Conversion Ratio between Botox®, Dysport®, and Xeomin® in Clinical Practice
Abstract
:1. Introduction
2. Potency
3. Dose Equivalence
4. Toxin Spread
5. Immunogenicity
6. Pharmacoeconomic Considerations
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- Aoki, K.R.; Guyer, B. Botulinum toxin type A and other botulinum toxin serotypes: A comparative review of biochemical and pharmacological actions. Eur. J. Neurol. 2001, 8 (Suppl. 5), 21–29. [Google Scholar] [CrossRef] [PubMed]
- Dressler, D.; Benecke, R. Pharmacology of therapeutic botulinum toxin preparations. Disabil. Rehabil. 2007, 29, 1761–1768. [Google Scholar] [CrossRef] [PubMed]
- Sesardic, D.; Leung, T.; Gaines-Das, R. Role for standards in assays of botulinum toxins: International collaborative study of three preparations of botulinum type A toxin. Biologicals 2003, 31, 265–276. [Google Scholar] [CrossRef] [PubMed]
- McLellan, K.; Das, R.E.; Ekong, T.A.; Sesardic, D. Therapeutic botulinum type A toxin: Factors affecting potency. Toxicon 1996, 34, 975–985. [Google Scholar] [CrossRef]
- Chen, J.J.; Dashtipour, K. Abo-, Inco-, Ona-, and Rima-Botulinum toxins in clinical therapy: A primer. Pharmacotherapy 2013, 33, 304–318. [Google Scholar] [CrossRef] [PubMed]
- Frevert, J. Pharmaceutical, biological, and clinical properties of botulinum neurotoxin type A products. Drugs R & D 2015, 15, 1–9. [Google Scholar]
- Benecke, R.; Jost, W.H.; Kanovsky, P.; Ruzicka, E.; Comes, G.; Grafe, S. A new botulinum toxin type A free of complexing proteins for treatment of cervical dystonia. Neurology 2005, 64, 1949–1951. [Google Scholar] [CrossRef] [PubMed]
- Roggenkamper, P.; Jost, W.H.; Bihari, K.; Comes, G.; Grafe, S.; NT 201 blepharospasm study team. Efficacy and safety of a new botulinum toxin type A free of complexing proteins in the treatment of blepharospasm. J. Neural Transm. 2006, 113, 303–312. [Google Scholar] [PubMed]
- Jost, W.H.; Kohl, A.; Brinkmann, S.; Comes, G. Efficacy and tolerability of a botulinum toxin type A free of complexing proteins (NT 201) compared with commercially available botulinum toxin type A (BOTOX) in healthy volunteers. J. Neural Transm. 2005, 112, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Lee, M.S.; Harrison, A.R. Profile of Xeomin® (incobotulinumtoxinA) for the treatment of blepharospasm. Clin. Ophtalmol. 2011, 5, 725–732. [Google Scholar]
- Zoons, E.; Dijkgraaf, M.G.W.; Dijk, J.M.; van Schaik, I.N.; Tijssen, M.A. Botulinum toxin as treatment for focal dystonia: A systematic review of the pharmaco-therapeutic and pharmaco-economic value. J. Neurol. 2012, 259, 2519–2526. [Google Scholar] [CrossRef] [PubMed]
- Dressler, D.; Mander, G.; Fink, K. Measuring the potency labelling of onabotulinumtoxinA (Botox®) and incobotulinumtoxinA (Xeomin®) in an LD50 assay. J. Neural Transm. 2012, 119, 13–15. [Google Scholar] [CrossRef] [PubMed]
- Aoki, K.R.; Ranoux, D.; Wissel, J. Using translational medicine to understand clinical differences between botulinum toxin formulations. Eur. J. Neurol. 2006, 13 (Suppl. 4), 10–19. [Google Scholar] [CrossRef] [PubMed]
- Wohlfarth, K.; Goschel, H.; Frevert, J.; Dengler, R.; Bigalke, H. Botulinum A toxins: Units versus units. Arch. Pharmacol. 1997, 355, 335–340. [Google Scholar] [CrossRef]
