Z.; Shi, C.; Zhang, Y.; Liu, Z. The effects of Cl- and direct stray current on soil corrosion of three grounding grid materials. Anti-Corros. Methods Mater. 2020, 67, 73–82. [Google Scholar] [CrossRef]
- Jacobs, S.; Edwards, M. Sulfide scale catalysis of copper corrosion. Water Res. 2000, 34, 2798–2808. [Google Scholar] [CrossRef]
- Han, P.; Xie, R.; Lin, N.; He, B. Electrochemical corrosion behavior of X70 steel in sand soil contaminated by copper(ii). Int. J. Electrochem. Sci. 2016, 11, 9491–9507. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Z.; Chen, X.; Song, J.; Shi, M. Study on corrosion behavior of copper-clad steel for grounding grids. In Proceedings of the Advances in Materials, Machinery, Electrical Engineering, Tianjin, China, 10–11 June 2017; Xiao, J., Ke, G., Lunev, S., Eds.; Volume 114, pp. 17–21. [Google Scholar]
- Bertling, S.; Degryse, F.; Wallinder, I.O.; Smolders, E.; Leygraf, C. Model studies of corrosion-induced copper runoff fate in soil. Environ. Toxicol. Chem. 2006, 25, 683–691. [Google Scholar] [CrossRef]
- Bertling, S.; Wallinder, I.O.; Kleja, D.B.; Leygraf, C. Long-term corrosion-induced copper runoff from natural and artificial patina and its environmental impact. Environ. Toxicol. Chem. 2006, 25, 891–898. [Google Scholar] [CrossRef]
- Rodriguez-Seijo, A.; Alfaya, M.C.; Luisa Andrade, M.; Vega, F.A. Copper, chromium, nickel, lead and zinc levels and pollution degree in firing range soils. Land Degrad. Dev. 2016, 27, 1721–1730. [Google Scholar] [CrossRef]
- Li, J.; Su, H.; Chai, F.; Xue, D.-m.; Li, L.; Li, X.-y.; Meng, H.-m. Corrosion behavior of low-carbon Cr micro-alloyed steel for grounding grids in simulated acidic soil. J. Iron Steel Res. Int. 2018, 25, 755–766. [Google Scholar] [CrossRef]
- Li, Y.T. Corrosion behaviour of steel in beach soil along Bohai Bay. Corros. Eng. Sci. Technol. 2009, 44, 91–95. [Google Scholar] [CrossRef]
- Nie, X.; Li, X.; Du, C.; Huang, Y.; Du, H. Characterization of corrosion products formed on the surface of carbon steel by Raman spectroscopy. J. Raman Spectrosc. 2009, 40, 76–79. [Google Scholar] [CrossRef]
- Sun, C.; Li, X.-M.; Xu, J.; Yan, M.-C.; Wang, F.-H.; Wang, Z.-Y. Effect of urea on microbiologically induced corrosion of carbon steel in soil. Acta Phys. Chim. Sin. 2012, 28, 2659–2668. [Google Scholar] [CrossRef]
- Xu, J.; Sun, C.; Yan, M.; Wang, F. Effects of sulfate reducing bacteria on corrosion of carbon steel Q235 in soil-extract solution. Int. J. Electrochem. Sci. 2012, 7, 11281–11296. [Google Scholar]
- Denison, I.A.; Romanoff, M. Corrosion of galvanized steel in soils. J. Res. Natl. Bur. Stand. 1952, 49, 299–314. [Google Scholar] [CrossRef]
- Nakhaie, D.; Kosari, A.; Mol, J.M.C.; Asselin, E. Corrosion resistance of hot-dip galvanized steel in simulated soil solution: A factorial design and pit chemistry study. Corros. Sci. 2020, 164. [Google Scholar] [CrossRef]
- Wei, W.; Wu, X.-q.; Ke, W.; Xu, S.; Feng, B.; Hu, B.-t. Relationship between pH and electrochemical corrosion behavior of thermal-sprayed Ni-Al-coated Q235 steel in simulated soil solutions. J. Mater. Eng. Perform. 2017, 26, 4340–4348. [Google Scholar] [CrossRef]
