Venom Proteins from Parasitoid Wasps and Their Biological Functions
Abstract
:1. Biological Functions of Parasitoid Wasp Venoms
1.1. Ectoparasitoids
Biological Functions | Wasp | Parasitism | Host | Reference |
---|---|---|---|---|
Paralysis | ||||
pimplin | Pimpla hypochondriaca | Endo | Lacanobia oleracea | [19] |
philanthotoxins | Philanthus triangulum | Ecto | Schistocerca gregaria | [12] |
Brh-I & -II | Bracon hebetor | Ecto | Diaprepes abbreviatus | [20] |
GABA, β-alanine, taurine | Ampulex compressa | Ecto | Periplaneta americana | [11] |
Hemocyte inactivation | ||||
VPr1 | Pimpla hypochondriaca | Endo | L. oleracea | [21] |
VPr3 | Pimpla hypochondriaca | Endo | L. oleracea | [22] |
Vn.11 | Pteromalus puparum | Endo | Pieris rapae | [23] |
VP P4, RhoGAP | Leptopilina boulardi | Endo | Drosophila melanogaster | [24] |
calreticulin | Cotesia rubecula | Endo | P. rapae | [25] |
Pteromalus puparum | Endo | P. rapae | [26] | |
SERCA * | Ganaspis sp.1 | Endo | D. melanogaster | [27] |
Inhibition of melanization | ||||
LbSPNy | Leptopilina boulardi | Endo | D. melanogaster | [28] |
Vn50 | Cotesia rubecula | Endo | P. rapae | [29] |
Interrupting development | ||||
Reprolysin | Eulophus pennicornis | Ecto | L. oleracea | [6] |
Enhancing PDVs | ||||
Vn1.5 | Cotesia rubecula | Endo | P. rapae | [30] |
Castration | ||||
γ-glutamyl transpeptidase | Aphidius ervi | Endo | Acyrthosiphon pisum | [31] |
Anti-microbial | ||||
PP13, PP102, PP113 | Pteromalus puparum | Endo | P. rapae | [32] |
1.2. Endoparasitoids
2. New Approaches in Venom Studies
2.1. RNAi
2.2. High Throughput Methods: Transcriptomic, Proteomics, Peptidomics
3. Venom Protein Evolution and Diversity
3.1. Venom Diversity within the Hymenoptera: Who Are the Outliers?
3.2. Factors Shaping Venom Complexity in Parasitoid Species
3.2.1. Individual Factors
3.2.2. Populational and Ecological Factors
4. Pharmaceutical and Biological Potential of Parasitoid Wasp Venoms
4.1. Pharmaceutical Perspectives
4.2. Biological Control: Development, Reproduction and Immune Modulators
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Dheilly, N.; Maure, F.; Ravallec, M.; Galinier, R.; Doyon, J.; Duval, D.; Leger, L.; Volkoff, A.; Missé, D.; Nidelet, S.; et al. Who is the puppet master? Replication of a parasitic wasp-associated virus correlates with host behaviour manipulation. Proc. Biol. Sci. 2015, 282. [Google Scholar] [CrossRef] [PubMed]
- Pennacchio, F.; Strand, M.R. Evolution of developmental strategies in parasitic Hymenoptera. Annu. Rev. Entomol. 2006, 51, 233–258. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Wang, L.; Ye, G.; Zhu, S. Inhibition of melanization by a Nasonia defensin-like peptide: Implications for host immune suppression. J. Insect Physiol. 2010, 56, 1857–1862. [Google Scholar] [CrossRef] [PubMed]
- Kryukova, N.; Dubovskiy, I.; Chertkova, E.; Vorontsova, Y.; Slepneva, I.; Glupov, V. The effect of Habrobracon hebetor venom on the activity of the prophenoloxidase system, the generation of reactive oxygen species and encapsulation in the haemolymph of Galleria mellonella larvae. J. Insect Physiol. 2011, 57, 769–800. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.P.; Bell, H.A.; Audsley, N.; Marris, G.C.; Kirkbride-Smith, A.; Bryning, G.; Frisco, C.; Cusson, M. The ectoparasitic wasp Eldophus pennicornis (Hymenoptera: Eulophiclae) uses instar-specific endocrine disruption strategies to suppress the development of its host Lacanobia oleracea (Lepidoptera: Noctuidae). J. Insect Physiol. 2006, 52, 1153–1162. [Google Scholar] [CrossRef] [PubMed]
- Price, D.; Bell, H.; Hinchliffe, G.; Fitches, E.; Weaver, R.; Gatehouse, J. A venom metalloproteinase from the parasitic wasp Eulophus pennicornis is toxic towards its host, tomato moth (Lacanobia oleracae). Insect Mol. Biol. 2009, 18, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Libersat, F. Wasp uses venom cocktail to manipulate the behavior of its cockroach prey. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2003, 189, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Gal, R.; Libersat, F. A wasp manipulates neuronal activity in the sub-esophageal ganglion to decrease the drive for walking in its cockroach prey. PLoS ONE 2010, 5, e10019. [Google Scholar] [CrossRef] [PubMed]
- Gavra, T.; Libersat, F. Involvement of the opioid system in the hypokinetic state induced in cockroaches by a parasitoid wasp. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2011, 197, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Libersat, F.; Gal, R. Wasp voodoo rituals, venom-cocktails, and the zombification of cockroach hosts. Integr. Comp. Biol. 2014, 54, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Moore, E.; Haspel, G.; Libersat, F.; Adams, M. Parasitoid wasp sting: A cocktail of GABA, taurine, and beta-alanine opens chloride channels for central synaptic block and transient paralysis of a cockroach host. J. Neurobiol. 2006, 66, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Piek, T. Delta-philanthotoxin, a semi-irreversible blocker of ion-channels. Comp. Biochem. Physiol. C 1982, 72, 311–315. [Google Scholar] [CrossRef]
