Mechanical/Electrical Characterization of ZnO Nanomaterial Based on AFM/Nanomanipulator Embedded in SEM
Abstract
:1. Introduction
2. Theoretical Modeling Analysis
2.1. Mechanical/Electrical Characterization Principles
2.2. Piezoelectric Properties Characterization Principles
2.3. Contact Strategy between Probe and the Nanorod
3. Materials and Equipment
4. Results and Discussions
4.1. Electron Beam Irradiation
4.2. Morphology and Mechanical Properties of ZnO Nanorods
4.3. Electrical Properties of ZnO Nanorods
4.4. Electrical Conductivity of ZnO Nanowires
4.5. Piezoelectric Properties of ZnO Nanomaterials
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, X.; Yang, S.; Sun, Z.; Cui, N.; Zhao, P.; Tang, Q.; Tong, Y.; Liu, Y. Enhancing the intrinsic stretchability of micropatterned gold film by covalent linkage of carbon nanotubes for wearable electronics. ACS Appl. Electron. Mater. 2019, 1, 1295–1303. [Google Scholar] [CrossRef]
- Yamazaki, H.; Hayashi, Y.; Masunishi, K.; Ono, K.; Ikehashi, T. High sensitivity MEMS capacitive hydrogen sensor with inverted T-shaped electrode and ring-shaped palladium alloy for fast response and low power consumption. Micromech. Microeng. 2018, 28, 094001. [Google Scholar] [CrossRef]
- Jiang, C.; Zhao, H.; Xiao, H.; Wang, Y.; Liu, L.; Chen, H.; Shen, C.; Zhu, H.; Liu, Q. Recent advances in graphene-family nanomaterials for effective drug delivery and phototherapy. Expert Opin. Drug Deliv. 2020, 18, 1–20. [Google Scholar] [CrossRef]
- Ding, Y.; Zeng, M.; Fu, L. Low-temperature synthesis of sp2 carbon nanomaterials. Sci. Bull. 2019, 64, 1817–1829. [Google Scholar] [CrossRef] [Green Version]
- Bandekar, G.; Rajurkar, N.S.; Mulla, I.S.; Mulik, U.P.; Amalnerkar, D.P.; Adhyapak, P.V. Synthesis, characterization and photocatalytic activity of PVP stabilized ZnO and modified ZnO nanostructures. Appl. Nanosci. 2013, 4, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Wang, Z.L. Equilibrium Potential of Free Charge Carriers in a Bent Piezoelectric Semiconductive Nanowire. Nano Lett. 2009, 9, 1103–1110. [Google Scholar] [CrossRef]
- Wang, Z.L. Zinc oxide nanostructures: Growth, properties and applications. J. Phys. Condens. Matter 2004, 16, 829–858. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, N.S.; Wang, Z.L. Dissolving Behavior and Stability of ZnO Wires in Biofluids: A Study on Biodegradability and Biocompatibility of ZnO Nanostructures. Adv. Mater. 2006, 18, 2432–2435. [Google Scholar] [CrossRef]
- Bibi, I.; Kamal, S.; Abbas, Z.; Atta, S.; Majid, F.; Jilani, K.; Hussain, A.I.; Kamal, A.; Nouren, S.; Abbas, A. A new approach of photocatalytic degradation of remazol brilliant blue by environment friendly fabricated zinc oxide nanoparticle. Int. J. Environ. Sci. Technol. 2019, 17, 1765–1772. [Google Scholar] [CrossRef]
- Saravanakumar, B.; Mohan, R.; Thiyagarajan, K.; Kim, S.-J. Fabrication of a ZnO nanogenerator for eco-friendly biomechanical energy harvesting. RSC Adv. 2013, 3, 16646–16656. [Google Scholar] [CrossRef]
- Lee, K.Y.; Kumar, B.; Seo, J.-S.; Kim, K.-H.; Sohn, J.I.; Cha, S.N.; Choi, D.; Wang, Z.L.; Kim, S.-W. P-Type Polymer-Hybridized High-Performance Piezoelectric Nanogenerators. Nano Lett. 2012, 12, 1959–1964. [Google Scholar] [CrossRef]
- Nourafkan, M.; Mohammadi, E.; Manavizadeh, N. Influence of the ZnO Nanostructures Shape on Piezoelectric Energy Harvesters Performance. IEEE Trans. Electron Devices 2019, 66, 4989–4996. [Google Scholar] [CrossRef]
