Botulinum Toxin for the Treatment of Neuropathic Pain
Abstract
:1. Introduction
2. Structure of Botulinum Toxin
3. Mechanism of Action of Botulinum Toxin for Neuropathic Pain (Experimental Study)
3.1. BoNT Inhibits the Release of Pain Mediators from the Peripheral Nerve Terminal, DRG, and Spinal Cord Neuron
3.2. BoNT Reduces Inflammation
3.3. BoNT Deactivates Sodium Channels
3.4. BoNT Exhibits Axonal Transport
4. Clinical Study of Botulinum Toxin for Neuropathic Pain
4.1. Trigeminal Neuralgia
4.2. Postherpetic Neuralgia
4.3. Post-Surgical Neuralgia
4.4. Diabetic Neuropathy
4.5. Occipital Neuralgia
4.6. Carpal Tunnel Syndrome
4.7. CRPS
4.8. Phantom Limb Pain
4.9. Spinal Cord Injury-Induced Neuropathic Pain
4.10. Central Poststroke Pain
5. Adverse Effects
6. Conclusions
Conflicts of Interest
References
- Thenganatt, M.A.; Fahn, S. Botulinum toxin for the treatment of movement disorders. Curr. Neurol. Neurosci. Rep. 2012, 12, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Pellizzari, R.; Rossetto, O.; Schiavo, G.; Montecucco, C. Tetanus and botulinum neurotoxins: Mechanism of action and therapeutic uses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1999, 354, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Porta, M. A comparative trial of botulinum toxin type A and methylprednisolone for the treatment of myofascial pain syndrome and pain from chronic muscle spasm. Pain 2000, 85, 101–105. [Google Scholar] [CrossRef]
- Foster, L.; Clapp, L.; Erickson, M.; Jabbari, B. Botulinum toxin A and chronic low back pain. A randomized, double-blind study. Neurology 2001, 56, 1290–1293. [Google Scholar] [CrossRef] [PubMed]
- Fishman, L.M.; Anderson, C.; Rosner, B. BOTOX and physical therapy in the treatment of piriformis syndrome. Am. J. Phys. Med. Rehabil. 2002, 81, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Lee, Y.; Lee, J.; Park, C.; Moon, D.E. The effects of botulinum toxin A on mechanical and cold allodynia in a rat model of neuropathic pain. Can. J. Anaesth. 2006, 53, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.A.; Montecucco, C. BOTULISM. In Handbook of Clinical Neurology; Andrew, G.E., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 333–368. [Google Scholar]
- Montecucco, C.; Schiavo, G. Mechanism of action of tetanus and botulinum neurotoxins. Mol. Microbiol. 1994, 13, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pantano, S.; Montecucco, C. The blockade of the neurotransmitter release apparatus by botulinum neurotoxins. Cell. Mol. Life Sci. 2014, 71, 793–811. [Google Scholar] [CrossRef] [PubMed]
- Whitemarsh, R.C.; Tepp, W.H.; Johnson, E.A.; Pellett, S. Persistence of botulinum neurotoxin a subtypes 1–5 in primary rat spinal cord cells. PLoS ONE 2014, 9, e90252. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Marino, M.J.; Rondon, E.S.; Xu, Q.; Yaksh, T.L. The effects of intraplantar and intrathecal botulinum toxin type B on tactile allodynia in mono and polyneuropathy in the mouse. Anesth. Analg. 2015, 121, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.; Cho, C.W.; Kim, H.Y.; Lee, P.B.; Nahm, F.S. Lumbar sympathetic block with botulinum toxin type B for complex regional pain syndrome: A case study. Pain Phys. 2015, 18, 911–916. [Google Scholar]
- Kharatmal, S.B.; Singh, J.N.; Sharma, S.S. Voltage-gated sodium channels as therapeutic targets for treatment of painful diabetic neuropathy. Mini Rev. Med. Chem. 2015, 15, 1134–1147. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Wang, J.; Lawrence, G.; Dolly, J.O. Synaptobrevin I mediates exocytosis of cgrp from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. J. Cell Sci. 2007, 120, 2864–2874. [Google Scholar] [CrossRef] [PubMed]
