The Influence of Gas–Wall and Gas–Gas Interactions on the Accommodation Coefficients for Rarefied Gases: A Molecular Dynamics Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Molecular Dynamics (MD) Simulations
2.2. Computing Accommodation Coefficients
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Karniadakis, G.; Beskok, A.; Aluru, N. Microflows and Nanoflows Fundamentals and Simulation; Springer Science & Business Media: New York, NY, USA, 2006; Volume 29. [Google Scholar]
- Rader, D.J.; Trott, W.M.; Torczynski, J.R.; Gallis, M.A.; Castañeda, J.N.; Grasser, T.W. Microscale Rarefied Gas Dynamics and Surface Interactions for EUVL and MEMS Applications; Department of Energy: Washington, DC, USA, 2004. [Google Scholar]
- Saxena, S.C.; Joshi, R.K. Thermal Accommodation and Adsorption Coefficients of Gases; Hemisphere Publishing: New York, NY, USA, 1989. [Google Scholar]
- Agrawal, A. A comprehensive review on gas flow in microchannels. Int. J. Micro-Nano Scale Transp. 2011, 2, 1–40. [Google Scholar] [CrossRef]
- Cao, B.-Y.; Sun, J.; Chen, M.; Guo, Z.-Y. Molecular momentum transport at fluid-solid interfaces in MEMS/NEMS: A review. Int. J. Mol. Sci. 2009, 10, 4638–4706. [Google Scholar] [CrossRef] [PubMed]
- Colin, S. Rarefaction and compressibility effects on steady and transient gas flows in microchannels. Microfluid. Nanofluidics 2005, 1, 268–279. [Google Scholar] [CrossRef]
- Billing, G.D. The dynamics of molecule-surface interaction. Comput. Phys. Rep. 1990, 12, 383–450. [Google Scholar] [CrossRef]
- Barker, J.A.; Auerbach, D.J. Gas-surface interactions and dynamics; Thermal energy atomic and molecular beam studies. Surf. Sci. Rep. 1984, 4, 1–99. [Google Scholar] [CrossRef]
- Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids, 2nd ed.; Oxford University Press: Oxford, UK, 2017; Volume 53. [Google Scholar]
- Maxwell, J.C., III. On stresses in rarefied gases arising from inequalities of temperature. Proc. R. Soc. Lond. 1878, 27, 304–308. [Google Scholar]
- Lord, R.G. Some further extensions of the Cercignani-Lampis gas-surface interaction model. Phys. Fluids 1995, 7, 1159–1161. [Google Scholar] [CrossRef]
- Bird, G.A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows; Clarendon Press: Oxford, UK, 1994. [Google Scholar]
- Zhang, J. Lattice Boltzmann method for microfluidics: Models and applications. Microfluid. Nanofluidics 2011, 10, 1–28. [Google Scholar] [CrossRef]
- Grad, H. On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 1949, 2, 331–407. [Google Scholar] [CrossRef]
- Prabha, S.K.; Sathian, S.P. Computational study of thermal dependence of accommodation coefficients in a nano-channel and the prediction of velocity profiles. Comput. Fluids 2012, 68, 47–53. [Google Scholar] [CrossRef]
- Chirita, V.; Pailthorpe, B.A.; Collins, R.E. Non-equilibrium energy and momentum accommodation coefficients of Ar atoms scattered from Ni(001) in the thermal regime: A molecular dynamics study. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1997, 129, 465–473. [Google Scholar] [CrossRef]
- Sun, J.; Li, Z.-X. Three-dimensional molecular dynamic study on accommodation coefficients in rough nanochannels. Heat Transf. Eng. 2011, 32, 658–666. [Google Scholar] [CrossRef]