- Wu, X.; Xu, J.; Ke, W.; Xu, S.; Feng, B.; Hu, B. Effects of PH value on corrosion behavior of thermal-sprayed Al-Si coated Q235 steel in simulated soil solutions. J. Mater. Eng. Perform. 2014, 23, 2265–2273. [Google Scholar] [CrossRef]
- Angel Baltazar-Zamora, M.; Manuel Mendoza-Rangel, J.; Croche, R.; Gaona-Tiburcio, C.; Hernandez, C.; Lopez, L.; Olguin, F.; Almeraya-Calderon, F. Corrosion Behavior of Galvanized Steel Embedded in Concrete Exposed to Soil Type MH Contaminated with Chlorides. Front. Mater. 2019, 6. [Google Scholar] [CrossRef]
- Ghods, P.; Padilla, V.; Alfantazi, A. Evaluation of galvanized steel corrosion in mechanically stabilized earth walls. Mater. Perform. 2013, 52, 29–33. [Google Scholar]
- Yan, F.-J.; Li, X.-G.; Wang, X.-G. The corrosion behavior of galvanized steel in alkaline soil. Appl. Mech. Mater. 2013, 331, 416–420. [Google Scholar] [CrossRef]
- Fan, X.-L.; Chen, Y.-X.; Zhang, J.-X.; Lin, D.-Y.; Liu, X.-X.; Xia, X.-J. Galvanic corrosion behavior of copper-drawn steel for grounding grids in the acidic red soil simulated solution. Acta Metall. Sin. Engl. Lett. 2020, 33, 1571–1582. [Google Scholar] [CrossRef]
- Hyun, Y.; Kim, H.; Kim, Y.-H. Effects of chloride and crevice on corrosion resistance of stainless steels buried in soil within Seoul Metropolitan. Met. Mater. Int. 2014, 20, 249–260. [Google Scholar] [CrossRef]
- Sjogren, L.; Camitz, G.; Peultier, J.; Jacques, S.; Baudu, V.; Barrau, F.; Chareyre, B.; Bergquist, A.; Pourbaix, A.; Carpentiers, P. Corrosion resistance of stainless steel pipes in soil. Mater. Corros. Werkst. Und Korros. 2011, 62, 299–309. [Google Scholar] [CrossRef]
- Wang, X.; Xu, J.; Sun, C. Effects of sulfate-reducing bacterial on corrosion of 403 stainless steel in soils containing chloride ions. Int. J. Electrochem. Sci. 2013, 8, 821–830. [Google Scholar]
- Li, J.; Men, C.; Qi, J.; Yang, B.; Liu, R. Impact factor analysis, prediction, and mapping of soil corrosion of carbon steel across China based on MIV-BP artificial neural network and GIS. J. Soils Sediments 2020, 20, 3204–3216. [Google Scholar] [CrossRef]
- Wang, X.-Z.; Fan, H.-Q.; Muneshwar, T.; Cadien, K.; Luo, J.-L. Balancing the corrosion resistance and through-plane electrical conductivity of Cr coating via oxygen plasma treatment. J. Mater. Sci. Technol. 2021, 61, 75–84. [Google Scholar] [CrossRef]
- Gorbunov, N.I. Prospects in study of physicochemical properties of soils, soil colloids and minerals. Sov. Soil Sci. 1973, 5, 57–74. [Google Scholar]
- Chen, X.B.; Qiu, G.Q.; Wang, Y.Q.; Sheng, W.K.; Tao, Z.X.; Tian, L.X. Physicochemical and mechanical-properties of saline soils during temperature-change. Sci. China Ser. A Math. Phys. Astron. 1989, 32, 234–245. [Google Scholar]
- Li, J.; Su, H.; Chai, F.; Chen, X.-p.; Li, X.-y.; Meng, H.-m. Simulated corrosion test of Q235 steel in diatomite soil. J. Iron Steel Res. Int. 2015, 22, 352–360. [Google Scholar] [CrossRef]
- Wasim, M.; Shoaib, S.; Mubarak, N.M.; Asiri, A.M. Factors influencing corrosion of metal pipes in soils. Environ. Chem. Lett. 2018, 16, 861–879. [Google Scholar] [CrossRef]
- Liu, D.; Huang, Y.; An, S.; Sun, H.; Bhople, P.; Chen, Z. Soil physicochemical and microbial characteristics of contrasting land-use types along soil depth gradients. Catena 2018, 162, 345–353. [Google Scholar] [CrossRef]