- Durham, P.L.; Cady, R. Insights into the mechanism of onabotulinumtoxinA in chronic migraine. Headache 2011, 51, 1573–1577. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Chu, X.; Wang, L.; Shi, H.; Li, T. Botulinum toxin type A reduces TRPV1 expression in the dorsal root ganglion in rats with adjuvant-arthritis pain. Toxicon 2017, 133, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Lucioni, A.; Bales, G.T.; Lotan, T.L.; McGehee, D.S.; Cook, S.P.; Rapp, D.E. Botulinum toxin type A inhibits sensory neuropeptide release in rat bladder models of acute injury and chronic inflammation. BJU Int. 2008, 101, 366–370. [Google Scholar] [CrossRef] [PubMed]
- Heikkila, H.M.; Hielm-Bjorkman, A.K.; Morelius, M.; Larsen, S.; Honkavaara, J.; Innes, J.F.; Laitinen-Vapaavuori, O.M. Intra-articular botulinum toxin A for the treatment of osteoarthritic joint pain in dogs: A randomized, double-blinded, placebo-controlled clinical trial. Vet. J. 2014, 200, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Hadley, H.S.; Wheeler, J.L.; Petersen, S.W. Effects of intra-articular botulinum toxin type A (Botox®) in dogs with chronic osteoarthritis. Vet. Comp. Orthop. Traumatol. 2010, 23, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Bach-Rojecky, L.; Dominis, M.; Lackovic, Z. Lack of anti-inflammatory effects of botulinum toxin A in experimental models of inflammation. Fundam. Clin. Pharmacol. 2008, 22, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Sycha, T.; Samal, D.; Chizh, B.; Lehr, S.; Gustorff, B.; Schnider, P.; Auff, E. A lack of antinociceptive or antiinflammatory effect of botulinum toxin A in an inflammatory human pain model. Anesth. Analg. 2006, 102, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.C.; Yoshimura, N.; Huang, C.C.; Wu, M.; Chiang, P.H.; Chancellor, M.B. Intraprostatic botulinum toxin A injection inhibits cyclooxygenase-2 expression and suppresses prostatic pain on capsaicin induced prostatitis model in rat. J. Urol. 2008, 180, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Khanijou, S.; Rubino, J.; Aoki, K.R. Subcutaneous administration of botulinum toxin A reduces formalin-induced pain. Pain 2004, 107, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.C.; Wakita, M.; Xie, D.J. Inhibition of membrane Na+ channels by A type botulinum toxin at femtomolar concentrations in central and peripheral neurons. J. Pharmacol. Sci. 2012, 118, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Matak, I.; Riederer, P.; Lacković, Z. Botulinum toxin’s axonal transport from periphery to the spinal cord. Neurochem. Int. 2012, 61, 236–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bach-Rojecky, L.; Lackovic, Z. Central origin of the antinociceptive action of botulinum toxin type A. Parmacol. Biochem. Behav. 2009, 94, 234–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bach-Rojecky, L.; Salkovic-Petrisic, M.; Lackovic, Z. Botulinum toxin type A reduces pain supersensitivity in experimental diabetic neuropathy: Bilateral effects after unilateral injection. Eur. J. Pharmacol. 2010, 633, 10–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Favre-Guilmard, C.; Auguet, M.; Chabrier, P.E. Different antinociceptive effects of botulinum toxin type A in inflammatory and peripheral polyneuropathic rat models. Eur. J. Pharmacol. 2009, 617, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Tang-Liu, D.D.; Aoki, K.R.; Dolly, J.O.; de Paiva, A.; Houchen, T.L.; Chasseaud, L.F.; Webber, C. Intramuscular injection of 125I-botulinum neurotoxin-complex versus 125I-botulinum-free neurotoxin: Time course of tissue distribution. Toxicon 2003, 42, 461–469. [Google Scholar] [CrossRef]
