Line-Edge Roughness from Extreme Ultraviolet Lithography to Fin-Field-Effect-Transistor: Computational Study
Abstract
:1. Introduction
2. Simulation Method
2.1. LER Modeling in EUVL Processes
2.2. LER and LWR Modeling of FinFET
3. Results and Discussion
4. Conclusions
Funding
Conflicts of Interest
References
- Mojarad, N.; Hojeij, M.; Wang, L.; Gobrecht, J.; Ekinci, Y. Single-Digit-Resolution Nanopatterning with Extreme Ultraviolet Light for the 2.5 nm Technology Node and Beyond. Nanoscale 2015, 7, 4031–4037. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-T.; Qiu, Y.-Y.; Tang, M.; Lee, C.-F.; Dai, Y.-L.; Lee, M.-H.; Chang, S.-T. Negative-Capacitance Fin Field-Effect Transistor beyond the 7-nm Node. J. Nanosci. Nanotechnol. 2018, 18, 6873–6878. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Li, Y.; Yang, Y.; Zhao, Y. A Photolithography Process Design for 5 nm Logic Process Flow. J. Microelectron. Manuf. 2019, 2, 19020408. [Google Scholar] [CrossRef]
- Seisyan, R.P. Nanolithography in microelectronics: A review. Tech. Phys. 2011, 56, 1061–1073. [Google Scholar] [CrossRef]
- Li, L.; Liu, X.; Pal, S.; Wang, S.; Ober, C.K.; Giannelis, E.P. Extreme ultraviolet resist materials for sub-7 nm patterning. Chem. Soc. Rev. 2017, 46, 4855–4866. [Google Scholar] [CrossRef]
- Gronheld, R.; Pret, A.V.; Rathsack, B.; Hooge, J.; Scheer, S.; Nafus, K.; Shite, H.; Kltano, J. Resolution–Linewidth Roughness–Sensitivity Performance Tradeoffs for an Extreme Ultraviolet Polymer Bound Photo-Acid Generator Resist. J. Micro/Nanolith. Mens Moems 2011, 10, 013017. [Google Scholar] [CrossRef]
- Mack, C.A. Reducing Roughness in Extreme Ultraviolet Lithography. J. Micro/Nanolith. Mems Moems 2018, 17, 041006. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Wang, J.; Pan, L.; Yu, L.; Zheng, Y.; Shi, Y. An Optimized FinFET Channel with Improved Line-Edge Roughness and Linewidth Roughness Using the Hydrogen Thermal Treatment Technology. IEEE Trans. Nanotechnol. 2017, 16, 1081–1087. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.-G.; Vesters, Y.; Severi, J.; Kim, M.; Simone, D.D.; Oh, H.-K.; Hur, S.-M. Molecular Modeling of EUV Photoresist Revealing the Effect of Chain Conformation on Line-Edge Roughness Formation. Polymers 2019, 11, 1923. [Google Scholar] [CrossRef] [Green Version]
- Patsis, G.P.; Drygiannakis, D.; Constantoudis, V.; Raptis, I.; Gogolides, E. Stochastic Modeling and Simulation of Photoresist Surface and Line-Edge Roughness Evolution. Eur. Polym. J. 2010, 46, 1988–1999. [Google Scholar] [CrossRef]
- Garidis, K.; Pret, A.V.; Gronheid, R. Mask Roughness Impact on Extreme UV and 193 nm Immersion Lithography. Microelectron. Eng. 2012, 98, 138–141. [Google Scholar] [CrossRef]
- Bhattarai, S.; Neureuther, A.R.; Naulleau, P.P. Study of Shot Noise in Photoresists for Extreme Ultraviolet Lithography through Comparative Analysis of Line Edge Roughness in Electron Beam and Extreme Ultraviolet Lithography. J. Vac. Sci. Technol. B 2017, 35, 061602. [Google Scholar] [CrossRef]