- da Costa Pereira, R.F.; Dantas de Oliveira, E.S.; de Andrade Lima, M.A.G.; Delarue Cezar Brasil, S.L. Corrosion of galvanized steel under different soil moisture contents. Mater. Res. Ibero Am. J. Mater. 2015, 18, 563–568. [Google Scholar] [CrossRef] [Green Version]
- Yan, A.; Hou, J.; Chen, Y.; Feng, L. Study of the soil corrosion of Q235 steel ground grid in Weinan Shaanxi. Mater. Sci. 2011, 47, 114–119. [Google Scholar]
- Xie, F.; Wang, Z.; Wang, D.; Yin, S. A synergistic effect of dissolved oxygen, HCO3-, and Cl- on the electrochemical corrosion behavior of X70 pipeline steel in the oilfield soil environment. Appl. Phys. A Mater. Sci. Process. 2020, 126. [Google Scholar] [CrossRef]
- Wang, S.; Liu, D.; Du, N.; Zhao, Q.; Xiao, J. Cathodic reactions involved in the corrosion of X80 steel in acidic soil simulated solution. Int. J. Electrochem. Sci. 2016, 11, 8797–8809. [Google Scholar] [CrossRef]
- Mu, M.; Liu, S.; Nie, K.; Zhang, X.; Liao, Q.; Yan, A. Galvanic corrosion of stainless-clad steel ground rods in acidic soils. Mater. Perform. 2017, 56, 24–27. [Google Scholar]
- Ezuber, H.M.; Alshater, A.; Hossain, S.M.Z.; El-Basir, A. Impact of Soil Characteristics and Moisture Content on the Corrosion of Underground Steel Pipelines. Arab. J. Sci. Eng. 2020. [Google Scholar] [CrossRef]
- Soriano, C.; Alfantazi, A. Corrosion behavior of galvanized steel due to typical soil organics. Constr. Build. Mater. 2016, 102, 904–912. [Google Scholar] [CrossRef]
- Tkachuk, N.; Zelena, L.; Mazur, P.; Lukash, O. Genotypic, physiological and biochemical features of Desulfovibrio strains in a sulfidogenic microbial community isolated from the soil of ferrosphere. Ecol. Quest. 2020, 31, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Bai, Y.; Wu, T.; Yan, M.; Yu, C.; Sun, C. Effect of elastic stress and alternating current on corrosion of X80 pipeline steel in simulated soil solution. Eng. Fail. Anal. 2019, 100, 192–205. [Google Scholar] [CrossRef]
- Adam, G.P.; Vrana, T.K.; Li, R.; Li, P.; Burt, G.; Finney, S. Review of technologies for DC grids—Power conversion, flow control and protection. IET Power Electron. 2019, 12, 1851–1867. [Google Scholar] [CrossRef] [Green Version]
- Andrade, C.; Martinez, I.; Castellote, M. Feasibility of determining corrosion rates by means of stray current-induced polarisation. J. Appl. Electrochem. 2008, 38, 1467–1476. [Google Scholar] [CrossRef]
- Kim, D.K.; Ha, T.H.; Ha, Y.C.; Bae, J.H.; Lee, H.G.; Gopi, D.; Scantlebury, J.D. Alternating current induced corrosion. Corros. Eng. Sci. Technol. 2004, 39, 117–123. [Google Scholar] [CrossRef]
- Sarangi, S.; Sahu, B.K.; Rout, P.K. Distributed generation hybrid AC/DC microgrid protection: A critical review on issues, strategies, and future directions. Int. J. Energy Res. 2020, 44, 3347–3364. [Google Scholar] [CrossRef]
- Bui, D.M.; Chen, S.-L.; Lien, K.-Y.; Chang, Y.-R.; Lee, Y.-D.; Jiang, J.-L. Investigation on transient behaviours of a uni-grounded low-voltage AC microgrid and evaluation on its available fault protection methods: Review and proposals. Renew. Sustain. Energy Rev. 2017, 75, 1417–1452. [Google Scholar] [CrossRef]