- Marchetti, A.; Magar, R.; Findley, L.; Larsen, J.P.; Pirtosek, Z.; Ruzicka, E.; Jech, R.; Sławek, J.; Ahmed, F. Retrospective evaluation of the dose of Dysport and BOTOX in the management of cervical dystonia and blepharospasm: The REAL DOSE study. Mov. Disord. 2005, 20, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Marion, M.H.; Sheehy, M.; Sangla, S.; Soulayrol, S. Dose standardisation of botulinum toxin. J. Neurol. Neurosurgery Psychiatry 1995, 59, 102–103. [Google Scholar] [CrossRef]
- Whurr, R.; Brookes, G.; Barnes, C. Comparison of dosage effects between the American and British botulinum toxin A product in the treatment of spasmodic dysphonia. Mov. Disord. 1995, 10. [Google Scholar] [CrossRef]
- Kollewe, K.; Mohammadi, B.; Dengler, R.; Dressler, D. Hemifacial spasm and reinnervation synkinesias: Long-term treatment with either Botox or Dysport. J. Neural Transm. 2010, 177, 759–763. [Google Scholar] [CrossRef] [PubMed]
- Odergren, T.; Hjaltason, H.; Kaakkola, S.; Solders, G.; Hanko, J.; Fehling, C.; Marttila, R.J.; Lundh, H.; Gedin, S.; Westergren, I.; et al. A double-blind, randomised, parallel group study to investigate the dose equivalence of Dysport and Botox in the treatment of cervical dystonia. J. Neurol. Neurosurgery Psychiatry 1998, 64, 6–12. [Google Scholar] [CrossRef]
- Shin, J.H.; Jeon, C.; Woo, K.I.; Kim, Y.D. Clinical comparability of Dysport and Botox in essential blepharospasm. J. Korean Ophthalmol. Soc. 2009, 50, 331–335. [Google Scholar] [CrossRef]
- Wohlfarth, K.; Schwandt, I.; Wegner, F.; Jürgens, T.; Gelbrich, G.; Wagner, A.; Bogdahn, U.; Schulte-Mattler, W. Biological activity of two botulinum toxin type A complexes (Dysport® and Botox®) in volunteers: A double-blind, randomized, dose-ranging study. J. Neurol. 2008, 255, 1932–1939, Erratum in J. Neurol. 2009, 256, 1201. [Google Scholar] [CrossRef]
- Mohammadi, B.; Buhr, N.; Bigalke, H.; Krampfl, K.; Dengler, R.; Kollewe, K. A long-term follow up of botulinum toxin A in cervical dystonia. Neurol. Res. 2009, 31, 463–466. [Google Scholar] [CrossRef] [PubMed]
- Rystedt, A.; Nyholom, D.; Naver, H. Clinical experience of dose conversion ratios between toxin products in the treatment of cervical dystonia. Clin. Neuropharmacol. 2012, 35, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, C.; Ferreira, J.J.; Simões, F.; Rosas, M.J.; Magalhães, M.; Correia, A.P.; Bastos-Lima, A.; Martins, R.; Castro-Caldas, A. Dysport: A single-blind, randomized parallel study to determine whether any differences can be detected in the efficacy and tolerability of two formulations of botulinum toxin type A—Dysport and Botox, assuming a ratio of 4:1. Mov. Disord. 1997, 12, 1013–1018. [Google Scholar] [CrossRef] [PubMed]
- Nussgens, Z. Comparison of two botulinum toxin preparations in the treatment of essential blepharospasm. Graefe′s Arch. Clin. Exp. Ophthalmol. 1997, 235, 197–199. [Google Scholar]
- Tidswell, P.; King, M. Comparison of Two Botulinum Toxin Type-A Preparations in the Treatment of Dystonias; World Congress of Neurology: London, UK, 2001. [Google Scholar]
- Ranoux, D.; Gury, C.; Fondarai, J.; Mas, J.L.; Zuber, M. Respective potencies of Botox and Dysport: A double-blind, randomised, crossover study in cervical dystonia. J. Neurol. Neurosurgery Psychiatry 2002, 72, 459–462. [Google Scholar]