- Kozawa, T.; Yamamoto, H.; Tagawa, S. Relationship between Line Edge Roughness and Fluctuation of Acid Concentration in Chemically Amplified Resist. Jpn. J. Appl. Phys. 2010, 49, 1–5. [Google Scholar] [CrossRef]
- Lee, H.; Park, S.; Kim, M.; Moon, J.; Lee, B.; Cho, M. Multiscale Simulation of Extreme Ultraviolet Nanolithography: Impact of Acid–base Reaction on Pattern Roughness. J. Mater. Chem. C 2021, 9, 1183–1195. [Google Scholar] [CrossRef]
- Fukuda, H. Cascade and Cluster of Correlated Reactions as Causes of Stochastic Defects in Extreme Ultraviolet Lithography. J. Micro/Nanolith. Mems Moems 2020, 19, 024601. [Google Scholar] [CrossRef]
- Bisschop, P.D. Stochastic Effects in EUV Lithography: Random, Local CD Variability, and Printing Failures. J. Micro/Nanolith. MEMS MOEMS 2017, 16, 041013. [Google Scholar]
- Belete, Z.; Bisschop, P.D.; Welling, U.W.; Erdmann, A. Stochastic Simulation and Calibration of Organometallic Photoresists for Extreme Ultraviolet Lithography. J. Micro/Nanolith. MEMS MOEMS 2021, 20, 014801. [Google Scholar] [CrossRef]
- Chauhan, S.; Somervell, M.; Carcasi, M.; Scheer, S.; Bonnecaze, R.T.; Mack, C.A.; Willson, C.G. Mesoscale Modeling: A Study of Particle Generation and Line-Edge Roughness. J. Micro/Nanolith. MEMS MOEMS 2014, 13, 013012. [Google Scholar] [CrossRef]
- Kim, M.; Moon, J.; Choi, J.; Park, S.; Lee, B.; Cho, M. Multiscale Simulation Approach on Sub-10 nm Extreme Ultraviolet Photoresist Patterning: Insights from Nanoscale Heterogeneity of Polymer. Macromolecules 2018, 51, 6922–6935. [Google Scholar] [CrossRef]
- Rathore, R.S.; Rana, A.K. Impact of Line Edge Roughness on the Performance of 14-nm FinFET: Device-Circuit Co-Design. Superlattice Microst. 2018, 113, 213–227. [Google Scholar] [CrossRef]
- Amita, S.M.; Ganguly, U. An Analytical Model to Estimate VT Distribution of Partially Correlated Fin Edges in FinFETs Due to Fin-Edge Roughness. IEEE Trans. Electron Devices 2017, 64, 1708–1715. [Google Scholar] [CrossRef]
- Patel, K.; Liu, T.-J.K.; Spanos, C.J. Gate Line Edge Roughness Model for Estimation of Fin FET Performance Variability. IEEE Trans. Electron Devices 2009, 56, 3055–3063. [Google Scholar] [CrossRef]
- Yu, S.; Zhao, Y.; Zeng, L.; Du, G.; Kang, J.; Han, R.; Liu, X. Impact of Line-Edge Roughness on Double-Gate Schottky-Barrier Field-Effect Transistors. IEEE Trans. Electron Devices 2009, 56, 1211–1219. [Google Scholar] [CrossRef]
- Seoane, N.; Indalecio, G.; Aldegunde, M.; Nagy, D.; Elmessary, M.A.; Garcia-Loureiro, A.J.; Kalna, K. Comparison of Fin-Edge Roughness and Metal Grain Work Function Variability in InGaAs and Si FinFETs. IEEE Trans. Electron Devices 2016, 63, 1209–1216. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Wang, R.; Yu, T.; Chen, J.; Huang, R. Investigations on Line-Edge Roughness (LER) and Line-Width Roughness (LWR) in Nanoscale CMOS Technology: Part I–Modeling and Simulation Method. IEEE Trans. Electron Devices 2013, 60, 3669–3675. [Google Scholar] [CrossRef]
