Homogeneous Freezing of Water Using Microfluidics
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Microfluidic Chip Design and Fabrication
2.3. Experimental Setup
2.4. Experimental Procedure
3. Results and Discussion
3.1. Homogeneous Freezing of Purified Water Using the LOC-NIPI
3.2. Comparison of the LOC-NIPI to Physically Constrained Classical Nucleation Theory
3.3. Comparison of Microfluidic Volume Nucleation Rate Coefficient, JV(T), Values in the Literature
3.3.1. On-Chip Droplet Generation with Off-Chip Freezing
3.3.2. On-Chip Microarray Freezing
3.3.3. Droplet Freezing in Continuous Flow
3.3.4. Non-Microfluidic Examples for Comparison
3.3.5. Comparisons to the LOC-NIPI
3.4. Interfacial Energy of the Stacking-Disordered Ice–Supercooled Water Interface, σsd,l
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Volume Nucleation Rate Coefficients of Individual Experimental Runs
Appendix B
Vapour Pressures of Ice and Supercooled Water
References
- Pruppacher, H.R.; Klett, J.D. Microphysics of Clouds and Precipitation; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Lohmann, U.; Feichter, J. Global indirect aerosol effects: A review. Atmos. Chem. Phys. 2005, 5, 715–737. [Google Scholar] [CrossRef]
- Herbert, R.J.; Murray, B.J.; Dobbie, S.J.; Koop, T. Sensitivity of liquid clouds to homogenous freezing parameterizations. Geophys. Res. Lett. 2015, 42, 1599–1605. [Google Scholar] [CrossRef] [PubMed]
- Kärcher, B.; Seifert, A. On homogeneous ice formation in liquid clouds. Q. J. R. Meteorol. Soc. 2016, 142, 1320–1334. [Google Scholar] [CrossRef]
- Koop, T. Homogeneous Ice nucleation in water and aqueous solutions. Z. Phys. Chem. 2004, 218, 1231–1258. [Google Scholar] [CrossRef]
- Ickes, L.; Welti, A.; Hoose, C.; Lohmann, U. Classical nucleation theory of homogeneous freezing of water: Thermodynamic and kinetic parameters. Phys. Chem. Chem. Phys. 2015, 17, 5514–5537. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, J.D.; Murray, B.J.; O’Sullivan, D. Rate of homogenous nucleation of ice in supercooled water. J. Phys. Chem. A 2016, 120, 6513–6520. [Google Scholar] [CrossRef] [PubMed]
- Tarn, M.D.; Pamme, N. Microfluidics. In Elsevier Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Reedijk, J., Ed.; Elsevier: Waltham, MA, USA, 2014. [Google Scholar] [CrossRef]
- Chou, W.-L.; Lee, P.-Y.; Yang, C.-L.; Huang, W.-Y.; Lin, Y.-S. Recent advances in applications of droplet microfluidics. Micromachines 2015, 6, 1249. [Google Scholar] [CrossRef]
- Ding, Y.; Howes, P.D.; deMello, A.J. Recent advances in droplet microfluidics. Anal. Chem. 2020, 92, 132–149. [Google Scholar] [CrossRef]
- Vali, G. Quantitative Evaluation of experimental results on the heterogeneous freezing nucleation of supercooled liquids. J. Atmos. Sci. 1971, 28, 402–409. [Google Scholar] [CrossRef]
- Polen, M.; Brubaker, T.; Somers, J.; Sullivan, R.C. Cleaning up our water: Reducing interferences from nonhomogeneous freezing of “pure” water in droplet freezing assays of ice–nucleating particles. Atmos. Meas. Tech. 2018, 11, 5315–5334. [Google Scholar] [CrossRef]
- Daily, M.I.; Whale, T.F.; Partanen, R.; Harrison, A.D.; Kilbride, P.; Lamb, S.; Morris, G.J.; Picton, H.M.; Murray, B.J. Cryopreservation of primary cultures of mammalian somatic cells in 96–well plates benefits from control of ice nucleation. Cryobiology 2020, 93, 62–69. [Google Scholar] [CrossRef]