- Hu, D.; Yao, M.; Fan, Y.; Ma, C.; Fan, M.; Liu, M. Strategies to achieve high performance piezoelectric nanogenerators. Nano Energy 2019, 55, 288–304. [Google Scholar] [CrossRef]
- Varghese, B.; Zhang, Y.; Feng, Y.P.; Lim, C.T.; Sow, C.-H. Probing the size-structure-property correlation of individual nanowires. Phys. Rev. B 2009, 79, 115419. [Google Scholar] [CrossRef]
- Cao, N.; Xie, S.; Wu, Z.; Liu, M.; Li, H.; Pu, H.; Luo, J.; Gong, Z. Interactive Micromanipulation of Picking and Placement of Nonconductive Microsphere in Scanning Electron Microscope. Micromachines 2017, 8, 257. [Google Scholar] [CrossRef] [Green Version]
- Garza, H.H.P.; Ghatkesar, M.K.; Basak, S.; Löthman, P.; Staufer, U. Nano-workbench: A combined hollow AFM cantilever and robotic manipulator. Micromachines 2015, 6, 600–610. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Luu, D.K.; Yang, Q.; Liu, J.; Chen, J.; Ru, C.; Xie, S.; Luo, J.; Ge, J.; Sun, Y. Recent advances in nanorobotic manipulation inside scanning electron microscopes. Microsyst. Nanoeng. 2016, 2, 16024. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.; Wu, C.; Liu, L.; Wang, Z.; Dong, Z. Modeling and analyzing nano-rod pushing with an AFM. IEEE Int. Conf. Nanotechnol. 2010, 329–334. [Google Scholar] [CrossRef]
- Mark, A.; Helfricht, N.; Rauh, A.; Xue, J.; Knödler, P.; Schumacher, T.; Karg, M.; Du, B.; Lippitz, M.; Papastavrou, G. Electrokinetics in Micro-channeled Cantilevers: Extending the Toolbox for Reversible Colloidal Probes and AFM-Based Nanofluidics. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, S.; Guo, T.; Li, Y.; Gao, X.; Huang, A.; Kang, L. Well-ordered vertically aligned ZnO nanorods arrays for high-performance perovskite solar cells. Mater. Res. Bull. 2020, 130, 110935. [Google Scholar] [CrossRef]
- Saito, S.; Miyazaki, H.T.; Sato, T.; Takahashi, K.; Onzawa, T. Dynamics of micro-object operation considering the adhesive effect under an SEM. Microrobot. Microassem. III 2001, 4568, 12–24. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, T.; Wang, Y.; Sun, L.; Fukuda, T. Carbon nanotubes pickup by van der Waals force based on nanorobotics manipulation inside SEM. Micro Nano Lett. 2016, 11, 645–649. [Google Scholar] [CrossRef]
- Karatas, S.; Altindal, S.; Çakar, M. Current transport in Zn/p-Si(100) Schottky barrier diodes at high temperatures. Phys. B Condens. Matter 2005, 357, 386–397. [Google Scholar] [CrossRef]
- Zhao, L.; Gao, Z.; Zhang, J.; Lu, L.; Li, H. Effect of fabrication temperature on the manufacturability of lateral ZnO nanowire array UV sensor. Sci. China Ser. E Technol. Sci. 2020, 63, 668–674. [Google Scholar] [CrossRef]
- Wang, Z.L.; Gao, R.P.; Pan, Z.W.; Dai, Z.R. Nano-Scale Mechanics of Nanotubes, Nanowires, and Nanobelts. Adv. Eng. Mater. 2001, 3, 657–661. [Google Scholar] [CrossRef]
- Wu, Z.; Ding, W.; Dai, Y.; Dong, K.; Wu, C.; Zhang, L.; Lin, Z.; Cheng, J.; Wang, Z.L. Self-powered multifunctional motion sensor a, enabled by magnetic-regulated triboelectric nanogenerator. ACS Nano 2018, 12, 5726–5733. [Google Scholar] [CrossRef]
- Biswas, P.; Hoque, N.A.; Thakur, P.; Saikh, M.M.; Roy, S.; Khatun, F.; Bagchi, B.; Das, S. Portable Self-Powered Piezoelectric Nanogenerator and Self-Charging Pho-to-Power Pack Using In Situ Formed Multifunctional Calcium Phosphate Nanorod-Doped PVDF Films. Langmuir 2019, 35, 17016–17026. [Google Scholar] [CrossRef]
