Low-Cost Graphene-Based Digital Microfluidic System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laser Scribing Digital Microfluidics (DMF) Chips
2.2. Molecular-Probe Design and Hybridization Assays
3. Results
3.1. Electrowetting, Droplet-Actuation and Printing-Resolution Tests
3.2. Performing DMF Operations on the Laser-Scribed Graphene (LSG) DMF System
3.3. Validation of the DMF Device Using a Single-Nucleotide Mismatch Discrimination Assay
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Beebe, D.; Mensing, G.; Walker, G.M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 2002, 4, 261–286. [Google Scholar] [CrossRef] [PubMed]
- Kovarik, M.L.; Ornoff, D.M.; Melvin, A.T.; Dobes, N.C.; Wang, Y.; Dickinson, A.J.; Gach, P.C.; Shah, P.K.; Allbritton, N.L. Micro total analysis systems: Fundamental advances and applications in the laboratory, clinic, and field. Anal. Chem. 2013, 85, 451–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, Y.C.; Kouzani, A.Z.; Duan, W. Lab-on-a-chip: A component view. Microsyst. Technol. 2010, 16, 1995–2015. [Google Scholar] [CrossRef]
- Malic, L.; Brassard, D.; Veres, T.; Tabrizian, M. Integration and detection of biochemical assays in digital microfluidic LOC devices. Lab Chip 2010, 10, 418–431. [Google Scholar] [CrossRef] [PubMed]
- Pollack, M.; Shenderov, A.; Fair, R. Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2002, 2, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Chou, W.-L.; Lee, P.-Y.; Yang, C.-L.; Huang, W.-Y.; Lin, Y.-S. Recent Advances in Applications of Droplet Microfluidics. Micromachines 2015, 6, 1249–1271. [Google Scholar] [CrossRef] [Green Version]
- Yafia, M.; Shukla, S.; Najjaran, H. Fabrication of digital microfluidic devices on flexible paper-based and rigid substrates via screen printing. J. Micromech. Microeng. 2015, 25, 057001. [Google Scholar] [CrossRef]
- Ko, H.; Lee, J.; Kim, Y.; Lee, B.; Jung, C.-H. Active Digital Microfluidic Paper Chips with Inkjet Printed Patterned Electrodes. Adv. Mater. 2014, 26, 2335–2340. [Google Scholar] [CrossRef]
- Fobel, R.; Kirby, A.E.; Ng, A.H.C.; Farnood, R.R.; Wheeler, A.R. Paper microfluidics goes digital. Adv. Mater. 2014, 26, 2838–2843. [Google Scholar] [CrossRef]
- Watson, M.W.L.; Abdelgawad, M.; Ye, G.; Yonson, N.; Trottier, J.; Wheeler, A.R. Microcontact printing-based fabrication of digital microfluidic devices. Anal. Chem. 2006, 78, 7877–7885. [Google Scholar] [CrossRef]
- Abdelgawad, M.; Wheeler, A.R. Low-cost, rapid-prototyping of digital microfluidics devices. Microfluid. Nanofluidics 2007, 4, 349–355. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.-H.; Yang, H.-H.; Zhu, C.-L.; Chen, X.; Chen, G.-N. A Graphene Platform for Sensing Biomolecules. Angew. Chemie Int. Ed. 2009, 48, 4785–4787. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Kanchi, S.; Sabela, M.I.; Bisetty, K. Insight into the biosensing of graphene oxide: Present and future prospects. Arab. J. Chem. 2016, 9, 238–261. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Fal′ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef]
- Shapira, P.; Gök, A.; Salehi, F. Graphene enterprise: Mapping innovation and business development in a strategic emerging technology. J. Nanopart. Res. 2016, 18, 269. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Li, Y.; Liu, Z. Graphene commercialization. Nat. Mater. 2016, 15, 697–698. [Google Scholar] [CrossRef]
- Ciriminna, R.; Zhang, N.; Yang, M.-Q.; Meneguzzo, F.; Xu, Y.-J.; Pagliaro, M.; Shin, H.J.; Yang, H.; Paik, U.; Kwon, S.; et al. Commercialization of graphene-based technologies: A critical insight. Chem. Commun. 2015, 51, 7090–7095. [Google Scholar] [CrossRef]
- Pei, S.; Cheng, H.-M. The reduction of graphene oxide. Carbon N. Y. 2012, 50, 3210–3228. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Guo, L.; Xia, H.; Chen, Q.D.; Feng, J.; Sun, H.B. Photoreduction of Graphene Oxides: Methods, Properties, and Applications. Adv. Opt. Mater. 2014, 2, 10–28. [Google Scholar] [CrossRef]
- Cote, L.J.; Cruz-Silva, R.; Huang, J. Flash reduction and patterning of graphite oxide and its polymer composite. J. Am. Chem. Soc. 2009, 131, 11027–11032. [Google Scholar] [CrossRef] [PubMed]
- El-Kady, M.F.; Kaner, R.B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 2013, 4, 1475. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Yang, Y.; Xie, D.; Cui, Y.-L.; Mi, W.-T.; Zhang, Y.; Ren, T.-L. Wafer-scale integration of graphene-based electronic, optoelectronic and electroacoustic devices. Sci. Rep. 2014, 4, 3598. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Shu, Y.; Cui, Y.; Mi, W.; Yang, Y.; Xie, D.; Ren, T.-L. Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale 2014, 6, 699–705. [Google Scholar] [CrossRef]