- Marinelli, S.; Vacca, V.; Ricordy, R.; Uggenti, C.; Tata, A.M.; Luvisetto, S.; Pavone, F. The analgesic effect on neuropathic pain of retrogradely transported botulinumneurotoxin A involves Schwann cells and astrocytes. PLoS ONE 2012, 7, e47977. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.J.; Lian, Y.J.; Zheng, Y.K.; Zhang, H.F.; Chen, Y.; Xie, N.C.; Wang, L.J. Botulinum toxin type A for the treatment of trigeminal neuralgias: Results from a randomized, double-blind, placebo-controlled trial. Cephalgia 2012, 32, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lian, Y.; Ma, Y.; Chen, Y.; He, C.; Xie, N.; Wu, C. Two doses of botulinum toxin type A for the treatment of trigeminal neuralgia: Observation of therapeutic effect from a randomized, double-blind, placebo-controlled trial. J. Headache Pain. 2014, 15, 65. [Google Scholar] [CrossRef] [PubMed]
- Zuniga, C.; Piedimonte, F.; Diaz, S.; Micheli, F. Acute treatment of trigeminal neuralgia with onabotulinum toxin A. Clin. Neuropharmacol. 2013, 36, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Bohluli, B.; Motamedi, M.H.; Bagheri, S.C.; Bayat, M.; Lassemi, E.; Navi, F.; Moharamnejad, N. Use of botulinum toxin A for drug-refractory trigeminal neuralgia: Preliminary report. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011, 111, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Zuniga, C.; Diaz, S.; Piedimonte, F.; Micheli, F. Beneficial effects of botulinum toxin type A in trigeminal neuralgia. Arq. Neuropsiquiatr. 2008, 66, 500–503. [Google Scholar] [CrossRef] [PubMed]
- Turk, U.; Ilhan, S.; Alp, R.; Sur, H. Botulinum toxin and intractable trigeminal neuralgia. Clin. Neuropharmacol. 2005, 28, 161–162. [Google Scholar] [PubMed]
- Xiao, L.; Mackey, S.; Hui, H.; Xong, D.; Zhang, Q.; Zhang, D. Subcutaneous injection of botulinum toxin A is beneficial in postherpetic neuralgia. Pain Med. 2010, 11, 1827–1833. [Google Scholar] [CrossRef] [PubMed]
- Apalla, Z.; Sotiriou, E.; Lallas, A.; Lazaridou, E.; Ioannides, D. Botulinum toxin A in postherpetic neuralgia: A parallel, randomized, double-blind, single-dose, placebo-controlled trial. Clin. J. Pain 2013, 29, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.T.; Tsai, S.K.; Kao, M.C.; Hu, J.S. Botulinum toxin A relieved neuropathic pain in a case of post-herpetic neuralgia. Pain Med. 2006, 7, 89–91. [Google Scholar] [CrossRef] [PubMed]
- Sotiriu, E.; Apalla, Z.; Panagiotidou, D.; Ioannidis, D. Severe post-herpetic neuralgia successfully treated with botulinum toxin A: Three case reports. Acta Derm.-Venereol. 2009, 89, 214–215. [Google Scholar]
- Ranoux, D.; Attal, N.; Morain, F.; Bouhassira, D. Botulinum toxin type A induces direct analgesic effects in chronic neuropathic pain. Ann. Neurol. 2008, 64, 274–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Layeeque, R.; Hochberg, J.; Siegel, E.; Kunkel, K.; Kepple, J.; Henry-Tillman, R.S.; Dunlap, M.; Seibert, J.; Klimberg, V.S. Botulinum toxin infiltration for pain control after mastectomy and expander reconstruction. Ann. Surg. 2004, 240, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Fabregat, G.; Asensio-Samper, J.M.; Palmisani, S.; Villanueva-Pérez, V.L.; De Andrés, J. Subcutaneous botulinum toxin for chronic post-thoracotomy pain. Pain Pract. 2013, 13, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Rostami, R.; Mittal, S.O.; Radmand, R.; Jabbari, B. Incobotulinum toxin-A improves post-surgical and post-radiation pain in cancer patients. Toxins 2016, 8, 22. [Google Scholar] [CrossRef] [PubMed]
