A Second-Generation Voltage-Conveyor-Based Interface for Ultrasonic PVDF Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. PVDF Ultrasonic Sensor
2.2. Electronic Interface
2.3. Characterization Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fraden, J. Handbook of Modern Sensors; Springer Int. Pub.: Cham, Switzerland, 2016; pp. 1–11. [Google Scholar] [CrossRef] [Green Version]
- Sheingold, D. Transducer Interfacing Handbook; Analog Devices, Inc.: Norwood, MA, USA, 1980; pp. 1–30. [Google Scholar]
- Blalock, B.J.; Li, H.W.; Allen, P.E.; Jackson, S.A. Body-driving as a low-voltage analog design technique for CMOS technology. In Proceedings of the 2000 Southwest Symposium on Mixed-Signal Design (Cat. No.00EX390), San Diego, CA, USA, 27–29 February 2000; pp. 113–118. [Google Scholar] [CrossRef]
- Rajput, S.S.; Jamuar, S.S. Low voltage analog circuit design techniques. IEEE Circuits Syst. Mag. 2002, 2, 24–42. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; Sanchez-Sinencio, E. Low voltage analog circuit design techniques: A tutorial. In IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences; IEICE: Tokyo, Japan, 2000; Volume E83-A, pp. 179–196. [Google Scholar]
- Fayomi, C.J.B.; Sawan, M.; Roberts, G.W. Reliable circuit techniques for low-voltage analog design in deep submicron standard CMOS: A tutorial. Analog Integr. Circuits Signal Process. 2004, 39, 21–38. [Google Scholar] [CrossRef]
- Suárez, P.; Iglesias, A.; Gálvez, A. Make robots be bats: Specializing robotic swarms to the Bat algorithm. Swarm Evolut. Comput. 2019, 44, 113–129. [Google Scholar] [CrossRef]
- Li, M.; Hayward, G. Ultrasound nondestructive evaluation (NDE) imaging with transducer arrays and adaptive processing. Sensors 2012, 12, 42–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiorillo, A.S.; Grimaldi, D.; Paolino, D.; Pullano, S.A. Low-frequency ultrasound in medicine: An in vivo evaluation. IEEE Trans. Instrum. Meas. 2012, 61, 1658–1663. [Google Scholar] [CrossRef]
- Pullano, S.A.; Bianco, M.G.; Critello, D.C.; Menniti, M.; La Gatta, A.; Fiorillo, A.S. A Recursive algorithm for indoor positioning using pulse-echo ultrasonic signals. Sensors 2020, 20, 5042. [Google Scholar] [CrossRef]
- Chimenti, D.E. Review of air-coupled ultrasonic materials characterization. Ultrasonics 2014, 54, 1804–1816. [Google Scholar] [CrossRef]
- Akdogan, E.K.; Allahverdi, M.; Safari, A. Piezoelectric composites for sensor and actuator applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 746–775. [Google Scholar] [CrossRef]
- Fiorillo, A.S.; Pullano, S.A.; Critello, C.D. Spiral—shaped biologically—inspired ultrasonic sensor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 67, 635–642. [Google Scholar] [CrossRef]
- Chirtoc, M.; Bentefour, E.H.; Antoniow, J.S.; Glorieux, C.; Thoen, J.; Delenclos, S.; Sahraoui, A.H.; Longuemart, S.; Kolinsky, C.; Buisine, J.M. Current mode versus voltage mode measurement of signals from pyroelectric sensors. Rev. Sci. Instrum. 2003, 74, 648–650. [Google Scholar] [CrossRef]
- Čajka, J.; Vrba, K. The voltage conveyor may have in fact found its way into circuit theory. AEU Int. J. Electron. Commun. 2004, 58, 244–248. [Google Scholar] [CrossRef]
- Svoboda, J.A. Current conveyors, operational amplifiers and nullors. IEE Proc. G Circuits Devices Syst. 1989, 136, 317–322. [Google Scholar] [CrossRef]
- Safari, L.; Barile, G.; Stornelli, V.; Ferri, G. An overview on the second generation voltage conveyor: Features, design and applications. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 547–551. [Google Scholar] [CrossRef]
- Tamura, M.; Yamaguchi, T.; Oyaba, T.; Yoshimi, T. Electroacoustic transducers with piezoelectric high polymer films. J. Audio Eng. Soc. 1975, 23, 21–26. [Google Scholar]
- Schoenwald, J.S.; Martin, J.F. PVF2 transducers for acoustic ranging and imaging in air. In Proceedings of the Ultrasonic Symposium, Atlanta, GA, USA, 31 October–2 November 1983; pp. 577–580. [Google Scholar] [CrossRef]
- Fiorillo, A.S.; Allotta, B.; Dario, P.; Francesconi, R. An ultrasonic range sensor array for a robotic fingertip. Sens. Actuators 1989, 17, 103–106. [Google Scholar] [CrossRef]
- Measurement Specialties Application Specification; TE Connectivity’s (TE) Measurement Specialties: Berwyn, PA, USA, 2001.