- Lee, J.; Park, T.; Ahn, H.; Kwak, J.; Moon, T.; Shin, C. Prediction Model for Random Variation in FinFET Induced by Line-Edge-Roughness (LER). Electronics 2021, 10, 455. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, X. Monte Carlo Simulation of Process Parameters in Electron Beam Lithography for Thick Resist Patterning. J. Vac. Sci. Technol. B 2006, 24, 1202–1209. [Google Scholar] [CrossRef]
- Guo, R.; Lee, S.-Y.; Choi, J.; Lee, S.-H.; Shin, I.-K.; Jeon, C.-U.; Kim, B.-G.; Cho, H. Derivation of Line Edge Roughness Based on Analytic Model of Stochastic Exposure Distribution. J. Vac. Sci. Technol. B 2013, 31, 06F408. [Google Scholar] [CrossRef]
- Kotera, M.; Yagura, K.; Niu, H. Dependence of Linewidth and its Edge Roughness on Electron Beam Exposure Dose. J. Vac. Sci. Technol. B 2005, 23, 2775–2779. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, W.; Chun, K.; Kim, H. New Three Dimensional Simulator for Low Energy (~1 keV) Electron Beam Systems. J. Vac. Sci. Technol. B 1999, 17, 2903–2906. [Google Scholar] [CrossRef]
- Gronheid, R.; Rathsack, B.; Bernard, S.; Pret, A.V.; Nafus, K.; Hatakeyama, S. Effect of PAG Distribution on ArF and EUV Resist Performance. J. Photopolym. Sci. Technol. 2009, 22, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Kozawa, T.; Saeki, A.; Tagawa, S. Point Spread Function for the Calculation of Acid Distribution in Chemically Amplified Resists for Extreme Ultraviolet Lithography. Appl. Phys. Express 2008, 1, 027001. [Google Scholar] [CrossRef]
- Liu, C.-H.; Ng, P.C.W.; Shen, Y.-T.; Chien, S.-W.; Tsai, K.-Y. Impacts of Point Spread Function Accuracy on Patterning Prediction and Proximity Effect Correction in Low-Voltage Electron-Beam–Direct-Write Lithography. J. Vac. Sci. Technol. B 2013, 31, 021605. [Google Scholar] [CrossRef]
- Kozawa, T.; Santillan, J.J.; Itani, T. Relationship between Sensitizer Concentration and Resist Performance of Chemically Amplified Extreme Ultraviolet Resists in Sub-10 nm Half-Pitch Resolution Region. Jpn. J. Appl. Phys. 2017, 56, 1–6. [Google Scholar] [CrossRef]
- Manouras, T.; Argitis, P. High Sensitivity Resists for EUV Lithography: A Review of Material Design Strategies and Performance Results. Nanomaterials 2020, 10, 1593. [Google Scholar] [CrossRef]
- Itani, T.; Kozawa, T. Resist Materials and Processes for Extreme Ultraviolet Lithography. Jpn. J. Appl. Phys. 2013, 52, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kozawa, T.; Santillan, J.J.; Itani, T. Analysis of Stochastic Effect in Line-and-Space Resist Patterns Fabricated by Extreme Ultraviolet Lithography. Appl. Phys. Express 2013, 6, 026502. [Google Scholar] [CrossRef]
- Mack, C. Fundamental Principles of Optical Lithography: The Science of Microfabrication; John Wiley & Sons: Chichester, UK, 2011; pp. 404–406. [Google Scholar]
- Leung, G.; Chui, C.O. Variability of Inversion-Mode and Junctionless FinFETs due to Line Edge Roughness. IEEE Electron Device Lett. 2011, 32, 1489–1491. [Google Scholar] [CrossRef]
- Seoane, N.; Indalecio, G.; Comesaña, E.; Aldegunde, M.; García-Loureiro, A.J.; Kalna, K. Random Dopant, Line-Edge Roughness, and Gate Workfunction Variability in a Nano InGaAs FinFET. IEEE Trans. Electron Devices 2014, 61, 466–472. [Google Scholar] [CrossRef]