- Spijker, P.; Markvoort, A.J.; Nedea, S.V.; Hilbers, P.A.J. Computation of accommodation coefficients and the use of velocity correlation profiles in molecular dynamics simulations. Phys. Rev. E 2010, 81, 011203. [Google Scholar] [CrossRef] [PubMed]
- Daun, K.J. Thermal accommodation coefficients between polyatomic gas molecules and soot in laser-induced incandescence experiments. Int. J. Heat Mass Transf. 2009, 52, 5081–5089. [Google Scholar] [CrossRef]
- Reinhold, J.; Veltzke, T.; Wells, B.; Schneider, J.; Meierhofer, F.; Ciacchi, L.C.; Chaffee, A.; Thöming, J. Molecular dynamics simulations on scattering of single Ar, N 2, and CO 2 molecules on realistic surfaces. Comput. Fluids 2014, 97, 31–39. [Google Scholar] [CrossRef]
- Mane, T.; Bhat, P.; Yang, V.; Sundaram, D.S. Energy accommodation under non-equilibrium conditions for aluminum-inert gas systems. Surf. Sci. 2018, 677, 135–148. [Google Scholar] [CrossRef]
- Liao, M.; Grenier, R.; To, Q.-D.; de Lara-Castells, M.P.; Leónard, C. Helium and argon interactions with gold surfaces: Ab initio-assisted determination of the He−Au pairwise potential and its application to accommodation coefficient determination. J. Phys. Chem. C 2018, 122, 14606–14614. [Google Scholar] [CrossRef]
- Yamamoto, K. Slightly rarefied gas flows over a smooth Pt surface. AIP Conf. Proc. 2001, 585, 339–346. [Google Scholar]
- Hyakutake, T.; Yamamoto, K.; Takeuchi, H. Flow of gas mixtures through micro channel. AIP Conf. Proc. 2005, 762, 780–788. [Google Scholar]
- Daun, K.J.; Sipkens, T.A.; Titantah, J.T.; Karttunen, M. Thermal accommodation coefficients for laser-induced incandescence sizing of metal nanoparticles in monatomic gases. Appl. Phys. B 2013, 112, 409–420. [Google Scholar] [CrossRef]
- Cengel, Y.A.; Boles, M.A. Thermodynamics: An Engineering Approach, 8th ed.; McGraw-Hill Education: New York, NY, USA, 2015. [Google Scholar]
- Sheng, H.W.; Kramer, M.J.; Cadien, A.; Fujita, T.; Chen, M.W. Highly optimized embedded-atom-method potentials for fourteen fcc metals. Phys. Rev. B 2011, 83, 134118. [Google Scholar] [CrossRef]
- Grenier, R.; To, Q.-D.; de Lara-Castells, M.P.; Leónard, C. Argon interaction with gold surfaces: Ab initio-assisted determination of pair Ar−Au potentials for molecular dynamics simulations. J. Phys. Chem. A 2015, 119, 6897–6908. [Google Scholar] [CrossRef] [PubMed]
- Heinz, H.; Vaia, R.A.; Farmer, B.L.; Naik, R.R. Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12-6 and 9-6 lennard-jones potentials. J. Phys. Chem. C 2008, 112, 17281–17290. [Google Scholar] [CrossRef]
- Schroeder, D.V. Interactive molecular dynamics. Am. J. Phys. 2015, 83, 210–218. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Thomas, L.B.; Brown, R.E. The accommodation coefficients of gases on platinum as a function of pressure. J. Chem. Phys. 1950, 18, 1367–1372. [Google Scholar] [CrossRef]
- Markvoort, A.J.; Hilbers, P.A.J.; Nedea, S.V. Molecular dynamics study of the influence of wall-gas interactions on heat flow in nanochannels. Phys. Rev. E 2005, 71, 066702. [Google Scholar] [CrossRef]
- Trott, W.M.; Castaeda, J.N.; Torczynski, J.R.; Gallis, M.A.; Rader, D.J. An experimental assembly for precise measurement of thermal accommodation coefficients. Rev. Sci. Instrum. 2011, 82, 621. [Google Scholar] [CrossRef]