- Amaya, A.J.; Wyslouzil, B.E. Ice nucleation rates near ∼225 K. J. Chem. Phys. 2018, 148, 084501. [Google Scholar] [CrossRef]
- Laksmono, H.; McQueen, T.A.; Sellberg, J.A.; Loh, N.D.; Huang, C.; Schlesinger, D.; Sierra, R.G.; Hampton, C.Y.; Nordlund, D.; Beye, M.; et al. Anomalous Behavior of the homogeneous ice nucleation rate in “no-man’s land”. J. Phys. Chem. Lett. 2015, 6, 2826–2832. [Google Scholar] [CrossRef]
- Hagen, D.E.; Anderson, R.J.; Kassner, J.L. Homogeneous condensation–freezing nucleation rate measurements for small water droplets in an expansion cloud chamber. J. Atmos. Sci. 1981, 38, 1236–1243. [Google Scholar] [CrossRef]
- Bartell, L.S.; Chushak, Y.G. Water in Confining Geometries; Buch, V., Devlin, J.P., Eds.; Springer–Verlag: Berlin, Germany, 2003; p. 399. [Google Scholar]
- Anderson, R.J.; Miller, R.C.; Kassner, J.L.; Hagen, D.E. A study of homogeneous condensation–freezing nucleation of small water droplets in an expansion cloud chamber. J. Atmos. Sci. 1980, 37, 2508–2520. [Google Scholar] [CrossRef]
- Jenniskens, P.; Blake, D.F. Crystallization of amorphous water ice in the solar system. Astrophys. J. 1996, 473, 1104–1113. [Google Scholar] [CrossRef] [PubMed]
- Safarik, D.J.; Mullins, C.B. The nucleation rate of crystalline ice in amorphous solid water. J. Chem. Phys. 2004, 121, 6003–6010. [Google Scholar] [CrossRef]
- Manka, A.; Pathak, H.; Tanimura, S.; Wölk, J.; Strey, R.; Wyslouzil, B.E. Freezing water in no–man’s land. Phys. Chem. Chem. Phys. 2012, 14, 4505–4516. [Google Scholar] [CrossRef]
- Xu, Y.; Petrik, N.G.; Smith, R.S.; Kay, B.D.; Kimmel, G.A. Homogeneous nucleation of ice in transiently–heated, supercooled liquid water films. J. Phys. Chem. Lett. 2017, 8, 5736–5743. [Google Scholar] [CrossRef]
- Huang, J.; Bartell, L.S. Kinetics of homogeneous nucleation in the freezing of large water clusters. J. Phys. Chem. 1995, 99, 3924–3931. [Google Scholar] [CrossRef]
- Duft, D.; Leisner, T. Laboratory evidence for volume–dominated nucleation of ice in supercooled water microdroplets. Atmos. Chem. Phys. 2004, 4, 1997–2000. [Google Scholar] [CrossRef]
- Kuhn, T.; Earle, M.E.; Khalizov, A.F.; Sloan, J.J. Size dependence of volume and surface nucleation rates for homogeneous freezing of supercooled water droplets. Atmos. Chem. Phys. 2011, 11, 2853–2861. [Google Scholar] [CrossRef]
- Riechers, B.; Wittbracht, F.; Huetten, A.; Koop, T. The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty. Phys. Chem. Chem. Phys. 2013, 15, 5873–5887. [Google Scholar] [CrossRef] [PubMed]
- Weng, L.; Tessier, S.N.; Smith, K.; Edd, J.F.; Stott, S.L.; Toner, M. Bacterial ice nucleation in monodisperse D2O and H2O-in-oil emulsions. Langmuir 2016, 32, 9229–9236. [Google Scholar] [CrossRef]
- Tarn, M.D.; Sikora, S.N.F.; Porter, G.C.E.; O’Sullivan, D.; Adams, M.; Whale, T.F.; Harrison, A.D.; Vergara-Temprado, J.; Wilson, T.W.; Shim, J.-u.; et al. The study of atmospheric ice–nucleating particles via microfluidically generated droplets. Microfluid. Nanofluid. 2018, 22, 52. [Google Scholar] [CrossRef] [PubMed]
- Edd, J.F.; Humphry, K.J.; Irimia, D.; Weitz, D.A.; Toner, M. Nucleation and solidification in static arrays of monodisperse drops. Lab Chip 2009, 9, 1859–1865. [Google Scholar] [CrossRef] [PubMed]
- Sgro, A.E.; Chiu, D.T. Droplet freezing, docking, and the exchange of immiscible phase and surfactant around frozen droplets. Lab Chip 2010, 10, 1873–1877. [Google Scholar] [CrossRef]