- Zhou, J.; Fei, P.; Gu, Y.; Mai, W.; Gao, Y.; Yang, R.; Bao, G.; Wang, Z.L. Piezoelectric-Potential-Controlled Polarity-Reversible Schottky Diodes and Switches of ZnO Nanowires. Nano Lett. 2008, 8, 3973–3977. [Google Scholar] [CrossRef] [Green Version]
- Cha, S.N.; Seo, J.-S.; Kim, S.M.; Kim, H.J.; Park, Y.J.; Kim, S.-W.; Kim, J.M. Sound-Driven Piezoelectric Nanowire-Based Nanogenerators. Adv. Mater. 2010, 22, 4726–4730. [Google Scholar] [CrossRef]
- Lin, L.; Hu, Y.; Xu, C.; Zhang, Y.; Zhang, R.; Wen, X.; Wang, Z.L. Transparent flexible nanogenerator as self-powered sensor for transportation monitoring. Nano Energy 2013, 2, 75–81. [Google Scholar] [CrossRef]
- Li, B.; Feng, Y.; Ding, K.-W.; Qian, G.; Zhang, X.-B.; Liu, Y.-F. Effect of electron beam irradiation on multi-walled carbon nanotubes. Trans. Nonferrous Met. Soc. China 2014, 24, 764–769. [Google Scholar] [CrossRef]
- Park, J.; Oh, M.; Hossain, A.; Lee, K.Y.; Yoo, D.; Kim, Y.; Kim, S.W.; Lee, D. Mechanical properties of individual nanorods and nanotubes in forest-like structures. Scr. Mater. 2017, 133, 54–58. [Google Scholar] [CrossRef]
- Kumar, A.; Huang, N.; Staedler, T.; Sun, C.; Jiang, X. Mechanical characterization of aluminum doped zinc oxide (Al: ZnO) nanorods prepared by sol-gel method. Appl. Surf. Sci. 2020, 265, 758–763. [Google Scholar] [CrossRef]
- Lukić, B.; Seo, J.W.; Couteau, E.; Lee, K.; Gradečak, S.; Berkecz, R.; Hernadi, K.; Delpeux, S.; Cacciaguerra, T.; Beguin, F.; et al. Elastic modulus of multi-walled carbon nanotubes produced by catalytic chemical vapour deposition. Appl. Phys. A 2005, 80, 695–700. [Google Scholar] [CrossRef]
- Yu, G.; Zhao, L.; Guan, Y.; Song, Y. The Invention Relates to an Experimental Measurement Method for Torsional Property of Zinc Oxide Nanowires for Nanogenerators. China CN201410795628.5 [P], 19 December 2014. [Google Scholar]
- Chelu, M.; Stroescu, H.; Anastasescu, M.; Calderon-Moreno, J.; Preda, S.; Stoica, M.; Fogarassy, Z.; Petrik, P.; Gheorghe, M.; Parvulescu, C.; et al. High-quality PMMA/ZnO NWs piezoelectric coating on rigid and flexible metallic substrates. Appl. Surf. Sci. 2020, 529, 147135. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Su, W.; Qin, X.; Cheng, K.; Ding, W.; Ma, L.; Cui, Z.; Chen, J.; Rao, J.; Ouyang, H.; et al. Mechanical/Electrical Characterization of ZnO Nanomaterial Based on AFM/Nanomanipulator Embedded in SEM. Micromachines 2021, 12, 248. https://doi.org/10.3390/mi12030248
Liu M, Su W, Qin X, Cheng K, Ding W, Ma L, Cui Z, Chen J, Rao J, Ouyang H, et al. Mechanical/Electrical Characterization of ZnO Nanomaterial Based on AFM/Nanomanipulator Embedded in SEM. Micromachines. 2021; 12(3):248. https://doi.org/10.3390/mi12030248
Chicago/Turabian StyleLiu, Mei, Weilin Su, Xiangzheng Qin, Kai Cheng, Wei Ding, Li Ma, Ze Cui, Jinbo Chen, Jinjun Rao, Hangkong Ouyang, and et al. 2021. "Mechanical/Electrical Characterization of ZnO Nanomaterial Based on AFM/Nanomanipulator Embedded in SEM" Micromachines 12, no. 3: 248. https://doi.org/10.3390/mi12030248
APA StyleLiu, M., Su, W., Qin, X., Cheng, K., Ding, W., Ma, L., Cui, Z., Chen, J., Rao, J., Ouyang, H., & Sun, T. (2021). Mechanical/Electrical Characterization of ZnO Nanomaterial Based on AFM/Nanomanipulator Embedded in SEM. Micromachines, 12(3), 248. https://doi.org/10.3390/mi12030248