- Bentivoglio, A.R.; Ialongo, T.; Bove, F.; de Nigris, F.; Fasano, A. Retrospective evaluation of the dose equivalence of Botox and Dysport in the management of blepharospasm and hemifacial spasm: A novel paradigm for a never ending story. Neurol. Sci. 2012, 33, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Poewe, W. Respective potencies of Botox and Dysport: A double blind, randomised, crossover study incervical dystonia. J. Neurol. Neurosurgery Psychiatry 2002, 72. [Google Scholar] [CrossRef]
- Sampaio, C.; Costa, J.; Ferreira, J.J. Clinical comparability of marketed formulations of botulinum toxin. Mov. Disord. 2004, 19 (Suppl. 19), S129–S136. [Google Scholar] [CrossRef] [PubMed]
- Van den Bergh, P.Y.K.; Lison, D.F. Dose standardization of botulinum toxin. Adv. Neurol. 1998, 78, 231–235. [Google Scholar] [PubMed]
- Rosales, R.L.; Bigalke, H.; Dressler, D. Pharmacology of botulinum toxin: Differences between type A preparations. Eur. J. Neurol. 2006, 13 (Suppl. 1), 2–10. [Google Scholar] [CrossRef] [PubMed]
- Wohlfarth, K.; Sycha, T.; Ranoux, D.; Naver, H.; Caird, D. Dose equivalence of two commercial preparations of botulinum neurotoxin type A: Time for a reassessment? Curr. Med. Res. Opin. 2009, 25, 1573–1584. [Google Scholar] [CrossRef] [PubMed]
- Keren-Capelovitch, T.; Jarus, T.; Fattal-Valevski, A. Upper extremity function and occupational performance in children with spastic cerebral palsy following lower extremity botulinum toxin injections. J. Child Neurol. 2010, 25, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Brockmann, K.; Schweitzer, K.; Beck, G.; Wächter, T. Comparison of different preparations of botulinumtoxinA in the treatment of cervical dystonia. Neurol. Asia 2012, 17, 115–119. [Google Scholar]
- Kollewe, K.; Mohammadi, B.; Köhler, S.; Pickenbrock, H.; Dengler, R.; Dressler, D. Blepharospasm: Long-term treatment with either Botox®, Xeomin® or Dysport®. J. Neural Transm. 2015, 122, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Rystedt, A.; Zetterberg, L.; Burman, J.; Nyholm, D.; Johansson, A. A comparison of Botox 100 U/mL and Dysport 100 U/mL using dose conversion ratio 1:3 and 1:1.7 in the treatment of cervical dystonia: A double-Blind, randomized, crossover trial. Clin. Neuropharmacol. 2015, 38, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.Y.; Kim, J.W.; Kim, H.T.; Chung, S.J.; Kim, J.M.; Cho, J.W.; Lee, J.Y.; Lee, H.N.; You, S.; Oh, E.; et al. Dysport and Botox at a ratio of 2.5:1 units in cervical dystonia: A double-blind, randomized study. Mov. Disord. 2015, 30, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Hambleton, P.; Pickett, A.M. Potency equivalence of botulinum toxin preparations. J. R. Soc. Med. 1994, 87, 719. [Google Scholar] [PubMed]
- Highlights of prescribing information. Available online: http://www.allergan.com/assets/pdf/botox_pi.pdf (accessed on 10 January 2016).
- Dysport 300 units, Dysport 500 units—Summary of Product. Available online: https://www.medicines.org.uk/emc/medicine/870/SPC/Dysport+300+units,+Dysport+500+units/ (accessed on 16 February 2016).
- Full prescribing information—Xeomin. Available online: http://www.xeomin.com/consumers/pdf/xeomin-full-prescribing-information.pdf (accessed on 16 February 2016).
