Rapid Fabrication of Large-Area Concave Microlens Array on ZnSe
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Haddadi, A.; Dehzangi, A.; Romain, C.; Manijeh, R. Suppressing spectral crosstalk in dual-band long-wavelength infrared photodetectors with monolithically integrated air-gapped distributed Bragg reflectors. IEEE J. Quantum Electrons 2018, 55, 1–6. [Google Scholar] [CrossRef]
- Xue, L.; Pang, Y.; Liu, W.; Liu, L.; Pang, H.; Cao, A.; Shi, L.; Fu, Y.; Deng, Q. Fabrication of random microlens array for laser beam homogenization with high efficiency. Micromachines 2020, 11, 338. [Google Scholar] [CrossRef]
- Xin, Z.; Wei, D.; Xie, X.; Chen, M.; Zhang, X.; Liao, J.; Wang, H.; Xie, C. Dual-polarized light-field imaging micro-system via a liquid-crystal microlens array for direct three-dimensional observation. Opt. Express 2018, 26, 4035–4049. [Google Scholar] [CrossRef]
- Wang, K.; Nirmalathas, A.; Lim, C.; Efstratios, S. High-speed indoor optical wireless communication system employing a silicon integrated photonic circuit. Opt. Lett. 2018, 43, 3132–3135. [Google Scholar] [CrossRef]
- Shi, F.; Bamiedakis, N.; Vasil’ev, P.P.; Penty, R.V.; White, I.H.; Chu, D. Flexible multimode polymer waveguide arrays for versatile high-speed short-reach communication links. J. Lightwave Technol. 2018, 36, 2685–2693. [Google Scholar] [CrossRef]
- Salter, P.S.; Booth, M.J. Addressable microlens array for parallel laser microfabrication. Opt. Lett. 2011, 36, 2302–2304. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Zhu, Z.; Liu, X.; Liang, Z.; Wang, X. A review of the precision glass molding of chalcogenide glass (ChG) for infrared optics. Micromachines 2018, 9, 337. [Google Scholar] [CrossRef]
- Zhang, X.; Ha, K.; Hark, S. Selenium-related luminescent centers in metalorganic chemical-vapor-phase deposition grown ZnSe epilayers on GaAs. Appl. Phys. Lett. 2001, 79, 1127–1129. [Google Scholar] [CrossRef]
- Divya, R.; Manikandan, N.; Girisun, T.; Vinitha, G. Investigations on the structural, morphological, linear and third order nonlinear optical properties of manganese doped zinc selenide nanoparticles for optical limiting application. Opt. Mater. 2020, 100, 109641. [Google Scholar] [CrossRef]
- Wei, N.; Jiang, L.; Li, D.; Yang, H.; Niu, Y. A hot isostatic pressing strategy for improving the optical transmission of polycrystalline cvd znse. Appl. Phys. A-Mater. 2019, 125, 777. [Google Scholar] [CrossRef]
- Gavrushchuk, E. Polycrystalline zinc selenide for IR optical applications. Inorg. Mater. 2003, 39, 883–889. [Google Scholar] [CrossRef]
- Georgescu, G.; Petris, A. Analysis of thickness influence on refractive index and absorption coefficient of zinc selenide thin films. Opt. Express 2019, 27, 34803–34823. [Google Scholar] [CrossRef] [PubMed]
- Divya, R.; Manikandan, N.; Vinitha, G. Synthesis and characterization of nickel doped zinc selenide nanospheres for nonlinear optical applications. J. Alloy. Compd. 2019, 791, 601–612. [Google Scholar] [CrossRef]
- Nodurft, D.; Yakovlev, V.; Wharmby, A.; Marble, C.; Oconnor, S. Zinc selenide: An extraordinarily nonlinear material. Optical Components and Materials XV. Int. Soc. Opt. Photonics 2018, 10528, 105281X. [Google Scholar]