- Jeffrey, R.; Melchers, R.E. Bacteriological influence in the development of iron sulphide species in marine immersion environments. Corros. Sci. 2003, 45, 693–714. [Google Scholar] [CrossRef]
- Beech, I.B.; Zinkevich, V.; Tapper, R.; Gubner, R. Direct involvement of an extracellular complex produced by a marine sulfate-reducing bacterium in deterioration of steel. Geomicrobiol. J. 1998, 15, 121–134. [Google Scholar] [CrossRef]
- Petersen, R.B.; Melchers, R.E. Effect of moisture content and compaction on the corrosion of mild steel buried in clay soils. Corros. Eng. Sci. Technol. 2019, 54, 587–600. [Google Scholar] [CrossRef]
- El-Shamy, A.M.; Shehata, M.F.; Ismail, A.I.M. Effect of moisture contents of bentonitic clay on the corrosion behavior of steel pipelines. Appl. Clay Sci. 2015, 114, 461–466. [Google Scholar] [CrossRef]
- He, B.; Bai, X.H.; Hou, L.F.; Zhang, D.C.; Han, P.J. The influence of particle size on the long-term electrochemical corrosion behavior of pipeline steel in a corrosive soil environment. Mater. Corros. Werkst. Und Korros. 2017, 68, 846–857. [Google Scholar] [CrossRef]
- He, B.; Han, P.J.; Lu, C.H.; Bai, X.H. Effect of the size of soil particles on the electrochemical corrosion behavior of pipeline steel in saline solutions. Mater. Sci. 2016, 51, 890–902. [Google Scholar] [CrossRef]
- Hirata, R.; Yonemoto, W.; Ooi, A.; Tada, E.; Nishikata, A. Influence of soil particle size, covering thickness, and pH on soil corrosion of carbon steel. ISIJ Int. 2020, 60, 2533–2540. [Google Scholar] [CrossRef]
- He, B.; Han, P.; Lu, C.; Bai, X. Effect of soil particle size on the corrosion behavior of natural gas pipeline. Eng. Fail. Anal. 2015, 58, 19–30. [Google Scholar] [CrossRef]
- Benson, R.C. A review of soil resistivity measurements for grounding, corrosion assessment, and cathodic protection. Mater. Perform. 2002, 41, 28–34. [Google Scholar]
- Melchers, R.E.; Wells, T. Correlation between soil electrical resistivity, polarisation resistance and corrosion of steel. Corros. Eng. Sci. Technol. 2018, 53, 524–530. [Google Scholar] [CrossRef]
- Yoon, G.L.; Oh, M.H.; Park, J.B. Laboratory study of landfill leachate effect on resistivity in unsaturated soil using cone penetrometer. Environ. Geol. 2002, 43, 18–28. [Google Scholar] [CrossRef]
- Fu, J.; Pei, F.; Zhu, Z.; Tan, Z.; Tian, X.; Mao, R.; Wang, L. Influence of moisture on corrosion behaviour of steel ground rods in mildly desertified soil. Anti-Corros. Methods Mater. 2013, 60, 148–152. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Li, Q.; Cui, Z.Y.; Wu, W.; Li, Z.; Du, C.W.; Li, X.G. Field experiment of stress corrosion cracking behavior of high strength pipeline steels in typical soil environments. Constr. Build. Mater. 2017, 148, 131–139. [Google Scholar] [CrossRef]
- Buchwald, V.F.; Clarke, R.S. Corrosion of Fe-Ni alloys by Cl-containing akaganeite (Beta-FeOOH)—The antarctic meteorite case. Am. Mineral. 1989, 74, 656–667. [Google Scholar]
