Rapid Fabrication of Continuous Surface Fresnel Microlens Array by Femtosecond Laser Focal Field Engineering
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Muraleedharan, M.; Singh, H.; Udayakumar, M.; Suresh, S. Modified active solar distillation system employing directly absorbing Therminol 55-Al2O3 nano heat transfer fluid and Fresnel lens concentrator. Desalination 2019, 457, 32–38. [Google Scholar] [CrossRef]
- Ren, X.; Liu, S.; Zhang, X. In Fabrication of off-axis holographic Fresnel lens used as multiplexer/demultiplexer in optical communications. Photon Manag. 2004, 5456, 391–398. [Google Scholar]
- Ren, X.; Liu, S.; Zhang, X.; Li, S. Multiplexer/demultiplexer in optical communications based on a holographic Fresnel lens. Phys. Lett. A 2006, 354, 243–247. [Google Scholar] [CrossRef]
- Lu, H.-Y.; Lu, C.-E.; Huang, Z.-R.; Lin, S.; Lo, S.-C.; Chen, R.; Fang, W. Fabrication and Integration of Binary Phased Fresnel Lens and Micro Linear Actuator for IR Laser Beam Scanning Application. In Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII, Berlin, Germany, 23–27 June 2019; pp. 1584–1587. [Google Scholar]
- Tameda, Y.; Yamamoto, M.; Tomida, T.; Ikeda, D.; Yamazaki, K.; Iwakura, H.; Nakamura, Y.; Saito, Y. Detection of ultra-high energy cosmic ray air showers by Cosmic Ray Air Fluorescence Fresnel lens Telescope for next generation. EDP Sci. 2019, 210, 6004. [Google Scholar] [CrossRef]
- Shiono, T.; Setsune, K.; Yamazaki, O.; Wasa, K. Rectangular-apertured micro-Fresnel lens arrays fabricated by electron-beam lithography. Appl. Opt. 1987, 26, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.-S.; Hao, Q.; Brady, D.J.; Shankar, M.; Guenther, B.D.; Pitsianis, N.P.; Hsu, K.Y. Path-dependent human identification using a pyroelectric infrared sensor and Fresnel lens arrays. Opt. Express 2006, 14, 609–624. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lin, L.; Pister, K.; Wu, M.; Lee, H.; Grodzinski, P. Passively aligned hybrid integration of 8 × 1 micromachined micro-Fresnel lens arrays and 8 × 1 vertical-cavity surface-emitting laser arrays for free-space optical interconnect. IEEE Photonics Technol. Lett. 1995, 7, 1031–1033. [Google Scholar] [CrossRef]
- Zhou, J.; Li, L.; Naples, N.; Sun, T.; Allen, Y.Y. Fabrication of continuous diffractive optical elements using a fast tool servo diamond turning process. J. Micromech. Microeng. 2013, 23, 075010. [Google Scholar] [CrossRef]
- Li, Y.; Yu, Y.; Guo, L.; Wu, S.; Chen, C.; Niu, L.; Li, A.; Yang, H. High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8. J. Opt. 2010, 12, 035203. [Google Scholar] [CrossRef][Green Version]
- Maruo, S.; Nakamura, O.; Kawata, S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 1997, 22, 132–134. [Google Scholar] [CrossRef]
- Sun, H.-B.; Matsuo, S.; Misawa, H. Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin. Appl. Phys. Lett. 1999, 74, 786–788. [Google Scholar] [CrossRef]
- Reinhardt, C.; Passinger, S.; Chichkov, B.N.; Marquart, C.; Radko, I.P.; Bozhevolnyi, S.I. Laser-fabricated dielectric optical components for surface plasmon polaritons. Opt. Lett. 2006, 31, 1307–1309. [Google Scholar] [CrossRef]
- Liu, Z.-P.; Li, Y.; Xiao, Y.-F.; Li, B.-B.; Jiang, X.-F.; Qin, Y.; Feng, X.-B.; Yang, H.; Gong, Q. Direct laser writing of whispering gallery microcavities by two-photon polymerization. Appl. Phys. Lett. 2010, 97, 211105. [Google Scholar] [CrossRef]
- Aekbote, B.L.; Fekete, T.; Jacak, J.; Vizsnyiczai, G.; Ormos, P.; Kelemen, L. Surface-modified complex SU-8 microstructures for indirect optical manipulation of single cells. Biomed. Opt. Express 2016, 7, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Buch-Månson, N.; Spangenberg, A.; Gomez, L.P.C.; Malval, J.-P.; Soppera, O.; Martinez, K.L. Rapid Prototyping of polymeric nanopillars by 3D direct laser Writing for controlling cell behavior. Sci. Rep. 2017, 7, 9247. [Google Scholar] [CrossRef] [PubMed]