- Wagman, J.; Bateman, J.B. Botulinum type A toxin: Properties of toxic dissociation product. Arch. Biochem. Biophys. 1953, 46, 375–383. [Google Scholar] [CrossRef]
- Eisele, K.H.; Fink, K.; Vey, M.; Taylor, H.V. Studies on the dissociation of botulinum neurotoxin type A complexes. Toxicon 2011, 57, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Carli, L.; Montecucco, C.; Rossetto, O. Assay of diffusion of different botulinum neurotoxin type A formulations injected in the mouse leg. Muscle Nerve 2009, 40, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Brodsky, M.A.; Swope, D.M.; Grimes, D. Diffusion of botulinum toxins. Tremor Other Hyperkinet. Mov. 2012, 2, 1346. Available online: http://tremorjournal.org/article/view/85 (accessed on 16 February 2016). [Google Scholar]
- Roche, N.; Schnitzler, A.; Genet, F.F.; Durand, M.C.; Bensmail, D. Undesirable distant effects following botulinum toxin type A injection. Clin. Neuropharmacol. 2008, 31, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Pickett, A. Dysport: Pharmacological properties and factors that influence toxin action. Toxicon 2009, 54, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Kromminga, A.; Schellekens, H. Antibodies against erythropoietin and other protein based therapeutics: An overview. Ann. N.Y. Acad. Sci. USA 2005, 1050, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Dressler, D. Clinical features of antibody-induced complete secondary failure of botulinum toxin therapy. Eur. Neurol. 2002, 48, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Bakheit, A.M.; Liptrot, A.; Newton, R.; Pickett, A.M. The effect of total cumulative dose, number of treatment cycles, interval between injections, and length of treatment on the frequency of occurrence of antibodies to botulinum toxin type A in the treatment of muscle spasticity. Int. J. Rehabil. Res. 2012, 35, 36–39. [Google Scholar] [CrossRef] [PubMed]
- Benecke, R. Clinical relevance of botulinum toxin immunogenicity. Biodrugs 2012, 26, e1–e9. [Google Scholar] [CrossRef] [PubMed]
- Kukreja, R.; Chang, T.-W.; Cai, S.; Lindo, P.; Riding, S.; Zhou, Y.; Ravichandran, E.; Singh, B.R. Immunological characterization of the subunits of type A botulinum neurotoxin and different components of its associated proteins. Toxicon 2009, 53, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Atassi, M.Z. On the enhancement of anti-neurotoxin antibody production by subcomponents HA1 and HA3b of Clostridium botulinum type B 16S toxin haemagglutinin. Microbiology 2006, 152, 1891–1895. [Google Scholar] [CrossRef] [PubMed]
- Atassi, M.Z. Basic immunological aspects of botulinum toxin therapy. Mov. Disord. 2004, 19 (Suppl. 8), S68–S84. [Google Scholar] [CrossRef] [PubMed]
- Bigalke, H. Properties of pharmaceutical products of botulinum neurotoxins. In Botulinum Toxin: Therapeutic Clinical Practice and Science; Jankovic, J., Albanese, A., Atassi, M.Z., Dolly, J.O., Hallett, M., Mayer, N.H., Eds.; Saunders Elsevier: Philadelphia, PA, USA, 2009; pp. 389–397. [Google Scholar]
- Frevert, J. Content of botulinum neurotoxin in Botox/Vistabel, Dysport/Azzalure, and Xeomin/Bocouture. Drugs R & D 2010, 10, 67–73. [Google Scholar]
- Jankovic, J.; Esquenazi, A.; Fehlings, D.; Freitag, F.; Lang, A.; Naumann, M. Evidence-based review of patient-reported outcomes with botulinum toxin type A. Clin. Neuropharmacol. 2004, 27, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Lundström, E.; Smits, A.; Borg, J.; Terént, A. Four-fold increase in direct costs of stroke survivors with spasticity compared with stroke survivors without spasticity: The first year after the event. Stroke 2010, 41, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Francis, H.P.; Wade, D.T.; Turner-Stokes, L.; Kingswell, R.S.; Dott, C.S.; Coxon, E.A. Does reducing spasticity translate into functional benefit? An exploratory meta-analysis. J. Neurol. Neurosurgery Psychiatry 2004, 75, 1547–1551. [Google Scholar] [CrossRef] [PubMed]
