Next Article in Journal
Alternagin-C (ALT-C), a Disintegrin-Like Cys-Rich Protein Isolated from the Venom of the Snake Rhinocerophis alternatus, Stimulates Angiogenesis and Antioxidant Defenses in the Liver of Freshwater Fish, Hoplias malabaricus
Next Article in Special Issue
Allelopathic and Bloom-Forming Picocyanobacteria in a Changing World
Previous Article in Journal
Determination of Ochratoxin A in Rye and Rye-Based Products by Fluorescence Polarization Immunoassay
Previous Article in Special Issue
Benthic Archives Reveal Recurrence and Dominance of Toxigenic Cyanobacteria in a Eutrophic Lake over the Last 220 Years
Article Menu
Issue 10 (October) cover image

Export Article

Open AccessArticle
Toxins 2017, 9(10), 306;

Responses of Microcystis Colonies of Different Sizes to Hydrogen Peroxide Stress

1,†,* , 1,3
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
These authors contributed equally to this work.
Author to whom correspondence should be addressed.
Academic Editor: Miquel Lürling
Received: 29 August 2017 / Revised: 18 September 2017 / Accepted: 23 September 2017 / Published: 27 September 2017
Full-Text   |   PDF [1361 KB, uploaded 29 September 2017]   |  


Microcystis blooms have become a ubiquitous phenomenon in freshwater ecosystems, and the size of Microcystis colonies varies widely throughout the year. In the present study, hydrogen peroxide (H2O2) was applied to test the effect of this algaecide on Microcystis colonies of different sizes and to evaluate the colonies' antioxidant strategy. The results showed that Microcystis populations collapsed under treatment with 5 mg/L H2O2 at colony sizes smaller than 25 μm. A dosage of 20 mg/L H2O2 was necessary to efficiently control Microcystis colonies larger than 25 μm. The enzymatic and non-enzymatic antioxidant systems of different colonies exhibited various strategies to mitigate oxidative stress. In small colonies, superoxide dismutase (SOD) activity was readily stimulated and operated with catalase (CAT) activity to eliminate reactive oxygen species (ROS). In colonies larger than 25 μm, the antioxidant enzyme CAT and antioxidant substance glutathione (GSH) played major roles in mitigating oxidative stress at H2O2 concentrations below 20 mg/L. In addition, application of the algaecide led to the release of intracellular-microcystins (MCs), and oxidatively-driven MCs reached high concentrations when colony size was larger than 100 μm. Algaecide control measures should be implemented before the formation of large colonies to limit the algaecide dosage and MC release. View Full-Text
Keywords: hydrogen peroxide; Microcystis; colony size; antioxidative response hydrogen peroxide; Microcystis; colony size; antioxidative response

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Liu, M.; Shi, X.; Chen, C.; Yu, L.; Sun, C. Responses of Microcystis Colonies of Different Sizes to Hydrogen Peroxide Stress. Toxins 2017, 9, 306.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Toxins EISSN 2072-6651 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top