- Marino, A.; Tricinci, O.; Battaglini, M.; Filippeschi, C.; Mattoli, V.; Sinibaldi, E.; Ciofani, G. A 3D Real-Scale, Biomimetic, and Biohybrid Model of the Blood-Brain Barrier Fabricated through Two-Photon Lithography. Small 2018, 14, 1702959. [Google Scholar] [CrossRef]
- Jenness, N.J.; Hill, R.T.; Hucknall, A.; Chilkoti, A.; Clark, R.L. A versatile diffractive maskless lithography for single-shot and serial microfabrication. Opt. Express 2010, 18, 11754–11762. [Google Scholar] [CrossRef]
- Yang, L.; Qian, D.; Xin, C.; Hu, Z.; Ji, S.; Wu, D.; Hu, Y.; Li, J.; Huang, W.; Chu, J. Two-photon polymerization of microstructures by a non-diffraction multifoci pattern generated from a superposed Bessel beam. Opt. Lett. 2017, 42, 743–746. [Google Scholar] [CrossRef]
- Ji, S.; Yang, L.; Hu, Y.; Ni, J.; Du, W.; Li, J.; Zhao, G.; Wu, D.; Chu, J. Dimension-Controllable Microtube Arrays by Dynamic Holographic Processing as 3D Yeast Culture Scaffolds for Asymmetrical Growth Regulation. Small 2017, 13, 1701190. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, Y.; Du, W.; Wu, P.; Rao, S.; Cai, Z.; Lao, Z.; Xu, B.; Ni, J.; Li, J. Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels. Sci. Rep. 2016, 6, 33281. [Google Scholar] [CrossRef]
- Yang, D.; Liu, L.; Gong, Q.; Li, Y. Rapid Two-Photon Polymerization of an Arbitrary 3D Microstructure with 3D Focal Field Engineering. Macromol. Rapid Commun. 2019, 40, 1900041. [Google Scholar] [CrossRef] [PubMed]
- Vizsnyiczai, G.; Kelemen, L.; Ormos, P. Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms. Opt. Express 2014, 22, 24217–24223. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, Y.; Ma, J.; Li, J.; Huang, W.; Chu, J. High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization. Appl. Phys. Lett. 2013, 103, 141112. [Google Scholar] [CrossRef]
- Dong, X.Z.; Zhao, Z.S.; Duan, X.M. Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing. Appl. Phys. Lett. 2007, 91, 124103. [Google Scholar] [CrossRef]
- Lasagni, A.; Yuan, D.; Shao, P.; Das, S. Fabrication of Periodic Microstructures in Pentaerythritol Triacrylate Through Femtosecond Laser Interference Two-Photon Polymerization. Adv. Eng. Mater. 2009, 11, 595–599. [Google Scholar] [CrossRef]
- Yuan, L.L.; Herman, P.R. Laser scanning holographic lithography for flexible 3D fabrication of multi-scale integrated nano-structures and optical biosensors. Sci. Rep. 2016, 6, 22294. [Google Scholar] [CrossRef]
- Yang, B.; Zhou, J. Fabrication of a high-fill-factor microlens array using different thermal reflow process. Int. Soc. Opt. Photonics 2019, 11052, 110521. [Google Scholar]
- Gailevičius, D.; Padolskytė, V.; Mikoliūnaitė, L. Additive-manufacturing of 3D glass-ceramics down to nanoscale resolution. Nanoscale Horiz. 2019, 4, 647–651. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, L.; Yang, D.; Gong, Q.; Li, Y. Rapid Fabrication of Continuous Surface Fresnel Microlens Array by Femtosecond Laser Focal Field Engineering. Micromachines 2020, 11, 112. https://doi.org/10.3390/mi11020112
Yan L, Yang D, Gong Q, Li Y. Rapid Fabrication of Continuous Surface Fresnel Microlens Array by Femtosecond Laser Focal Field Engineering. Micromachines. 2020; 11(2):112. https://doi.org/10.3390/mi11020112
Chicago/Turabian StyleYan, Linyu, Dong Yang, Qihuang Gong, and Yan Li. 2020. "Rapid Fabrication of Continuous Surface Fresnel Microlens Array by Femtosecond Laser Focal Field Engineering" Micromachines 11, no. 2: 112. https://doi.org/10.3390/mi11020112
APA StyleYan, L., Yang, D., Gong, Q., & Li, Y. (2020). Rapid Fabrication of Continuous Surface Fresnel Microlens Array by Femtosecond Laser Focal Field Engineering. Micromachines, 11(2), 112. https://doi.org/10.3390/mi11020112