- Lippmann, G. Relations entre les phénomenes électriques et capillaires. Ann. Chim. Phys. 1875, 5, 494–549. [Google Scholar]
- Moon, H.; Cho, S.K.; Garrell, R.L.; Kim, C.-J. “Cj” Low voltage electrowetting-on-dielectric. J. Appl. Phys. 2002, 92, 4080. [Google Scholar] [CrossRef]
- Tan, X.; Zhou, Z.; Cheng, M.M.-C. Electrowetting on dielectric experiments using graphene. Nanotechnology 2012, 23, 375501. [Google Scholar] [CrossRef]
- Del Rosso, M.; Brodie, C.H.; Ramalingam, S.; Cabral, D.M.; Pensini, E.; Singh, A.; Collier, C.M. Characterisation of graphene electrodes for microsystems and microfluidic devices. Sci. Rep. 2019, 9, 5773. [Google Scholar] [CrossRef]
- Cho, S.; Fan, S.; Moon, H.; Kim, C.-J. Towards digital microfluidic circuits: Creating, transporting, cutting and merging liquid droplets by electrowetting-based actuation. In Proceedings of the Micro Electro Mechanical Systems, Las Vegas, NV, USA, 24 January 2002; pp. 32–35. [Google Scholar]
- Cho, S.K.; Moon, H.; Kim, C. Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits. J. Microelectromech. Sytems 2003, 12, 70–80. [Google Scholar]
- Yi, U.-C.; Kim, C.-J. Characterization of electrowetting actuation on addressable single-side coplanar electrodes. J. Micromech. Microeng. 2006, 16, 2053–2059. [Google Scholar] [CrossRef] [Green Version]
- Cooney, C.G.; Chen, C.-Y.; Emerling, M.R.; Nadim, A.; Sterling, J.D. Electrowetting droplet microfluidics on a single planar surface. Microfluid. Nanofluidics 2006, 2, 435–446. [Google Scholar] [CrossRef]
- Ren, H.; Fair, R.B.; Pollack, M.G.; Shaughnessy, E.J. Dynamics of electro-wetting droplet transport. Sens. Actuators B Chem. 2002, 87, 201–206. [Google Scholar] [CrossRef]
- Fair, R.B.; Pollack, M.G.; Woo, R.; Pamula, V.K.; Hong, R.; Zhang, T.; Venkatraman, J. A micro-watt metal-insulator-solution-transport (MIST) device for scalable digital bio-microfluidic systems. In Proceedings of the International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224), Washington, DC, USA, 2–5 December 2001; pp. 16.4.1–16.4.4. [Google Scholar]
- Abdelgawad, M.; Freire, S.L.S.; Yang, H.; Wheeler, A.R. All-terrain droplet actuation. Lab Chip 2008, 8, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Abdelgawad, M.; Park, P.; Wheeler, A.R. Optimization of device geometry in single-plate digital microfluidics. J. Appl. Phys. 2009, 105, 094506. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Evans, R.; Welch, E. Low voltage electrowetting-on-dielectric platform using multi-layer insulators. Sens. Actuators B 2010, 150, 465–470. [Google Scholar] [CrossRef] [Green Version]
- Ashelford, K.E.; Weightman, A.J.; Fry, J.C. PRIMROSE: A computer program for generating and estimating the phylogenetic range of 16S rRNA oligonucleotide probes and primers in conjunction with the RDP-II database. Nucleic Acids Res. 2002, 30, 3481–3489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, A.N.; Qian, S.; Joo, S.W. High-speed droplet actuation on single-plate electrode arrays. J. Colloid Interface Sci. 2011, 362, 567–574. [Google Scholar] [CrossRef]
- Yafia, M.; Najjaran, H. Droplet necking and morphology variations induced by changing the gap height during transport in digital microfluidic systems. J. Microelectromech. Systems. 2015, 24, 1647–1658. [Google Scholar] [CrossRef]
- Yafia, M.; Najjaran, H. High precision control of gap height for enhancing principal digital microfluidics operations. Sens. Actuators B 2013, 186, 343–352. [Google Scholar] [CrossRef]
- Tan, Z.; Chen, S. Nucleic acid helix stability: Effects of salt concentration, cation valence and size, and chain length. Biophys. J. 2006, 90, 1175–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Names | Sequences |
---|---|
Molecular Probe | Fluorescein/CGAGCC ATTATCTGACCGTCCCA GGCTCG/Iowa Black FQ |
Perfect match | TGGGACGGTCAGATAAT |
1 MM | TGGGACGGACAGATAAT |
2 MM | TGGGACGAACAGATAAT |
3 MM | TGGGACGAATAGATAAT |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yafia, M.; Foudeh, A.M.; Tabrizian, M.; Najjaran, H. Low-Cost Graphene-Based Digital Microfluidic System. Micromachines 2020, 11, 880. https://doi.org/10.3390/mi11090880
Yafia M, Foudeh AM, Tabrizian M, Najjaran H. Low-Cost Graphene-Based Digital Microfluidic System. Micromachines. 2020; 11(9):880. https://doi.org/10.3390/mi11090880
Chicago/Turabian StyleYafia, Mohamed, Amir M. Foudeh, Maryam Tabrizian, and Homayoun Najjaran. 2020. "Low-Cost Graphene-Based Digital Microfluidic System" Micromachines 11, no. 9: 880. https://doi.org/10.3390/mi11090880
APA StyleYafia, M., Foudeh, A. M., Tabrizian, M., & Najjaran, H. (2020). Low-Cost Graphene-Based Digital Microfluidic System. Micromachines, 11(9), 880. https://doi.org/10.3390/mi11090880