- Peckhaus, A.; Kiselev, A.; Hiron, T.; Ebert, M.; Leisner, T. A comparative study of K–rich and Na/Ca–rich feldspar ice–nucleating particles in a nanoliter droplet freezing assay. Atmos. Chem. Phys. 2016, 16, 11477–11496. [Google Scholar] [CrossRef]
- Reicher, N.; Segev, L.; Rudich, Y. The WeIzmann Supercooled Droplets Observation on a Microarray (WISDOM) and application for ambient dust. Atmos. Meas. Tech. 2018, 11, 233–248. [Google Scholar] [CrossRef]
- Häusler, T.; Witek, L.; Felgitsch, L.; Hitzenberger, R.; Grothe, H. Freezing on a Chip—A new approach to determine heterogeneous ice nucleation of micrometer-sized water droplets. Atmosphere 2018, 9, 140. [Google Scholar] [CrossRef]
- Brubaker, T.; Polen, M.; Cheng, P.; Ekambaram, V.; Somers, J.; Anna, S.L.; Sullivan, R.C. Development and characterization of a “store and create” microfluidic device to determine the heterogeneous freezing properties of ice nucleating particles. Aerosol Sci. Tech. 2020, 54, 79–93. [Google Scholar] [CrossRef]
- Abdelmonem, A.; Backus, E.H.G.; Hoffmann, N.; Sánchez, M.A.; Cyran, J.D.; Kiselev, A.; Bonn, M. Surface–charge–induced orientation of interfacial water suppresses heterogeneous ice nucleation on α-alumina (0001). Atmos. Chem. Phys. 2017, 17, 7827–7837. [Google Scholar] [CrossRef]
- Sgro, A.E.; Allen, P.B.; Chiu, D.T. Thermoelectric manipulation of aqueous droplets in microfluidic devices. Anal. Chem. 2007, 79, 4845–4851. [Google Scholar] [CrossRef][Green Version]
- Stan, C.A.; Schneider, G.F.; Shevkoplyas, S.S.; Hashimoto, M.; Ibanescu, M.; Wiley, B.J.; Whitesides, G.M. A microfluidic apparatus for the study of ice nucleation in supercooled water drops. Lab Chip 2009, 9, 2293–2305. [Google Scholar] [CrossRef]
- Stan, C.A.; Tang, S.K.Y.; Bishop, K.J.M.; Whitesides, G.M. Externally applied electric fields up to 1.6 × 105 V/m do not affect the homogeneous nucleation of ice in supercooled water. J. Phys. Chem. B 2011, 115, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Tarn, M.D.; Sikora, S.N.F.; Porter, G.C.E.; Wyld, B.V.; Alayof, M.; Reicher, N.; Harrison, A.D.; Rudich, Y.; Shim, J.-u.; Murray, B.J. On-chip analysis of atmospheric ice-nucleating particles in continuous flow. Lab Chip 2020, 20, 2889–2910. [Google Scholar] [CrossRef] [PubMed]
- Porter, G.C.E.; Sikora, S.N.F.; Shim, J.-u.; Murray, B.J.; Tarn, M.D. On-chip density-based sorting of supercooled droplets and frozen droplets in continuous flow. Lab Chip 2020, 20, 3876–3887. [Google Scholar] [CrossRef] [PubMed]
- Koop, T.; Murray, B.J. A physically constrained classical description of the homogeneous nucleation of ice in water. J. Chem. Phys. 2016, 145, 211915. [Google Scholar] [CrossRef]
- 3M Company. 3M™ Novec™ 7500 Engineered Fluid—Product Information. Available online: http://multimedia.3m.com/mws/media/65496O/3mtm-novectm-7500-engineered-fluid.pdf (accessed on 2 February 2021).
- Holtze, C.; Rowat, A.C.; Agresti, J.J.; Hutchison, J.B.; Angile, F.E.; Schmitz, C.H.J.; Koster, S.; Duan, H.; Humphry, K.J.; Scanga, R.A.; et al. Biocompatible surfactants for water–in–fluorocarbon emulsions. Lab Chip 2008, 8, 1632–1639. [Google Scholar] [CrossRef]
- Sphere Fluidics Pico–Surf™ Product Datasheet. Available online: http://www.spherefluidics.com/wp–content/uploads/2016/11/Pico–Surf–User–Guide–2016–12–02–V1.pdf (accessed on 2 February 2021).
