The Development of Frequency Tripler Based on Six-Anode Schottky Varactors
Abstract
:1. Introduction
2. Design and Simulations
2.1. Frequency Tripler Circuit Model Analysis
2.2. Peripheral Circuit and Schottky Diode Unit Design
2.3. Anode Junction Imbalance Effect
2.4. Diode Unit Improved Design
2.5. S-parameter Result Simulation
3. Measurements
3.1. Assembly and Test Setup
3.2. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Atacama Large Millimeter/Submillimeter Array [OL]. Available online: http://www.almaobservatory.org/ (accessed on 15 September 2021).
- JUICE—JUpiter ICy Moons Explorer [OL]. Available online: http://sci.esa.int/juice/ (accessed on 15 September 2021).
- Kivelson, M.G.; Warnecke, J.; Bennett, L.; Joy, S.; Polanskey, C. Ganymede’s magnetosphere: Magnetometer overview. J. Geophys. Res. Atmos. 1998, 103, 19963–19972. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, G. (Ed.) Terahertz antennas and systems for space borne platforms. In Proceedings of the Fourth European Conference on Antennas and Propagation, Barcelona, Spain, 12–16 April 2010. [Google Scholar]
- Pilbratt, G.L. The Herschel mission, scientific objectives, and this meeting. In Proceedings of the European Space Agency Symposium, Noordwijk, The Netherlands, 17 May 2000; ESA paper SP-460. pp. 13–20. [Google Scholar]
- Maestrini, A.; Ward, J.S.; Gill, J.J.; Javadi, H.S.; Schlecht, E.; Tripon-Canseliet, C.; Chattopadhyay, G.; Mehdi, I. A 540-640-GHz high-efficiency four-anode frequency tripler. IEEE Trans. Microw. Theory Tech. 2005, 53, 2835–2843. [Google Scholar] [CrossRef]
- Penfield, P.; Rafuse, R.P. Varactor Applications; MIT Press: Cambridge, MA, USA, 1962; pp. 55–61. [Google Scholar]
- Yao, C.F.; Zhou, M.; Luo, Y.S.; Kou, Y.N. A 190~225 GHz high efficiency Schottky diode doubler with circuit substrate flip-chip mounted. J. Infrared Millim. Terahertz Waves 2015, 34, 6–9. [Google Scholar] [CrossRef]
- Ding, J.; Maestrini, A.; Gatilova, L.; Cavanna, A.; Shi, S.; Wen, W. High efficiency and wide-band 300 GHz frequency doubler based on six Schottky diodes. J. Infrared Millim. Terahertz Waves 2017, 38, 1331–1341. [Google Scholar] [CrossRef]
- Alderman, B.; Henry, M.; Sanghera, H.; Hui, W.; Rea, S.; Ellison, B. Schottky Diode Technology at Rutherford Appleton Laboratory. In Proceedings of the 2011 IEEE International Conference on Microwave Technology & Computational Electromagnetics, Beijing, China, 22–25 May 2011; pp. 4–6. [Google Scholar] [CrossRef]
- Wu, C.K.; Zhang, Y.; Cui, J.H.; Li, Y.K.; Xu, Y.H.; Xu, R.M. A 135-190 GHz Broadband Self-Biased Frequency Doubler using Four-anode Schottky Diodes. Micromachines 2019, 10, 277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, X.L.; Xin, H.M.; Wang, M. A Broadband High-Efficiency Tripler operating in 220-325 GHz. In Proceedings of the 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Chengdu, China, 6–8 May 2018. [Google Scholar]
- Meng, J.; Zhang, D.H.; Yao, C.F.; Jiang, C.H.; Zhao, X. Design of a 225 GHz High Output Power Tripler Based on Unbalanced Structure. Prog. Electromagn. Res. C 2015, 56, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.H.; Huang, J.; Zheng, D.A. Research on THz Solid-state Frequency Tripler Based on the Schottky Diode. J. Microw. 2018, 34, 275–277. [Google Scholar]
- Wei, H.M.; Wu, C.K.; Cui, J.H.; Zhang, Y. Design of 280 GHz Frequency Tripler Based on Schottky Diode. J. Microw. 2020, 36, 318–320. [Google Scholar]