- Su, Y.-f.; Hsu, C.-y.; Shih, Y.-h. Effects of various ions on the dechlorination kinetics of hexachlorobenzene by nanoscale zero-valent iron. Chemosphere 2012, 88, 1346–1352. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, G.; Chen, Y.; Zhao, P.; Tian, Y. Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Karimian, N.; Johnston, S.G.; Burton, E.D. Iron and sulfur cycling in acid sulfate soil wetlands under dynamic redox conditions: A review. Chemosphere 2018, 197, 803–816. [Google Scholar] [CrossRef]
- Liu, G.; Wu, Z.; Li, W.; Zhang, Z.; Mei, D. Research on the influence of ac current overflowing on grounding electrode corrosion. In 2017 2nd International Seminar on Advances in Materials Science and Engineering; IOP: London, UK, 2017; Volume 231. [Google Scholar]
- Xu, L.Y.; Su, X.; Yin, Z.X.; Tang, Y.H.; Cheng, Y.F. Development of a real-time AC/DC data acquisition technique for studies of AC corrosion of pipelines. Corros. Sci. 2012, 61, 215–223. [Google Scholar] [CrossRef]
- Wang, C.; Li, W.; Wang, Y.; Yang, X.; Xu, S. Study of electrochemical corrosion on Q235A steel under stray current excitation using combined analysis by electrochemical impedance spectroscopy and artificial neural network. Constr. Build. Mater. 2020, 247. [Google Scholar] [CrossRef]
- Fu, A.Q.; Cheng, Y.F. Effects of alternating current on corrosion of a coated pipeline steel in a chloride-containing carbonate/bicarbonate solution. Corros. Sci. 2010, 52, 612–619. [Google Scholar] [CrossRef]
- McCollum, B.; Logan, K.H. Electrolytic corrosion of iron in soils. J. Frankl. Inst. 1913, 176, 97–99. [Google Scholar] [CrossRef] [Green Version]
- Marsh, S. On alternating current electrolysis. In Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character; Royal Society: London, UK, 1920; Volume 97, pp. 124–144. [Google Scholar] [CrossRef] [Green Version]
- Reyes, T.; Bhola, S.; Olson, D.L.; Mishra, B. Study of corrosion of super martensitic stainless steel under alternating current in artificial seawater with electrochemical impedance spectroscopy. AIP Conf. Proc. 2011, 1335, 1241–1248. [Google Scholar]
- Wen, C.; Li, J.; Wang, S.; Yang, Y. Experimental study on stray current corrosion of coated pipeline steel. J. Nat. Gas Sci. Eng. 2015, 27, 1555–1561. [Google Scholar] [CrossRef]
- Mellit, A.; Tina, G.M.; Kalogirou, S.A. Fault detection and diagnosis methods for photovoltaic systems: A review. Renew. Sustain. Energy Rev. 2018, 91, 1–17. [Google Scholar] [CrossRef]
- Fu, Z.; Wang, X.; Wang, Q.; Xu, X.; Fu, N.; Qin, S. Advances and challenges of corrosion and topology detection of grounding grid. Appl. Sci. 2019, 9, 2290. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Dong, H.; Yuan, Z.; Zhu, J.; Zhang, H.; Huang, Y. An EEMD-Based electromagnetic induction method for nondestructive testing of buried metal conductors. IEEE Access 2019, 7, 142261–142271. [Google Scholar] [CrossRef]
- Dong, M.; Shi, Z.; Li, X.; Shao, G.; Yang, F.; Yao, D.; Zhang, K. A diagnosis of grounding grid corrosion defects based on branch voltage disturbance. IEEE Access 2020, 8, 36749–36756. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, B.; He, X.; Zhang, C.; Li, S.; Li, P. Design of multi-channel corrosion detection system for grounding grid in substation. Univ. Politeh. Buchar. Sci. Bull. Ser. C Electr. Eng. Comput. Sci. 2020, 82, 265–278. [Google Scholar]