- Effenhauser, C.S.; Bruin, G.J.M.; Paulus, A.; Ehrat, M. Integrated capillary electrophoresis on flexible silicone microdevices: Analysis of DNA restriction fragments and detection of single DNA molecules on microchips. Anal. Chem. 1997, 69, 3451–3457. [Google Scholar] [CrossRef]
- Duffy, D.C.; McDonald, J.C.; Schueller, O.J.A.; Whitesides, G.M. Rapid Prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 1998, 70, 4974–4984. [Google Scholar] [CrossRef] [PubMed]
- McDonald, J.C.; Duffy, D.C.; Anderson, J.R.; Chiu, D.T.; Wu, H.; Schueller, O.J.A.; Whitesides, G.M. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 2000, 21, 27–40. [Google Scholar] [CrossRef]
- Stan, C.A.; Tang, S.K.Y.; Whitesides, G.M. Independent control of drop size and velocity in microfluidic flow-focusing generators using variable temperature and flow rate. Anal. Chem. 2009, 81, 2399–2402. [Google Scholar] [CrossRef] [PubMed]
- Murray, B.J.; Broadley, S.L.; Wilson, T.W.; Bull, S.J.; Wills, R.H.; Christenson, H.K.; Murray, E.J. Kinetics of the homogeneous freezing of water. Phys. Chem. Chem. Phys. 2010, 12, 10380–10387. [Google Scholar] [CrossRef] [PubMed]
- Earle, M.E.; Kuhn, T.; Khalizov, A.F.; Sloan, J.J. Volume nucleation rates for homogeneous freezing in supercooled water microdroplets: Results from a combined experimental and modelling approach. Atmos. Chem. Phys. 2010, 10, 7945–7961. [Google Scholar] [CrossRef]
- Stöckel, P.; Weidinger, I.M.; Baumgärtel, H.; Leisner, T. Rates of homogeneous ice nucleation in levitated H2O and D2O droplets. J. Phys. Chem. A 2005, 109, 2540–2546. [Google Scholar] [CrossRef]
- Espinosa, J.R.; Vega, C.; Sanz, E. Homogeneous ice nucleation rate in water droplets. J. Phys. Chem. C 2018, 122, 22892–22896. [Google Scholar] [CrossRef]
- Murphy, D.M.; Koop, T. Review of the vapour pressures of ice and supercooled water for atmospheric applications. Q. J. R. Meteorol. Soc. 2005, 131, 1539–1565. [Google Scholar] [CrossRef]
- Nachbar, M.; Duft, D.; Leisner, T. Volatility of amorphous solid water. J. Phys. Chem. B 2018, 122, 10044–10050. [Google Scholar] [CrossRef]
- Nachbar, M.; Duft, D.; Leisner, T. The vapor pressure of liquid and solid water phases at conditions relevant to the atmosphere. J. Chem. Phys. 2019, 151, 064504. [Google Scholar] [CrossRef]
- Schmitz, C.H.J.; Rowat, A.C.; Koster, S.; Weitz, D.A. Dropspots: A picoliter array in a microfluidic device. Lab Chip 2009, 9, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Boukellal, H.; Selimović, Š.; Jia, Y.; Cristobal, G.; Fraden, S. Simple, robust storage of drops and fluids in a microfluidic device. Lab Chip 2009, 9, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Wildeman, S.; Sterl, S.; Sun, C.; Lohse, D. Fast dynamics of water droplets freezing from the outside in. Phys. Rev. Lett. 2017, 118, 084101. [Google Scholar] [CrossRef]
- Wood, G.R.; Walton, A.G. Homogeneous nucleation kinetics of ice from water. J. Appl. Phys. 1970, 41, 3027–3036. [Google Scholar] [CrossRef]
- Benz, S.; Megahed, K.; Möhler, O.; Saathoff, H.; Wagner, R.; Schurath, U. T-dependent rate measurements of homogeneous ice nucleation in cloud droplets using a large atmospheric simulation chamber. J. Photochem. Photobiol. A 2005, 176, 208–217. [Google Scholar] [CrossRef]