- Xt, A.; Sg, A.; Qin, L.A.; Yz, A.; Nan, J.B.; Lu, T.A. An 840 GHz Monolithic Improved Balanced Frequency Tripler. Optik 2020, 224, 165320. [Google Scholar] [CrossRef]
- Alijabbari, N.; Bauwens, M.F.; Weikle, R.M. 160 GHz balanced frequency quadruplers based on quas-vertical Schottky Varactors integrated on micromachined silicon. IEEE Trans. Microw. Theory Tech. 2014, 4, 678–685. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, J.; Shi, X.Y.; Bin, L.U.; Deng, X.J.; Hao, H.L.; Zhang, J. 340 GHz frequency one stage quadrupler based on Schottky varactors and CSMRs filter. J. Infrared Millim. Terahertz Waves 2017, 36, 214–219. [Google Scholar] [CrossRef]
- Tolmunen, T.J.; Räisänen, A.V. An Efficient Schottky-varactor Frequency Multiplier at Millimeter Waves. Part IV. Quintupler. Int. J. Infrared Millim. Waves 1989, 10, 505–518. [Google Scholar] [CrossRef]
- Malko, A.; Bryllert, T.; Vukusic, J.; Stake, J. A 474 GHz HBV Frequency Quintupler Integrated on a 20 um Thick Silicon Substrate. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 85–91. [Google Scholar] [CrossRef]
- Han, Y. The Research of GaAs Monolithic Integrated 650 GHz Frequency Tripler. Master Thesis, University of Electronic Science and Technology of China, Chengdu, China, June 2012; pp. 30–32. [Google Scholar]
- Tang, A.Y. Modelling of Terahertz Planar Schottky Diodes. Ph.D. Thesis, Chalmers University of Technology, Göteborg, Sweden, November 2011; pp. 33–40. [Google Scholar]
- Vukusic, J.; Bryllert, T.; Olsen, Ø.; Hanning, J.; Stake, J. Monolithic Hbv-based 282-GHz Tripler with 31-mW Output Power. IEEE Electron. Device Lett. 2012, 33, 800–802. [Google Scholar] [CrossRef]
Freq.3LO (GHz) | Zdiode_in | Zdiode_out | Cj0(jF) | Anode Number | Pin (mW) | Bandwidth (GHz) | Efficiency (%) |
---|---|---|---|---|---|---|---|
100 | 52 + j.103 | 25 + j.66 | 102 | 6 | 400 | 35 | 58 |
200 | 22 + j.85 | 55 + j.88 | 65 | 6 | 200 | 32 | 42 |
300 | 95 + j.131 | 67 + j.113 | 38 | 6 | 200 | 30 | 33 |
400 | 80 + j.61 | 14 + j.90 | 15 | 4 | 100 | 32 | 25 |
500 | 120 + j.50 | 44 + j.52 | 10.5 | 4 | 100 | 31 | 20 |
Ref. | Frequency (GHz) | Multiply Factor | Anode Number | Pin (mW) | Pout (mW) | Efficiency (%) |
---|---|---|---|---|---|---|
[8] | 190–225 | 2 | 4 | 85.5 | 8.25 | 6–9.6 |
[12] | 220–325 | 3 | 4 | - | 0.32–1.9 | 1.6–6.6 |
[14] | 280–288 | 3 | 4 | 100 | 2.5 | 1.9–2.5 |
[15] | 260–290 | 3 | 4 | 100 | 3.9–5.75 | 3.9–5.75 |
[23] | 258–290 | 3 | - | 50–500 | 1–31 | 1.5–7 |
This work | 270–280 | 3 | 6 | 120–200 | 9.9–12.6 | 5–10.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Meng, J.; Zhang, D.; Zhu, H. The Development of Frequency Tripler Based on Six-Anode Schottky Varactors. Micromachines 2021, 12, 1490. https://doi.org/10.3390/mi12121490
Li Y, Meng J, Zhang D, Zhu H. The Development of Frequency Tripler Based on Six-Anode Schottky Varactors. Micromachines. 2021; 12(12):1490. https://doi.org/10.3390/mi12121490
Chicago/Turabian StyleLi, Yuhang, Jin Meng, Dehai Zhang, and Haotian Zhu. 2021. "The Development of Frequency Tripler Based on Six-Anode Schottky Varactors" Micromachines 12, no. 12: 1490. https://doi.org/10.3390/mi12121490
APA StyleLi, Y., Meng, J., Zhang, D., & Zhu, H. (2021). The Development of Frequency Tripler Based on Six-Anode Schottky Varactors. Micromachines, 12(12), 1490. https://doi.org/10.3390/mi12121490