- Dawalibi, F. Electromagnetic-fields generated by overhead and buried short conductors 1. Single conductor. IEEE Trans. Power Deliv. 1986, 1, 105–111. [Google Scholar] [CrossRef]
- Dawalibi, F. Electromagnetic-fields generated by overhead and buried short conductors 2. Ground networks. IEEE Trans. Power Deliv. 1986, 1, 112–119. [Google Scholar] [CrossRef]
- Yu, C.; Fu, Z.; Wu, G.; Zhou, L.; Zhu, X.; Bao, M. Configuration Detection of Substation Grounding Grid Using Transient Electromagnetic Method. IEEE Trans. Ind. Electron. 2017, 64, 6475–6483. [Google Scholar] [CrossRef]
- Zhang, P.-H.; He, J.-J.; Zhang, D.-D.; Wu, L.-M. A fault diagnosis method for substation grounding grid based on the square-wave frequency domain model. Metrol. Meas. Syst. 2012, 19, 63–71. [Google Scholar] [CrossRef]
- Chai, Q.; Luo, Y.; Ren, J.; Zhang, J.; Yang, J.; Yuan, L.; Peng, G.-D. Review on fiber-optic sensing in health monitoring of power grids. Opt. Eng. 2019, 58. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Zeng, R.; He, J.L.; Sun, W.M.; Yao, J.X.; Su, Q. Novel METHOD of corrosion Diagnosis for Grounding Grid. Proceeding of the 2000 International Conference on Power System Technology, Proceedings (Cat. No.00EX409). Perth, WA, Australia, 4–7 December 2000; pp. 1365–1370. [Google Scholar]
- Zeng, R.; He, J.L.; Hu, J.; Lu, G.J.; Luo, B. The theory and implementation of corrosion diagnosis for grounding system. In Conference Record of the 2002 IEEE Industry Applications Conference, Vols 1–4; IEEE: Piscataway, NJ, USA, 2002; pp. 1120–1126. [Google Scholar]
- Cao, A.L.; Zhu, Q.J.; Zhang, S.T.; Hou, B.R. BP neural network predictive model for stray current density of a buried metallic pipeline. Anti-Corros. Methods Mater. 2010, 57, 234–237. [Google Scholar] [CrossRef]
- Law, D.W.; Millard, S.G.; Bungey, J.H. Linear polarisation resistance measurements using a potentiostatically controlled guard ring. NDT E Int. 2000, 33, 15–21. [Google Scholar] [CrossRef]
- Law, D.W.; Millard, S.G.; Bungey, J.H. Effect of electrode orientation on linear polarisation measurements using sensor controlled guard ring. Br. Corros. J. 2000, 35, 136–140. [Google Scholar] [CrossRef]
- Kirkpatrick, E.L. Electrical grounding and cathodic protection issues in large generating stations. Mater. Perform. 2001, 40, 17–19. [Google Scholar]
- Dong, X.; Yang, D.; Guan, X.; Du, M.; Liu, D. Cathodic protection design of the 220 kV substation grounding grids. Anti-Corros. Methods Mater. 2013, 60, 143–147. [Google Scholar] [CrossRef]
- Angst, U.M. A Critical Review of the Science and Engineering of Cathodic Protection of Steel in Soil and Concrete. Corrosion 2019, 75, 1420–1433. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Zhao, B.; Liu, Z.; Du, C.; Shou, B. Local chemistry-electrochemistry and stress corrosion susceptibility of X80 steel below disbonded coating in acidic soil environment under cathodic protection. Constr. Build. Mater. 2020, 243. [Google Scholar] [CrossRef]
- Ren, Z.; Yang, D.; Liu, J.; Ma, Y.; Huo, Z.; Zheng, S. The protection of 500kV substation grounding grids with combined conductive coating and cathodic protection. Anti-Corros. Methods Mater. 2015, 62, 83–87. [Google Scholar] [CrossRef]