- Chen, J.; Zhao, J.; Lin, L.; Sun, X. Truncated conical PVDF film transducer for air ultrasound. IEEE Sens. J. 2019, 19, 8618–8625. [Google Scholar] [CrossRef]
- Fiorillo, A.S.; Pullano, S.A.; Bianco, M.G.; Critello, C.D. Ultrasonic transducers shaped in Archimedean and Fibonacci spiral: A comparison. Sensors 2020, 20, 2800. [Google Scholar] [CrossRef]
- Fiorillo, A.S. Noise analysis in air-coupled PVDF ultrasonic sensors. IEEE Trans. Ultrasonic Ferroelectr. Freq. Control 2000, 47, 1432–1437. [Google Scholar] [CrossRef]
- Brown, L.F.; Carlson, D.L. Ultrasound transducer models for piezoelectric polymer films. IEEE Trans. Ultrasonic Ferroelectr. Freq. Contr. 1989, 36, 313–318. [Google Scholar] [CrossRef]
- Pennazza, G.; Santonico, M.; Vollero, L.; Zompanti, A.; Sabatini, A.; Kumar, N.; Pini, I.; Quiros Solano, W.F.; Sarro, L.; D’Amico, A. Advances in the electronics for cyclic voltammetry: The case of gas detection by using microfabricated electrodes. Front. Chem. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Mochizuki, K.; Masuda, T.; Watanabe, K. An interface circuit for high-accuracy signal processing of differential-capacitance transducers. In Proceedings of the Quality Measurement: The Indispensable Bridge between Theory and Reality (No Measurements? No Science!) Joint Conference—1996: IEEE Instrumentation and Measurement Technology Conference and IMEKO Tec, Brussels, Belgium, 4–6 June 1996; Volume 2, pp. 1200–1204. [Google Scholar] [CrossRef] [Green Version]
- Bonfini, G.; Brogna, A.S.; Garbossa, C.; Colombini, L.; Bacci, M.; Chicca, S.; Bigongiari, F.; Guerrini, N.C.; Ferri, G. An ultralow-power switched opamp-based 10-B integrated ADC for implantable biomedical applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2004, 51, 174–177. [Google Scholar] [CrossRef]
- Pennazza, G.; Santonico, M.; Zompanti, A.; Parente, F.R.; Ferri, G.; D’Amico, A. Design and development of an electronic interface for gas detection and exhaled breath analysis in liquids. IEEE Sens. J. 2018, 18, 31–36. [Google Scholar] [CrossRef]
- Harb, A.; Hu, Y.; Sawan, M.; Abdelkerim, A.; Elhilali, M.M. Low-power CMOS interface for recording and processing very low amplitude signals. Analog Integr. Circuits Signal Process. 2004, 39, 39–54. [Google Scholar] [CrossRef]
- Crescentini, M.; Bennati, M.; Carminati, M.; Tartagni, M. Noise lmits of CMOS current interfaces for biosensors: A review. IEEE Trans. Biomed. Circuits Syst. 2014, 8, 278–292. [Google Scholar] [CrossRef]
- Safari, L.; Barile, G.; Ferri, G.; Stornelli, V. Traditional Op-Amp and new VCII: A comparison on analog circuits applications. AEU Int. J. Electron. Commun. 2019, 110, 152845. [Google Scholar] [CrossRef]
- Ferri, G.; Guerrini, N. Low-Voltage Low-Power CMOS Current Conveyors; Springer: Berlin/Heidelberg, Germany, 2003; Available online: https://www.springer.com/gp/book/9781402074868 (accessed on 25 November 2020).