- Yuan, R.Y.; Sheu, J.J.; Yu, J.M.; Chen, W.T.; Tseng, I.J.; Change, H.H.; Hu, C.J. Botulinum toxin for diabetic neuropathic pain: A randomized double-blind crossover trial. Neurology 2009, 72, 1473–1478. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, M.; Ansari, M.; Basiri, K.; Shaigannejad, V. The effects of intradermal botulinum toxin type A injections on pain symptoms of patients with diabetic neuropathy. J. Res. Med. Sci. 2014, 19, 106–111. [Google Scholar] [PubMed]
- Lakhan, S.E.; Velasco, D.N.; Tepper, D. Botulinum toxin-A for painful diabetic neuropathy: A meta-analysis. Pain Med. 2015, 16, 1773–1780. [Google Scholar] [CrossRef] [PubMed]
- Kapural, L.; Stillman, M.; Kapural, M.; Mclntyre, P.; Guirgius, M.; Mekhail, N. Botulinum toxin occipital nerve block for the treatment of severe occipital neuralgia: A case series. Pain Pract. 2007, 7, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.; Silva, S.; Cottrell, C. Botulinum toxin type A in the treatment of occipital neuralgia: A pilot study. Headache 2008, 48, 1476–1481. [Google Scholar] [CrossRef] [PubMed]
- Breuer, B.; Sperber, K.; Wallenstein, S.; Kiprovski, K.; Calapa, A.; Snow, B.; Pappagallo, M. Clinically significant placebo analgesic response in a pilot trial of botulinum B in patients with hand pain and carpel tunnel syndrome. Pain Med. 2006, 7, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.P.; Liu, C.Y.; Lin, K.P.; Wnag, K.C. Efficacy of botulinum toxin type A in the relief of carpal tunnel syndrome. Clin. Drug Investig. 2006, 26, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Safarpour, D.; Jabbari, B. Botulinum toxin a (Botox) for treatment of proximal myofascial pain in complex regional pain syndrome: Two cases. Pain Med. 2010, 11, 1415–1418. [Google Scholar] [CrossRef] [PubMed]
- Safarpour, D.; Salardini, A.; Richardson, D.; Jabbari, B. Botulinum toxin A for treatment of allodynia of complex regional pain syndrome: A pilot study. Pain Med. 2010, 11, 1411–1414. [Google Scholar] [CrossRef] [PubMed]
- Carroll, I.; Clark, J.D.; Mackey, S. Sympathetic block with botulinum toxin to treat complex regional pain syndrome. Ann. Neurol. 2009, 65, 348–351. [Google Scholar] [CrossRef] [PubMed]
- Argoff, C.E. Botulinum toxin type A treatment of myofascial pain in patients with CRPS Type 1 (reflex sympathetic dystrophy): A pilot study. In Proceedings of the World Pain Congress (IASP) Meeting, Vienna, Austria, 22–27 August 1999. [Google Scholar]
- Kharkar, S.; Ambady, P.; Venkatesh, Y.; Schwartzman, R.J. Intramuscular botulinum toxin in complex regional pain syndrome: Case series and literature review. Pain Phys. 2011, 14, 419–424. [Google Scholar]