- Baravelli, E.; Jurczak, M.; Speciale, N.; Meyer, K.D.; Dixit, A. Impact of LER and Random Dopant Fluctuations on FinFET Matching Performance. IEEE Trans. Nanotechnol. 2008, 7, 291–298. [Google Scholar] [CrossRef]
- Leung, G.; Lai, L.; Gupta, P.; Chui, C.O. Device- and Circuit-Level Variability Caused by Line Edge Roughness for Sub-32-nm FinFET Technologies. IEEE Trans. Electron Devices 2012, 59, 2057–2063. [Google Scholar] [CrossRef]
- Espineira, G.; Nagy, D.; Indalecio, G.; Garcia-Loureiro, A.; Kalna, K.; Seoane, N. Impact of Gate Edge Roughness Variability on FinFET and Gate-All-Around Nanowire FET. IEEE Electron Device Lett. 2019, 40, 510–513. [Google Scholar] [CrossRef] [Green Version]
- Sun, E.C.; Kuo, J.B. A Compact Threshold Voltage Model for Gate Misalignment Effect of DG FD SOI nMOS Devices Considering Fringing Electric Field Effects. IEEE Trans. Electron Devices 2004, 51, 587–596. [Google Scholar] [CrossRef]
- Liang, X.; Taur, Y. A 2-D Analytical Solution for SCEs in DG MOSFETs. IEEE Trans. Electron Devices 2004, 51, 1385–1391. [Google Scholar] [CrossRef]
- Chauhan, Y.S.; Lu, D.D.; Venugoplalan, S.; Khandelwal, S.; Seulveda, J.P.D.; Paydavosi, N.; Niknejad, A.M.; Hu, C. FinFET Modeling for IC Simulation and Design; Academic Press: San Diego, CA, USA, 2015; pp. 71–125. [Google Scholar]
- Cheng, Q.; You, J.; Chen, Y. Correlating FinFET Ddevice Variability to Spatial Fluctuation of Fin Width. Microelectron. Eng. 2014, 119, 53–60. [Google Scholar] [CrossRef]
- Li, T.-S.; Chen, S.-H.; Chen, H.-L. Thermal-Flow Techniques for Sub-35 nm Contact-Hole Fabrication using Taguchi Method in Electron-Beam Lithography. Microelectron. Eng. 2009, 86, 2170–2175. [Google Scholar] [CrossRef]
- Macis, H.A.; Yate, L.; Coy, E.; Aperador, W.; Olaya, J.J. Insights and Optimization of the Structural and Mechanical Properties of TiWSiN Coatings using the Taguchi method. Appl. Surf. Sci. 2021, 558, 149877. [Google Scholar] [CrossRef]
- Norris, D.J.; Bawendi, M.G. Measurement and Assignment of the Size-Dependent Optical Spectrum in CdSe Quantum Dots. Phys. Rev. B 1996, 53, 16338–16346. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-K. Line-Edge Roughness from Extreme Ultraviolet Lithography to Fin-Field-Effect-Transistor: Computational Study. Micromachines 2021, 12, 1493. https://doi.org/10.3390/mi12121493
Kim S-K. Line-Edge Roughness from Extreme Ultraviolet Lithography to Fin-Field-Effect-Transistor: Computational Study. Micromachines. 2021; 12(12):1493. https://doi.org/10.3390/mi12121493
Chicago/Turabian StyleKim, Sang-Kon. 2021. "Line-Edge Roughness from Extreme Ultraviolet Lithography to Fin-Field-Effect-Transistor: Computational Study" Micromachines 12, no. 12: 1493. https://doi.org/10.3390/mi12121493
APA StyleKim, S.-K. (2021). Line-Edge Roughness from Extreme Ultraviolet Lithography to Fin-Field-Effect-Transistor: Computational Study. Micromachines, 12(12), 1493. https://doi.org/10.3390/mi12121493