Next Article in Journal
Comparison of Enzyme-Linked Immunosorbent Assay, Surface Plasmon Resonance and Biolayer Interferometry for Screening of Deoxynivalenol in Wheat and Wheat Dust
Next Article in Special Issue
Quantitative Proteomic Analysis of Venoms from Russian Vipers of Pelias Group: Phospholipases A2 are the Main Venom Components
Previous Article in Journal
Detection and Quantification of ADP-Ribosylated RhoA/B by Monoclonal Antibody
Previous Article in Special Issue
Characterization and Recombinant Expression of Terebrid Venom Peptide from Terebra guttata
Article Menu
Issue 4 (April) cover image

Export Article

Open AccessArticle
Toxins 2016, 8(4), 102;

Tentacle Transcriptome and Venom Proteome of the Pacific Sea Nettle, Chrysaora fuscescens (Cnidaria: Scyphozoa)

Australian Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria 3010, Australia
Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Infectious Diseases Program, Brisbane, Queensland 4006, Australia
School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
These authors contributed equally to this work.
Authors to whom correspondence should be addressed.
Academic Editor: Ronald A. Jenner
Received: 13 January 2016 / Revised: 7 March 2016 / Accepted: 22 March 2016 / Published: 5 April 2016
(This article belongs to the Special Issue Venomics, Venom Proteomics and Venom Transcriptomics)
Full-Text   |   PDF [3193 KB, uploaded 11 April 2016]   |  


Jellyfish venoms are rich sources of toxins designed to capture prey or deter predators, but they can also elicit harmful effects in humans. In this study, an integrated transcriptomic and proteomic approach was used to identify putative toxins and their potential role in the venom of the scyphozoan jellyfish Chrysaora fuscescens. A de novo tentacle transcriptome, containing more than 23,000 contigs, was constructed and used in proteomic analysis of C. fuscescens venom to identify potential toxins. From a total of 163 proteins identified in the venom proteome, 27 were classified as putative toxins and grouped into six protein families: proteinases, venom allergens, C-type lectins, pore-forming toxins, glycoside hydrolases and enzyme inhibitors. Other putative toxins identified in the transcriptome, but not the proteome, included additional proteinases as well as lipases and deoxyribonucleases. Sequence analysis also revealed the presence of ShKT domains in two putative venom proteins from the proteome and an additional 15 from the transcriptome, suggesting potential ion channel blockade or modulatory activities. Comparison of these potential toxins to those from other cnidarians provided insight into their possible roles in C. fuscescens venom and an overview of the diversity of potential toxin families in cnidarian venoms. View Full-Text
Keywords: Jellyfish; Chrysaora; venom; transcriptome; proteome; toxin; nematocyst Jellyfish; Chrysaora; venom; transcriptome; proteome; toxin; nematocyst

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material


Share & Cite This Article

MDPI and ACS Style

Ponce, D.; Brinkman, D.L.; Potriquet, J.; Mulvenna, J. Tentacle Transcriptome and Venom Proteome of the Pacific Sea Nettle, Chrysaora fuscescens (Cnidaria: Scyphozoa). Toxins 2016, 8, 102.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Toxins EISSN 2072-6651 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top