- Wu, H.; Sultana, R.; Taylor, K.B.; Szabo, A. A prospective randomized double-blinded pilot study to examine the effect of botulinum toxin type A injection vs. Lidocaine/Depomedrol injection on residual and phantom limb pain. Clin. J. Pain 2012, 28, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Kern, U.; Martin, C.; Scheicher, S.; Muler, H. Long-term treatment of phantom and stump pain with Botulinum toxin type A over 12 months. A first clinical observation. Nervenarzt 2004, 75, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.A.; Song, D.H.; Oh, H.M.; Chung, M.E. Botulinum toxin type A for neuropathic pain in patients with spinal cord injury. Ann. Neurol. 2016, 79, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Lv, C.A.; Tian, L.; Jin, L.J.; Sun, P.; Zhao, W. A randomized controlled trial of botulinum toxin A for treating neuropathic pain in patients with spinal cord injury. Medicine 2017, 96, e6919. [Google Scholar] [CrossRef] [PubMed]
- Jabbari, B.; Maher, N.; Difazio, M.P. Botulinum toxin A improved burning pain and allodynia in two patients with spinal cord pathology. Pain Med. 2003, 4, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.A.; Song, D.H.; Chung, M.E. Effect of subcutaneous injection of botulinum toxin A on spinal cord injury-associated neuropathic pain. Spinal Cord 2014, 52, S5–S6. [Google Scholar] [CrossRef] [PubMed]
- Shippen, C.; Bavikatte, G.; Mackarel, D. The benefit of botulinum toxin A in the management of central post stroke pain: A case report. J. Neurol. Stroke 2017, 6, 00218. [Google Scholar] [CrossRef]
- Camoes-Barbosa, A.; Neves, A.F. The analgesic effect of abobotulinum and incobotulinum toxins type A in central poststroke pain: Two case reports. PM&R 2016, 8, 384–387. [Google Scholar]
- Wissel, J.; Ganapathy, V.; Ward, A.B.; Borg, J.; Ertzgaard, P.; Herrmann, C.; Haggstrom, A.; Sakel, M.; Ma, J.; Dimitrova, R.; et al. Onabotulinum toxin A improves pain in patients with post-stroke spasticity: Findings from a randomized, double-blind, placebo-controlled trial. J. Pain Symptom Manag. 2016, 52, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Sławek, J.; Madaliński, M.H.; Maciag-Tymecka, I.; Duzyński, W. Frequency of side effects after botulinum toxin A injections in neurology, rehabilitation and gastroenterology. Pol. Merkur. Lek. 2005, 18, 298–302. [Google Scholar]
- Kessler, K.R.; Skutta, M.; Benecke, R. Longterm treatment of cervical dystonia with botulinum toxin A: Efficacy, safety, and antibody frequency. German Dystonia Study Group. J. Neurol. 1999, 246, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Greene, P.; Fahn, S.; Diamond, B. Development of resistance to botulinum toxin type A in patients with torticollis. Mov. Disord. 1994, 9, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Moon, Y.E.; Choi, J.H.; Park, H.J.; Park, J.H.; Kim, J.H. Ultrasound-guided nerve block with botulinum toxin type A for intractable neuropathic pain. Toxins 2016, 8. [Google Scholar] [CrossRef] [PubMed]
Study Design | Number of Patients | Method of Injection (Total Volume) | Result | Reference |
---|---|---|---|---|
Randomized double-blind, placebo-controlled | 42 | Intradermal, submucosal (75 U/saline 1.5 mL) | 50% VAS reduction 68.8% (Botulinum toxin (BoNT) group) 15% (Control) | [31] |
Randomized, double-blind, placebo-controlled | 84 (27 BoNT 25 U, 29 BoNT 75 U, 28 control) | Intradermal, submucosal (25 U/75 U/saline 1 mL) | Visual analog scale (VAS) reduction 70.4% (25 U) vs. 86.2% (75 U) vs. 32.1% (Control) | [32] |
Randomized, double-blind, placebo-controlled | 36 (20 BoNT, 16 control) | Intramuscular (50 U/saline 1 mL) | VAS (BoNT vs. Control) 4.9 vs. 6.63 (2 months) 4.75 vs. 6.94 (3 months) | [33] |
Prospective, open, case series | 15 | Injected at the trigger zones (50–100 U) | All patients improved frequency and severity of pain attacks | [34] |