- Krämer, B.; Hübner, O.; Vortisch, H.; Wöste, L.; Leisner, T.; Schwell, M.; Rühl, E.; Baumgärtel, H. Homogeneous nucleation rates of supercooled water measured in single levitated microdroplets. J. Chem. Phys. 1999, 111, 6521–6527. [Google Scholar] [CrossRef]
- Taborek, P. Nucleation in emulsified supercooled water. Phys. Rev. B 1985, 32, 5902–5906. [Google Scholar] [CrossRef]
- Espinosa, J.R.; Navarro, C.; Sanz, E.; Valeriani, C.; Vega, C. On the time required to freeze water. J. Chem. Phys. 2016, 145, 211922. [Google Scholar] [CrossRef] [PubMed]
- Abascal, J.L.F.; Sanz, E.; García Fernández, R.; Vega, C. A potential model for the study of ices and amorphous water: TIP4P/Ice. J. Chem. Phys. 2005, 122, 234511. [Google Scholar] [CrossRef]
- Sellberg, J.A.; Huang, C.; McQueen, T.A.; Loh, N.D.; Laksmono, H.; Schlesinger, D.; Sierra, R.G.; Nordlund, D.; Hampton, C.Y.; Starodub, D.; et al. Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature 2014, 510, 381–384. [Google Scholar] [CrossRef]
- Malkin, T.L.; Murray, B.J.; Salzmann, C.G.; Molinero, V.; Pickering, S.J.; Whale, T.F. Stacking disorder in ice I. Phys. Chem. Chem. Phys. 2015, 17, 60–76. [Google Scholar] [CrossRef] [PubMed]
- Salzmann, C.G.; Murray, B.J. Ice goes fully cubic. Nat. Mater. 2020, 19, 586–587. [Google Scholar] [CrossRef]
- Shilling, J.E.; Tolbert, M.A.; Toon, O.B.; Jensen, E.J.; Murray, B.J.; Bertram, A.K. Measurements of the vapor pressure of cubic ice and their implications for atmospheric ice clouds. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Butorin, G.T.; Skripov, V.P. Crystallization of supercooled water. Kristallografiya 1972, 17, 379–384. [Google Scholar]
- Bhabhe, A.; Pathak, H.; Wyslouzil, B.E. Freezing of heavy water (D2O) nanodroplets. J. Phys. Chem. A 2013, 117, 5472–5482. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, J.R.; Vega, C.; Sanz, E. Ice-water interfacial free energy for the TIP4P, TIP4P/2005, TIP4P/Ice, and mW models as obtained from the mold integration technique. J. Phys. Chem. C 2016, 120, 8068–8075. [Google Scholar] [CrossRef]
- Espinosa, J.R.; Zaragoza, A.; Rosales-Pelaez, P.; Navarro, C.; Valeriani, C.; Vega, C.; Sanz, E. Interfacial free energy as the key to the pressure-induced deceleration of ice nucleation. Phys. Rev. Lett. 2016, 117, 135702. [Google Scholar] [CrossRef] [PubMed]
- Tarn, M.D.; Sikora, S.N.F.; Porter, G.C.E.; Shim, J.-U.; Murray, B.J. Data for “Homogeneous Freezing of Water Using Microfluidics”; [Dataset]; University of Leeds: Leeds, UK, 2021. [Google Scholar] [CrossRef]
Run. | Water Flow Rate (μL min−1) | Oil Flow Rate (μL min−1) | Droplet Generation Rate (droplets s−1) | Total No. of Droplets | Droplet Diameter (μm) | Droplet Volume (pL) (× 10−9 cm3) | Droplet Velocity (mm s−1) | Temp. Increment (°C) | No. of Droplets per T Increment | Approx. Total Volume (μL) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.05 | 22 | 2.0 ± 0.5 | 10,881 | 84 ± 7 (CV = 8%) | 311 ± 76 | 10.9 ± 0.1 | 0.1 | 403 ± 116 | 3.38 |
2 | 0.05 | 24 | 1.6 ± 0.6 | 1,833 | 85 ± 7 (CV = 8%) | 317 ± 73 | 11.9 ± 0.1 | 0.2 | 167 ± 62 | 0.58 |
3 | 0.02 | 24 | 2.1 ± 0.4 | 3,692 | 89 ± 7 (CV = 8%) | 371 ± 85 | 11.9 ± 0.1 | 0.1 | 217 ± 48 | 1.37 |
