Editorial for the Special Issue on Micro/Nanofabrication for Retinal Implants
Conflicts of Interest
References
- Humayun, M.S.; de Juan, E.; Dagnelie, G.; Greenberg, R.J.; Propst, R.H.; Phillips, D.H. Visual perception elicited by electrical stimulation of retina in blind humans. Arch. Ophthalmol. 1996, 114, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Weiland, J.D.; Cho, A.K.; Humayun, M.S. Retinal prostheses: Current clinical results and future needs. Ophthalmology 2011, 118, 2227–2237. [Google Scholar] [CrossRef] [PubMed]
- Zrenner, E.; Bartz-Schmidt, K.U.; Benav, H.; Besch, D.; Bruckmann, A.; Gabel, V.-P.; Gekeler, F.; Greppmaier, U.; Harscher, A.; Kibbel, S.; et al. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc. R. Soc. B 2011, 278, 1489–1497. [Google Scholar] [CrossRef] [PubMed]
- Stingl, K.; Bartz-Schmidt, K.U.; Besch, D.; Braun, A.; Bruckmann, A.; Gekeler, F.; Greppmaier, U.; Hipp, S.; Hörtdörfer, G.; Kernstock, C.; et al. Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc. R. Soc. B 2013, 280, 20130077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palanker, D.; Le Mer, Y.; Mohand-Said, S.; Muqit, M.; Sahel, J.A. Photovoltaic restoration of central vision in atrophic age-related macular degeneration. Ophthalmology 2020, 127, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Shim, S.; Eom, K.; Jeong, J.; Kim, S.J. Retinal prosthetic approaches to enhance visual perception for blind patients. Micromachines 2020, 11, 535. [Google Scholar] [CrossRef] [PubMed]
- Lo, P.-A.; Huang, K.; Zhou, Q.; Humayun, M.S.; Yue, L. Ultrasonic retinal neuromodulation and acoustic retinal prosthesis. Micromachines 2020, 11, 929. [Google Scholar] [CrossRef]
- Flores, T.; Lei, X.; Huang, T.; Lorach, H.; Dalal, R.; Galambos, L.; Kamins, T.; Mathieson, K.; Palanker, D. Optimization of pillar electrodes in subretinal prosthesis for enhanced proximity to target neurons. J. Neural Eng. 2018, 15, 036011. [Google Scholar] [CrossRef] [Green Version]
- Flores, T.; Huang, T.; Bhuckory, M.; Ho, E.; Chen, Z.; Dalal, R.; Galambos, L.; Kamins, T.; Mathieson, K.; Palanker, D. Honeycomb-shaped electro-neual interface enables cellular-scale pixels in subretinal prosthesis. Sci. Rep. 2019, 9, 10657. [Google Scholar] [CrossRef]
- Shire, D.B.; Gingerich, M.D.; Wong, P.I.; Skvarla, M.; Cogan, S.F.; Chen, J.; Wang, W.; Rizzo, J.F. Micro-fabrication of components for a high-density sub-retinal visual prosthesis. Micromachines 2020, 11, 944. [Google Scholar] [CrossRef]
- Seo, H.W.; Kim, N.; Kim, S. Fabrication of subretinal 3D microelectrodes with hexagonal arrangement. Micromachines 2020, 11, 467. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-I.; Im, M. Non-rectangular waveforms are more charge-efficient than rectangular one in eliciting network-mediated responses of ON type retinal ganglion cells. J. Neural Eng. 2018, 15, 055004. [Google Scholar] [CrossRef] [PubMed]
- Ha, Y.; Yoo, H.-J.; Shin, S.; Jun, S.B. Hemispherical microelectrode array for ex vivo retinal neural recording. Micromachines 2020, 11, 538. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Kang, D.H.; Kim, J.; Weiland, J.D. Shape morphable hydrogel/elastomer bilayer for implanted retinal electronics. Micromachines 2020, 11, 392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eleftheriou, C.G.; Zimmermann, J.B.; Kjeldsen, H.D.; David-Pur, M.; Hanein, Y.; Sernagor, E. Carbon nanotube electrodes for retina implants: A study of structural and functional integration over time. Biomaterials 2017, 112, 108–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watterson, W.J.; Moslehi, S.; Rowland, C.; Zappitelli, K.M.; Smith, J.H.; Miller, D.; Chouinard, J.E.; Golledge, S.L.; Taylor, R.P.; Perez, M.-T.; et al. The roles of an aluminum underlayer in the biocompatibility and mechanical integrity of vertically aligned carbon nanotubes for interfacing with retinal neurons. Micromachines 2020, 11, 546. [Google Scholar] [CrossRef]
- Im, M.; Kim, S.-W. Neurophysiological and medical considerations for better-performing microelectronic retinal prostheses. J. Neural Eng. 2020, 17, 033001. [Google Scholar] [CrossRef]
- Im, M.; Fried, S.I. Indirect activation elicits strong correlations between light and electrical responses in ON but not OFF retinal ganglion cells. J. Physiol. 2015, 593, 3577–3596. [Google Scholar] [CrossRef] [Green Version]
- Im, M.; Fried, S.I. Temporal properties of network-mediated responses to repetitive stimuli are dependent upon retinal ganglion cell type. J. Neural Eng. 2016, 13, 025002. [Google Scholar] [CrossRef] [Green Version]
- Im, M.; Werginz, P.; Fried, S.I. Electric stimulus duration alters network-mediated responses depending on retinal ganglion cell type. J. Neural Eng. 2018, 15, 036010. [Google Scholar] [CrossRef]
- Lee, J.-I.; Im, M. Optimal electric stimulus amplitude improves the selectivity between responses of ON versus OFF types of retinal ganglion cells. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 2015–2024. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.J.; Lee, J.-I.; Jang, Y.J.; An, S.; Kim, J.H.; Fried, S.I.; Im, M. Retinal degeneration reduces consistency of network-mediated responses arising in ganglion cells to electric stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1921–1930. [Google Scholar] [CrossRef] [PubMed]
- Im, M.; Fried, S.I. Directionally selective retinal ganglion cells suppress luminance responses during natural viewing. Sci. Rep. 2016, 6, 35708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Im, M. Editorial for the Special Issue on Micro/Nanofabrication for Retinal Implants. Micromachines 2020, 11, 1005. https://doi.org/10.3390/mi11111005
Im M. Editorial for the Special Issue on Micro/Nanofabrication for Retinal Implants. Micromachines. 2020; 11(11):1005. https://doi.org/10.3390/mi11111005
Chicago/Turabian StyleIm, Maesoon. 2020. "Editorial for the Special Issue on Micro/Nanofabrication for Retinal Implants" Micromachines 11, no. 11: 1005. https://doi.org/10.3390/mi11111005
APA StyleIm, M. (2020). Editorial for the Special Issue on Micro/Nanofabrication for Retinal Implants. Micromachines, 11(11), 1005. https://doi.org/10.3390/mi11111005