Prospective, open, case series | 12 | Subcutaneous (20–50 U) | VAS reduced lasting more than 2 months in 10 patients. | [35] |
Prospective, open, case series | 8 | Around zygomatic arch, 1.5–2 cm depth (50 U per point, total 100 U) | Incidence of pain and VAS were reduced in all patients. | [36] |
Study Design | Number of Patients | Method of Injection (Total Volume) | Result | Reference |
---|---|---|---|---|
Randomized, double-blind, placebo-controlled | 60 | Subcutaneous BoNT 5 U, 0.5% lidocaine, 0.9% saline per site | Significantly VAS pain score was decreased and sleep time improved | [37] |
Randomized, double-blind, placebo-controlled | 30 | Divided into chessboard 5 U per site | 50% VAS reduction of 13 patients | [38] |
Case report | 1 | Fan pattern injection 100 U | VAS decrease from 10 to 1 Lasted for 52 days | [39] |
Case series | 3 | Divided into chessboard 5 U per site (100 U) | VAS decrease and continued to 2 months | [40] |
Study Design | Number of Patients | Method of Injection (Total Volume) | Result | Reference |
---|---|---|---|---|
Randomized, double-blind, placebo-controlled | 29 (4 Postherpetic neuralgia, 25 Post-traumatic, post-surgical neuropathy) | Intradermal (20–190 U) | Decrease VAS, neuropathic nature pain and improve in quality of life | [41] |
Prospective, non-randomized, placebo-controlled | 48 (22 BoNT, 26 control) | Intramuscular (100 U) | Post-operative pain and analgesic use was reduced | [42] |
Case report | 1 | Subcutaneous Affected zone was drawn with divisions of approximately 1 cm2, 2.5 U per site (100 U) | Improvement in pain was about 50% as measured on the VAS and persisted at 12 weeks | [43] |
Pilot, prospective | 8 | Intramuscular, subcutaneous (100 U) | All patients had VAS improvement | [44] |
Study Design | No. of Patients | Method of Injection (Total Volume) | Result | Reference |
---|---|---|---|---|
Randomized, double-blind, placebo-controlled, cross-over trial | 20 | Intradermal 4 U per site at dorsum of foot (50 U per each foot) | 44.4% of the BoNT group experienced a reduction of VAS within 3 months. | [45] |
Randomized, double-blind, placebo-controlled | 40 | Intradermal, dorsum of the foot, in a grid distribution pattern, total 12 sites 8–10 U per site | Decrease in neuropathic pain score and Douleur Neuropathique 4 | [46] |
Study Design | No. of Patients | Method of Injection (Total Volume) | Result | Reference |
---|---|---|---|---|
Case series | 6 | Occipital nerve block 50 U for each block (100 U) | Significant VAS reduction and pain relief lasting >4 weeks | [48] |
Prospective, open, case series | 6 | Greater and lesser occipital nerve block (100 U) | Improvement in sharp/shooting pain, no definite improvement in dull/aching pain | [49] |
Study Design | No. of Patients | Method of Injection (Total Volume) | Result | Reference |
---|---|---|---|---|
Randomized, double-blind, placebo-controlled | 20 | Intramuscular, hypothena muscle, tentorium (2500 U) | No significant difference compared to the control group | [50] |
Prospective, open, pilot | 5 | Intracapal 30 U for each carpal tunnel (60 U) | Three patients insignificant reduced pain, none had electrophysiological change. | [51] |
Study Design | Number of Patients | Method of Injection (Total Volume) | Result | Reference |
---|---|---|---|---|
Case series | 2 | Intramuscular Trigger point 20 U per site | Reduction of CRPS pain and myofascial pain | [52] |