- Kamel, R.M.; Alsaffar, M.A.; Habib, M.K. Novel and simple scheme for Micro-Grid protection by connecting its loads neutral points: A review on Micro-Grid protection techniques. Renew. Sustain. Energy Rev. 2016, 58, 931–942. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, Y.; Liao, Q.; Zhang, X. Nickel-rich coating for saline-alkali soil grounding. Mater. Perform. 2019, 58, 44–48. [Google Scholar]
- Kitano, T.; Maeda, Y.; Akasaka, T. Preparation of transparent and conductive thin films of carbon nanotubes using a spreading/coating technique. Carbon 2009, 47, 3559–3565. [Google Scholar] [CrossRef]
- Xiao, G.; Tao, Y.; Lu, J.; Zhang, Z. Highly conductive and transparent carbon nanotube composite thin films deposited on polyethylene terephthalate solution dipping. Thin Solid Film. 2010, 518, 2822–2824. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.-L.; Tien, H.-W.; Ma, C.-C.M.; Teng, C.-C.; Yu, Y.-H.; Yang, S.-Y.; Wei, M.-H.; Wu, S.-Y. Effect of cross-linkable polymer on the morphology and properties of transparent multi-walled carbon nanotube conductive films. Appl. Surf. Sci. 2011, 258, 136–142. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, L.; Xiong, J.; Cui, Z.; Yang, Q. Composite grounding application of transmission line tower with flexible graphite grounding material. In 2nd International Conference on Design, Materials, and Manufacturing; IOP: London, UK, 2017; Volume 220. [Google Scholar]
- Nishikata, A.; Yamashita, Y.; Katayama, H.; Tsuru, T.; Usami, A.; Tanabe, K.; Mabuchi, H. An electrochemical impedance study on atmospheric corrosion of steels in a cyclic wet-dry condition. Corros. Sci. 1995, 37, 2059–2069. [Google Scholar] [CrossRef]
- Qian, Y.; Ma, C.; Niu, D.; Xu, J.; Li, M. Influence of alloyed chromium on the atmospheric corrosion resistance of weathering steels. Corros. Sci. 2013, 74, 424–429. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, S.; Guo, W.; Zhang, Y.; Liu, G. Inhibition of iron corrosion by 5,10,15,20-tetraphenylporphyrin and 5,10,15,20-tetra-(4-chlorophenyl)porphyrin adlayers in 0.5 M H2SO4 solutions. J. Electroanal. Chem. 2007, 602, 115–122. [Google Scholar] [CrossRef]
Corrosion Grade | Soil Resistivity, | ||||
---|---|---|---|---|---|
China | US | Japan | France | UK | |
Extra low | >50 | >50 | >60 | >30 | >100 |
Low | 45–60 | 50–100 | |||
Medium | 20–50 | 20–45 | 20–45 | 15–25 | 23–50 |
High | <20 | 7–20 | <20 | 5–15 | 9–23 |
Extra high | <7.5 | <5 | <9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Liao, Y.; Gao, X.; Zhao, J.; Yuan, Y.; Liao, R. Research Advances of Soil Corrosion of Grounding Grids. Micromachines 2021, 12, 513. https://doi.org/10.3390/mi12050513
Zhang C, Liao Y, Gao X, Zhao J, Yuan Y, Liao R. Research Advances of Soil Corrosion of Grounding Grids. Micromachines. 2021; 12(5):513. https://doi.org/10.3390/mi12050513
Chicago/Turabian StyleZhang, Cheng, Yuxiang Liao, Xue Gao, Jing Zhao, Yuan Yuan, and Ruijin Liao. 2021. "Research Advances of Soil Corrosion of Grounding Grids" Micromachines 12, no. 5: 513. https://doi.org/10.3390/mi12050513
APA StyleZhang, C., Liao, Y., Gao, X., Zhao, J., Yuan, Y., & Liao, R. (2021). Research Advances of Soil Corrosion of Grounding Grids. Micromachines, 12(5), 513. https://doi.org/10.3390/mi12050513