- Lukban, M.B.; Rosales, R.L.; Dressler, D. Effectiveness of botulinum toxin A for upper and lower limb spasticity in children with cerebral palsy: A summary of evidence. J. Neural Transm. 2009, 116, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Ward, A.; Roberts, G.; Warner, J.; Gillard, S. Cost-effectiveness of botulinum toxin type A in the treatment of post-stroke spasticity. J. Rehabil. Med. 2005, 37, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Shaw, L.; Rodgers, H.; Price, C.; van Wijck, F.; Shackley, P.; Steen, N.; Barnes, M.; Ford, G.; Graham, L.; BoTULS Investigators. BoTULS: A multicentre randomised controlled trial to evaluate the clinical effectiveness and cost-effectiveness of treating upper limb spasticity due to stroke with botulinum toxin type A. Health Technol. Assess. 2010, 14, 1–113. [Google Scholar] [CrossRef] [PubMed]
- Doan, Q.V.; Gillard, P.; Brashear, A.; Halperin, M.; Hayward, E.; Varon, S.; Lu, Z.J. Cost-effectiveness of onabotulinumtoxin A for the treatment of wrist and hand disability due to upper-limb post-stroke spasticity in Scotland. Eur. J. Neurol. 2013, 20, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Roze, S.; Kurth, H.; Hunt, B.; Valentine, W.; Marty, R. Evaluation of the cost per patient per injection of botulinum toxin A in upper limb spasticity: Comparison of two preparations in 19 countries. Med. Devices 2012, 5, 97–101. [Google Scholar]
- Abogunrin, S.; Brand, S.; Desai, K.; Dinet, J.; Gabriel, S.; Harrower, T. Abobotulinumtoxin A in the management of cervical dystonia in the United Kingdom: A budget impact analysis. Clin. Econ. Outcomes Res. 2015, 7, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Kazerooni, R.; Broadhead, C. Cost-utility analysis of botulinum toxin type A products for the treatment of cervical dystonia. Am. J. Health Syst. Pharm. 2015, 72, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Grosset, D.G.; Tyrrell, E.G.; Grosset, K.A. Switch from abobotulinumtoxinA (Dysport®) to incobotulinumtoxinA (Xeomin®) botulinum toxin formulation: A review of 257 cases. J. Rehabil. Med. 2015, 47, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Tilden, D.; Guarnieri, C.; Jackson, D. Cost-effectiveness of incobotulinumtoxin-A with flexible treatment intervals compared to onabotulinumtoxin-A in the management of blepharospasm and cervical dystonia. Value Health 2015, 18, A759. [Google Scholar] [CrossRef] [PubMed]
Nonproprietary Name | 150-kD Protein Content (ng) | Total Protein (150 kD and NAP) Content (ng) | Dose Equivalent Units |
---|---|---|---|
Onabotulinumtoxin A | 0.73 | 5.00 | 1 |
Incobotulinumtoxin A | 0.44 | 0.44 | 1 |
Abobotulinumtoxin A | 0.65 | 0.87 | 2–3 |
Authors | Study | Authors‘ Conclusions |
---|---|---|
Marion et al., 1995 [16] | Open study of 74 pts, 37 with idiopathic blepharospasm and 37 with hemifacial spasm switched from ONA to ABO 1:3 ratio | Correct ONA:ABO conversion ratio is 1:3 |
Whurr et al., 1995 [17] | Open study 16 pts with spasmodic dysphonia | Correct conversion ratio ONA:ABO is 1:3 |
Sampaio et al., 1997 [24] | RCT 91 pts with blepharospasm and hemifacial conversion ratio ONA:ABO 1:4 | ABO groups, in the conditions applied in the included trials, tend to have a higher efficacy, longer duration of action, and higher frequency of adverse reactions; A 1:4 ONA:ABO ratio is too high |
Odergren et al., 1998 [19] | RCT of 73 patients with CD ABO (n = 38) vs. ONA (n = 35) Conversion ratio 3:1 | Efficacy and tolerability equivalent with an ABO:ONA ratio of 3:1 |
Tidswell and King, 2001 [26] | Open study 35 pts with CD switched from ONA to ABO conversion ratio 1:5 | 1:5 is too high; proposed 1:3. The authors report with insufficient efficacy and duration of action with ONA, suggesting that an ONA:ABO conversion ratio of 1:3 is more appropriate |