- Lee, H.; Talib, Z.; Nazira, M.; Wang, E.; Lim, H.; Mahdi, M. Effect of sodium hydroxide concentration in synthesizing zinc selenide/graphene oxide composite via microwave-assisted hydrothermal method. Materials 2019, 12, 2295. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; To, S.; Yu, K. One-step generation of hybrid micro-optics with high-frequency diffractive structures on infrared materials by ultra-precision side milling. Opt. Express 2018, 26, 28161–28177. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, W.; Naples, J.; Allen, Y. Fabrication of an infrared shack-hartmann sensor by combining high-speed single-point diamond milling and precision compression molding processes. Appl. Opt. 2018, 57, 3598–3605. [Google Scholar] [CrossRef]
- Liu, F.; Yang, Q.; Chen, F.; Zhang, F.; Bian, H.; Hou, X. Low-cost high integration IR polymer microlens array. Opt. Lett. 2019, 44, 1600–1602. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Q.; Guan, K.; Ma, Z.; Yu, Y.; Li, Q.; Tian, Z.; Sun, H. Dry-etching-assisted femtosecond laser machining. Laser Photonics Rev. 2017, 11, 1600115. [Google Scholar] [CrossRef]
- Fang, R.; Anatoliy, V.; Guo, C. Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals. Light Sci. Appl. 2017, 6, e16256. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Q.; Cao, X.; Buividas, R.; Wang, X.; Juodkazis, S. Plasmonic nano-printing: Large-area nanoscale energy deposition for efficient surface texturing. Light Sci. Appl. 2017, 6, 17112. [Google Scholar] [CrossRef] [PubMed]
- Bian, H.; Wei, Y.; Yang, Q.; Chen, F.; Zhang, F.; Du, G.; Yong, J.; Hou, X. Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process. Appl. Phys. Lett. 2016, 109, 221109. [Google Scholar] [CrossRef]
- Liu, F.; Bian, H.; Zhang, F.; Yang, Q.; Shan, C.; Li, M.; Hou, X. IR artificial compound eye. Adv. Opt. Mater. 2020, 8, 1901767. [Google Scholar] [CrossRef]
- Cao, X.; Lu, Y.; Fan, H.; Xia, H.; Zhang, L.; Zhang, Y. Wet-etching-assisted femtosecond laser holographic processing of a sapphire concave microlens array. Appl. Opt. 2018, 57, 9604–9608. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Wu, S.; Niu, L.; Chen, Q.; Wang, R.; Song, J.; Fang, H.; Sun, H. High numerical aperture microlens arrays of close packing. Appl. Phys. Lett. 2010, 97, 031109. [Google Scholar] [CrossRef]
- Adela, B.; Anthony, H.; Jacqueline, A.; Robert, L.; Howard, A. Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: The formation of rims by single laser pulses. J. Phys. D Appl. Phys. 2007, 40, 1447–1459. [Google Scholar]
- Yong, J.; Chen, F.; Yang, Q.; Du, G.; Bian, H.; Zhang, D.; Si, J.; Yun, F.; Hou, X. Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser. ACS Appl. Mater. Interfaces 2013, 5, 9382. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Yang, Q.; Bian, H.; Hou, X.; Chen, F. Rapid Fabrication of Large-Area Concave Microlens Array on ZnSe. Micromachines 2021, 12, 458. https://doi.org/10.3390/mi12040458
Zhang F, Yang Q, Bian H, Hou X, Chen F. Rapid Fabrication of Large-Area Concave Microlens Array on ZnSe. Micromachines. 2021; 12(4):458. https://doi.org/10.3390/mi12040458
Chicago/Turabian StyleZhang, Fan, Qing Yang, Hao Bian, Xun Hou, and Feng Chen. 2021. "Rapid Fabrication of Large-Area Concave Microlens Array on ZnSe" Micromachines 12, no. 4: 458. https://doi.org/10.3390/mi12040458
APA StyleZhang, F., Yang, Q., Bian, H., Hou, X., & Chen, F. (2021). Rapid Fabrication of Large-Area Concave Microlens Array on ZnSe. Micromachines, 12(4), 458. https://doi.org/10.3390/mi12040458