Overall | 16,406 | 86 ± 8 | 331 ± 89 | 5.33 |
Run | Temperature Range (°C) | JV(T) Fit (cm−3 s−1) | JV(T) Uncertainty (cm−3 s−1) | R2 of JV(T) Fit |
---|---|---|---|---|
1 | −35.1 to −36.9 | ln JV(T) = −4.0839·T – 132.1568 | +87%; −43% | 0.9582 |
2 | −35.2 to −36.9 | ln JV(T) = −4.3261·T – 140.7226 | +85%; −42% | 0.9325 |
3 | −35.5 to −36.7 | ln JV(T) = −4.5820·T – 150.2315 | +85%; −42% | 0.9667 |
Overall | −35.1 to −36.9 | ln JV(T) = −4.2171·T – 136.9602 | +87%; −43% | 0.9528 |
Publication/Technique. | Type of Droplet Assay | Droplet Diameter (μm) | Droplet Volume (pL) | Temperature Range (°C) | Temperature Uncertainty (°C) | JV(T) (cm−3 s−1) | Units of T in JV(T) Fit | JV(T) Uncertainty (cm−3 s−1) | σsd,l (mJ m–2) | ln (A (cm–3 s–1)) | Refs. |
---|---|---|---|---|---|---|---|---|---|---|---|
Stan 2009 | Continuous flow | 80 ± 1 | 268 ± 10 | −36.0 to −37.8 | ±0.4 | ln JV(T) = −4.4746·T − 149.0305 (a) | °C | − | 23.7 ± 1.1 (b) | 102.9 ± 5.0 (b) | [37] |
Edd 2009; “Dropspots” | Microfluidic droplet array | 37 ± 2 | 26 ± 5 | −36.9 to −38.5 | − | log10 (JV(T) × 10−9) = −1.912·T – 75.4 | °C | − | 24.2 (c) | 101.7 | [29] |
Riechers 2013 | Droplet emulsion | 53 ± 6 to 96 ± 11 | 78 ± 30 to 463 ± 178 | −35.3 to −36.6 | ±0.3 | ln JV(T) = −3.574·(T – 235) + 19.44 | K | ±43% | 21.3 | 77.4 | [26] |
Weng 2016 | Droplet emulsion | 35 ± 2 | 22 ± 5 | −36.1 to −37.8 | − | log10 JV(T) = (−1.62 ± 0.06)·T – (54.5 ± 2.3) | °C | Provided in the JV(T) equation | 22.3 | 84.6 | [27] |
Peckhaus 2016 | Printed droplet array | 107 ± 14 (spherical cap) | 215 ± 70 | −35.4 to −36.5 | ±0.1 | ln JV(T) = −3.6977·T – 121.2490 (d) | °C | − | 21.5 ± 2.9 | 79.8 ± 9.1 | [31] |
Tarn 2018; “Microfluidic pL-NIPI” | Droplet emulsion | 94 ± 3 | 435 ± 43 | −33.9 to −35.3 | ±0.5 | log10 JV(T) = −1.60674·T − 51.12734 | °C | ±13% | 22.1 ± 2.2 | 88.2 ± 7.6 | [28] |
Reicher 2018; “WISDOM” | Microfluidic droplet array | 100 | 524 | −35.15 to −36.15 | ±0.3 | JV(T) = exp(−3.4·T + 817.6) | K | − | 20.7 | 71.8 | [32] |
Häusler 2018; "Freezing on a Chip” | Microcavity-based droplet array | 40 ± 4 | 34 ± 11 | −36.4 to −37.6 | ±0.4 | ln JV(T) = −2.3261·T – 71.9161 (d) | °C | − | 19.1 ± 6.4 | 59.1 ± 15.0 | [33] |
This work; “LOC-NIPI” | Continuous flow | 86 ± 8 | 331 ± 89 | −35.1 to −36.9 | ±0.7 | ln JV(T) = −4.2171·T – 136.9602 | °C | +87%, −43% | 22.5 ± 0.7 | 93.0 ± 2.2 | [39] and this work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarn, M.D.; Sikora, S.N.F.; Porter, G.C.E.; Shim, J.-u.; Murray, B.J. Homogeneous Freezing of Water Using Microfluidics. Micromachines 2021, 12, 223. https://doi.org/10.3390/mi12020223
Tarn MD, Sikora SNF, Porter GCE, Shim J-u, Murray BJ. Homogeneous Freezing of Water Using Microfluidics. Micromachines. 2021; 12(2):223. https://doi.org/10.3390/mi12020223
Chicago/Turabian StyleTarn, Mark D., Sebastien N. F. Sikora, Grace C. E. Porter, Jung-uk Shim, and Benjamin J. Murray. 2021. "Homogeneous Freezing of Water Using Microfluidics" Micromachines 12, no. 2: 223. https://doi.org/10.3390/mi12020223
APA StyleTarn, M. D., Sikora, S. N. F., Porter, G. C. E., Shim, J.-u., & Murray, B. J. (2021). Homogeneous Freezing of Water Using Microfluidics. Micromachines, 12(2), 223. https://doi.org/10.3390/mi12020223