- Agrawal, A.; Prabhu, S.V. Survey on measurement of tangential momentum accommodation coefficient. J. Vac. Sci. 2008, 26, 634–645. [Google Scholar] [CrossRef]
- Mann, W. The exchange of energy between a platinum surface and gas molecules. Proc. R. Soc. Lond. Ser. A Contain. Pap. A Math. Phys. Character 1934, 146, 776–791. [Google Scholar]
- Thomas, L.B.; Olmer, F. The accommodation coefficients of He, Ne, A, H2, D2, 02, C02, and Hg on platinum as a function of temperature. J. Am. Chem. Soc. 1943, 65, 1036–1043. [Google Scholar] [CrossRef]
- Thomas, L.B.; Schofield, E.B. Thermal accommodation coefficient of helium on a bare tungsten surface. J. Chem. Phys. 1955, 23, 861–866. [Google Scholar] [CrossRef]
Atom Type | εii (meV) | σii (Å) | MW (a.m.u) |
---|---|---|---|
Au [29] | 229.4 | 2.63 | 196.96 |
Ar [30] | 12.2 | 3.35 | 39.94 |
He [30] | 0.94 | 2.64 | 4.00 |
Parameter | Value |
---|---|
11.36 (meV) | |
3.819 (Å) | |
0.787 (meV) | |
4.342 (Å) |
System | Pressure (MPa) | Number Density (1/nm3) | MFP (nm) | EAC | MAC | MD Simulations time (ns) * |
---|---|---|---|---|---|---|
Au–Ar | 2.75 | 0.59 | 2.63 | 0.874 | 0.883 | 20 |
1.27 | 0.27 | 5.71 | 0.832 | 0.846 | 50 | |
0.84 | 0.18 | 8.57 | 0.816 | 0.822 | 70 | |
0.42 | 0.09 | 17.14 | 0.783 | 0.791 | 100 | |
Au–He | 0.21 | 0.048 | 58.73 | 0.048 | 0.059 | 60 |
0.13 | 0.029 | 97.89 | 0.046 | 0.057 | 90 | |
0.08 | 0.019 | 146.84 | 0.043 | 0.052 | 150 | |
0.04 | 0.009 | 293.70 | 0.042 | 0.049 | 250 |
System | Pair potential | αx | αy | αz | αE |
---|---|---|---|---|---|
Au–Ar | Ab-initio (Parallel walls) | 0.824 | 0.913 | 0.832 | 0.874 |
Ab-initio (Molecular beam) [22] | 0.40 | 0.77 | 0.40 | 0.56 | |
Fender Halsey | 0.915 | 0.934 | 0.913 | 0.913 | |
Experimental results: αE = 0.85 [34] ; TMAC(αx, αz) = 0.893 [35] * | |||||
Au–He | Ab-initio (Parallel walls) | 0.036 | 0.113 | 0.038 | 0.048 |
Ab-initio (Molecular beam) [22] | 0.013 | 0.046 | 0.014 | 0.017 | |
Fender Halsey | 0.245 | 0.347 | 0.221 | 0.069 | |
Lorentz-Berthelot | 0.642 | 0.748 | 0.653 | 0.187 | |
Experimental result: αE = 0.31 [34] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammad Nejad, S.; Nedea, S.; Frijns, A.; Smeulders, D. The Influence of Gas–Wall and Gas–Gas Interactions on the Accommodation Coefficients for Rarefied Gases: A Molecular Dynamics Study. Micromachines 2020, 11, 319. https://doi.org/10.3390/mi11030319
Mohammad Nejad S, Nedea S, Frijns A, Smeulders D. The Influence of Gas–Wall and Gas–Gas Interactions on the Accommodation Coefficients for Rarefied Gases: A Molecular Dynamics Study. Micromachines. 2020; 11(3):319. https://doi.org/10.3390/mi11030319
Chicago/Turabian StyleMohammad Nejad, Shahin, Silvia Nedea, Arjan Frijns, and David Smeulders. 2020. "The Influence of Gas–Wall and Gas–Gas Interactions on the Accommodation Coefficients for Rarefied Gases: A Molecular Dynamics Study" Micromachines 11, no. 3: 319. https://doi.org/10.3390/mi11030319
APA StyleMohammad Nejad, S., Nedea, S., Frijns, A., & Smeulders, D. (2020). The Influence of Gas–Wall and Gas–Gas Interactions on the Accommodation Coefficients for Rarefied Gases: A Molecular Dynamics Study. Micromachines, 11(3), 319. https://doi.org/10.3390/mi11030319