- Safari, L.; Minaei, S. A novel super transistor-based high-performance CCII and its applications. Elektron. IR Elektrotech. 2018, 24, 50–57. [Google Scholar] [CrossRef]
- Nunez, J.; Tlelo, E.; Ramirez, C.; Jimenez, J. CCII+ Based on QFGMOS for Implementing Chua s Chaotic Oscillator. IEEE Lat. Am. Trans. 2015, 13, 2865–2870. [Google Scholar] [CrossRef]
- Wilson, B. Tutorial review Trends in current conveyor and current-mode amplifier design. Int. J. Electron. 1992, 73, 573–583. [Google Scholar] [CrossRef]
- Saad, R.; Soliman, A.M. Generation modeling and analysis of CCII-Based gyrators using the generalized symbolic framework for linear active circuits. Int. J. Circuit Theory Appl. 2008, 36, 289–309. [Google Scholar] [CrossRef]
- Yuce, E.; Minaei, S. Realization of arbitrary current transfer functions based on commercially available CCII + s. Int. J. Circuit Theory Appl. 2014, 42, 659–670. [Google Scholar] [CrossRef]
- Barile, G.; Ferri, G.; Safari, L.; Stornelli, V. A new high drive class-AB FVF-based second generation voltage conveyor. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 405–409. [Google Scholar] [CrossRef]
- Safari, L.; Barile, G.; Ferri, G.; Stornelli, V. A new low-voltage low-power dual-mode VCII-based SIMO universal filter. Electronics 2019, 8, 765. [Google Scholar] [CrossRef] [Green Version]
- Barile, G.; Safari, L.; Ferri, G.; Stornelli, V. A VCII-based stray insensitive analog interface for differential capacitance sensors. Sensors 2019, 19, 3545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pantoli, L.; Barile, G.; Leoni, A.; Muttillo, M.; Stornelli, V. Electronic interface for lidar system and smart cities applications. J. Commun. Softw. Syst. 2019, 15, 118–125. [Google Scholar] [CrossRef] [Green Version]
- Safari, L.; Barile, G.; Stornelli, V.; Ferri, G.; Leoni, A. New current mode Wheatstone bridge topologies with intrinsic linearity. In Proceedings of the 2018 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Prague, Czech Republic, 2–5 July 2018; pp. 9–12. [Google Scholar]
- Ultrasonic Sensor Application Manual; Murata Manufacturing Co. Ltd.: Kyoto, Japan, 2008; pp. 1–15.
- Fiorillo, A.S.; Pullano, S.A.; Bianco, M.G.; Critello, C.D. Bioinspired US sensor for broadband applications. Sens. Actuators A Phys. 2019, 294, 148–153. [Google Scholar] [CrossRef]
Geometry | fr (kHz) | Bandwidth (kHz) | Quality Factor | Ref. |
---|---|---|---|---|
Hemi-cylindric | 63.5 | 6.3 | ≅10 | [13] |
Cylindric | 40 | Tx (Transmission): 8 | Tx: 5 | |
Rx (Reception): 10 | Rx: 10 | [21] | ||
Cylindric | 80 | Tx: 14 | Tx: ≅10 | |
Rx: 11 | Rx: ≅7 | [21] | ||
Truncated Conical | 33 | 11 | 3 | [22] |
Sensor | Active Device | Number of Processing Stages | Filtering Stage | Gain | Bandwidth (kHz) | Power Consumption (mA) |
---|---|---|---|---|---|---|
Cylindric 40 kHz | MOS Stage | 3 | Bandpass | 31 dB | ≅100 | 30 |
Cylindric 80 kHz | Op-Amp Stage | 3 | Bandpass | 61 dB | 67 | 12 * |
This Work | VCII | 1 | None | 86 dBΩ | >103 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pullano, S.A.; Fiorillo, A.S.; Barile, G.; Stornelli, V.; Ferri, G. A Second-Generation Voltage-Conveyor-Based Interface for Ultrasonic PVDF Sensors. Micromachines 2021, 12, 99. https://doi.org/10.3390/mi12020099
Pullano SA, Fiorillo AS, Barile G, Stornelli V, Ferri G. A Second-Generation Voltage-Conveyor-Based Interface for Ultrasonic PVDF Sensors. Micromachines. 2021; 12(2):99. https://doi.org/10.3390/mi12020099
Chicago/Turabian StylePullano, Salvatore A., Antonino S. Fiorillo, Gianluca Barile, Vincenzo Stornelli, and Giuseppe Ferri. 2021. "A Second-Generation Voltage-Conveyor-Based Interface for Ultrasonic PVDF Sensors" Micromachines 12, no. 2: 99. https://doi.org/10.3390/mi12020099
APA StylePullano, S. A., Fiorillo, A. S., Barile, G., Stornelli, V., & Ferri, G. (2021). A Second-Generation Voltage-Conveyor-Based Interface for Ultrasonic PVDF Sensors. Micromachines, 12(2), 99. https://doi.org/10.3390/mi12020099