Randomized, prospective, double-blind, placebo-controlled, and open-label extension | 14 (8 BoNT group, 6 control group) | Intradermal, subcutaneous Allodynia area 5 U per site (40–200 U) | No difference between BoNT group and placebo group, terminated study early. | [53] |
Randomized, double-blind, placebo-controlled crossover | 9 (18 cases) | Lumbar sympathetic block 75 U BoNT + 0.5% bupivacaine/0.5% bupivacaine | Longer duration of pain reduction (BoNT vs. control/71 days vs. 10 days) | [54] |
Case series | 2 | Lumbar sympathetic block 5000 U BoNT-B + 0.25% levobupivacaine | VAS and CRPS symptoms were reduced. | [12] |
Prospective, open case series | 11 | Affected site, 25–50 U per site (300 U) | All patients had improved VAS, allodynia, hyperalgesia, and skin color after 6 to 12 weeks | [55] |
Retrospective, uncontrolled, unblended | 37 | Affected site, 10–20 U per site (100 U) | The 97% patients reduced pain. (average pain reduction of 43%) | [56] |
Study Design | No. of Patients | Method of Injection (Total Volume) | Result | Reference |
---|---|---|---|---|
Prospective, randomized, double-blind, pilot | 14 | Intramuscular/cutaneous/subcutaneous/neuroma (EMG guidance) 50 U per site (250–300 U) | Both groups improved pain and BoNT group had an advantage over pain control during 3–6 months but could not completely change phantom limb pain. | [57] |
Case series | 3 | EMG guidance into points with strong fasciculation (500 U) | Phantom pain, pain medication could be reduced, the gait became more stable and the artificial limb was better tolerated. | [58] |
Study Design | Number of Patients | Method of Injection (Total Volume) | Result | Reference |
---|---|---|---|---|
Randomized, double-blind, placebo-controlled | 40 | Subcutaneous (200 U) | Significantly VAS was decreased at 4 and 8 weeks. | [59] |
Randomized, double-blind, placebo-controlled | 44 | Subcutaneous (200 U) Once daily for 8 weeks | Significantly VAS was decreased at 4 and 8 weeks. | [60] |
Case | 2 | Subcutaneous 5 U of BoNT at 16–20 sites | Significant VAS reduction for more than 3 months | [61] |
Case | 1 | Subcutaneous 20 U of BoNT at 10 sites | VAS decreased from 96 to 23. | [62] |
Study Design | Number of Patients | Method of Injection (Total Volume) | Result | Reference |
---|---|---|---|---|
Case | 1 | Intramuscular Biceps Brachii 100 U, Brachialis 75 U and Brachioradialis 25 U | Pain was reduced after 2 days, spasticity was improved after 1 week. | [63] |
Case | 2 | Intramuscular Affected muscle (200 U) | NRS reduction for more than 3 months | [64] |
Randomized, double-blind, placebo-controlled | 273 (139 BoNT, 134 control) | Intramuscular Dosing was determined by investigator, second injection was performed with an open label and at least 12 weeks after the first injection | Significantly VAS was decreased at 12 weeks and reductions in pain were sustained through Week 52. | [65] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Park, H.J. Botulinum Toxin for the Treatment of Neuropathic Pain. Toxins 2017, 9, 260. https://doi.org/10.3390/toxins9090260
Park J, Park HJ. Botulinum Toxin for the Treatment of Neuropathic Pain. Toxins. 2017; 9(9):260. https://doi.org/10.3390/toxins9090260
Chicago/Turabian StylePark, JungHyun, and Hue Jung Park. 2017. "Botulinum Toxin for the Treatment of Neuropathic Pain" Toxins 9, no. 9: 260. https://doi.org/10.3390/toxins9090260
APA StylePark, J., & Park, H. J. (2017). Botulinum Toxin for the Treatment of Neuropathic Pain. Toxins, 9(9), 260. https://doi.org/10.3390/toxins9090260