Ranoux et al., 2002 [27] | RCT, cross-over 54 pts with CD Conversion ratio ABO:ONA 3:1 or 4:1 | Both with a ratio 3:1 and 4:1, they observed a higher and longer clinical efficacy of ABO vs. ONA with a higher risk of side effects; This suggests that the 3:1 conversion ratio is more appropriate |
Poewe, 2002 [29] | RCT 54 pts with CD Conversion ratio ABO:ONA 3:1 or 4:1 | The author comment on Ranoux′s paper confirming its conclusions: the ABO:ONA conversion ratio should not be >3:1 |
Sampaio et al., 2004 [30] | Systematic review Blepharospasm CD/hemifacial spasm | The ABO:ONA 4:1 ratio is clearly too high, and even with a ratio of 3:1, ABO continues to have a longer duration of action |
Wohlfarth et al., 2008 [21] | 79 healthy volunteers | ABO:ONA ratio 3:1 too high Equivalence ratio of 1.57:1 (95% CI: 0.77–3.2) To investigate the 2:1 ratio |
Van den Berg et al., 1998 [31] | Open study 10 pts with DC 10 pts with blepharospasm switched to ABO from ONA Conversion ratio 2.36:1 | Dose equivalence ABO:ONA = 2.36:1 |
Rosales et al., 2006 [32] | Review of preclinical and clinical studies | Appropriate conversion ratio ABO:ONA equal to 2.5–3:1 or lower |
Wohlfarth et al., 2009 [33] | Review of clinical studies | Dose equivalence ABO:ONA 2–2.5:1. Conversion ratios ≥4:1 should be considered overdosed for ABO |
Shin et al., 2009 [20] | Open study of 48 pts with blepharospasm switched to ABO from ONA; conversion ratio 2.5:1 | Clinical and safety equivalence |
Mohammadi et al., (2009) [22] | Retrospective study 137 patients with spasticity, conversion ratio ABO:ONA 2 to 3:1 | Clinical and safety equivalence |
Kollewe et al., 2010 [18] | 97 pts with hemifacial spasm treated with ABO or ONA | Clinical and safety equivalence at conversion ratio of 2.56:1 |
Karen-Capelovitch et al., 2010 [34] | 16 pts with cerebral spastic palsy treated with ONA 12 U/kg or ABO 30 U/kg (ratio 1:2.5) | Clinical equivalence |
Rystedt et al., 2012 [23] | Retrospective study of 75 pts with CD | 1.7:1 is the more appropriate ABO:ONA conversion ratio |
Brockmann et al., 2012 [35] | Retrospective study of 51 pts with Cervical CD | Dose equivalence ABO:ONA 3:1; Conversion ratios ≥ of 4:1 or superior should be considered overdosed for ABO |
Kollewe et al., 2014 [36] | Retrospective study of 288 patients with blepharospasm Conversion ratio ONA:ABO 1:2.3 | No significant differences with regard to safety or efficacy |
Rystedt et al., 2015 [37] | RCT compares ONA and ABO in two different dose conversion ratios (1:3 and 1:1.7) when diluted to the same concentration (100 U/mL) for 46 patients with CD | No significant differences were seen between ONA and ABO (1:1.7); At week 12, a statistically significant difference in efficacy between ONA and ABO (1:3) was observed, suggesting a shorter duration of effect for ONA when this ratio (low dose) was used |
Yun, 2015 [38] | 103 patients with CD in a two-period crossover RCT | With regard to safety and efficacy, ABO was not inferior to ONA in patients with CD at a conversion factor of 2.5:1 |
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scaglione, F. Conversion Ratio between Botox®, Dysport®, and Xeomin® in Clinical Practice. Toxins 2016, 8, 65. https://doi.org/10.3390/toxins8030065
Scaglione F. Conversion Ratio between Botox®, Dysport®, and Xeomin® in Clinical Practice. Toxins. 2016; 8(3):65. https://doi.org/10.3390/toxins8030065
Chicago/Turabian StyleScaglione, Francesco. 2016. "Conversion Ratio between Botox®, Dysport®, and Xeomin® in Clinical Practice" Toxins 8, no. 3: 65. https://doi.org/10.3390/toxins8030065
APA StyleScaglione, F. (2016). Conversion Ratio between Botox®, Dysport®, and Xeomin® in Clinical Practice. Toxins, 8(3), 65. https://doi.org/10.3390/toxins8030065