- Eldefrawi, A.; Eldefrawi, M.; Konno, K.; Mansour, N.; Nakanishi, K.; Oltz, E.; Usherwood, P. Structure and synthesis of a potent glutamate receptor antagonist in wasp venom. Proc. Natl. Acad. Sci. USA 1988, 85, 4910–4913. [Google Scholar] [CrossRef] [PubMed]
- Rozental, R.; Scoble, G.; Albuquerque, E.; Idriss, M.; Sherby, S.; Sattelle, D.; Nakanishi, K.; Konno, K.; Eldefrawi, A.; Eldefrawi, M. Allosteric inhibition of nicotinic acetylcholine receptors of vertebrates and insects by philanthotoxin. J. Pharmacol. Exp. Ther. 1989, 249, 123–130. [Google Scholar] [PubMed]
- Quistad, G.; Nguyen, Q.; Bernasconi, P.; Leisy, D. Purification and characterization of insecticidal toxins from venom glands of the parasitic wasp, Bracon hebetor. Insect Biochem. Mol. Biol. 1994, 24, 955–961. [Google Scholar] [CrossRef]
- Ferber, M.; Horner, M.; Cepok, S.; Gnatzy, W. Digger wasp versus cricket: Mechanisms underlying the total paralysis caused by the predator’s venom. J. Neurobiol. 2001, 47, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Gnatzy, W.; Volknandt, W. Venom gland of the digger wasp Liris niger: Morphology, ultrastructure, age-related changes and biochemical aspects. Cell Tissue Res. 2000, 302, 271–284. [Google Scholar] [CrossRef] [PubMed]
- Periquet, G.; Bigot, Y.; Doury, G. Physiological and biochemical analysis of factors in the female venom gland and larval salivary secretions of the ectoparasitoid wasp Eupelmus orientalis. J. Insect Physiol. 1997, 43, 69–81. [Google Scholar] [PubMed]
- Parkinson, N.; Smith, I.; Audsley, N.; Edwards, J.P. Purification of pimplin, a paralytic heterodimeric polypeptide from venom of the parasitoid wasp Pimpla hypochondriaca, and cloning of the cDNA encoding one of the subunits. Insect Biochem. Mol. Biol. 2002, 32, 1769–1773. [Google Scholar] [CrossRef]
- Quintela, E.D.; McCoy, C.W. Synergistic effect of imidacloprid and two entomopathogenic fungi on the behavior and survival of larvae of Diaprepes abbreviatus (Coleoptera: Curculionidae) in soil. J. Econ. Entomol. 1998, 91, 110–122. [Google Scholar] [CrossRef]
- Dani, M.P.; Richards, E.H. Cloning and expression of the gene for an insect haemocye anti-aggregation protein (VPr3), from the venom of the endoparasitic wasp, Pimpla hypochondriaca. Arch. Insect Biochem. Physiol. 2009, 71, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Richards, E.H.; Dani, M.P. Biochemical isolation of an insect haemocyte anti-aggregation protein from the venom of the endoparasitic wasp, Pimpla hypochondriaca, and identification of its gene. J. Insect Physiol. 2008, 54, 1041–1049. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-L.; Ye, G.-Y.; Zhu, J.Y.; Chen, X.-X.; Hu, C. Isolation and characterization of an immunosuppressive protein from venom of the pupa-specific endoparasitoid Pteromalus puparum. J. Invertebr. Pathol. 2008, 99, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Labrosse, C.; Eslin, P.; Doury, G.; Drezen, J.M.; Poirie, M. Haemocyte changes in D. melanogaster in response to long gland components of the parasitoid wasp Leptopilina boulardi: A Rho-GAP protein as an important factor. J. Insect Physiol. 2005, 51, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Schmidt, O.; Asgari, S. A calreticulin-like protein from endoparasitoid venom fluid is involved in host hemocyte inactivation. Dev. Comp. Immunol. 2006, 30, 756–764. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Fang, Q.; Qian, C.; Wang, F.; Yu, X.; Ye, G. Inhibition of host cell encapsulation through inhibiting immune gene expression by the parasitic wasp venom calreticulin. Insect Biochem. Mol. Biol. 2013, 43, 936–946. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, N.; Goecks, J.; Kacsoh, B.; Mobley, J.; Bowersock, G.; Taylor, J.; Schlenke, T. Parasitoid wasp venom SERCA regulates Drosophila calcium levels and inhibits cellular immunity. Proc. Natl. Acad. Sci. USA 2013, 110, 9427–9432. [Google Scholar] [CrossRef] [PubMed]
- Colinet, D.; Dubuffet, A.; Cazes, D.; Moreau, S.; Drezen, J.M.; Poirié, M. A serpin from the parasitoid wasp Leptopilina boulardi targets the Drosophila phenoloxidase cascade. Dev. Comp. Immunol. 2009, 33, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Asgari, S.; Zareie, R.; Zhang, G.; Schmidt, O. Isolation and characterization of a novel venom protein from an endoparasitoid, Cotesia rubecula (Hym: Braconidae). Arch. Insect Biochem. Physiol. 2003, 53, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Schmidt, O.; Asgari, S. A novel venom peptide from an endoparasitoid wasp is required for expression of polydnavirus genes in host hemocytes. J. Biol. Chem. 2004, 279, 41580–41585. [Google Scholar] [CrossRef] [PubMed]
- Falabella, P.; Riviello, L.; Caccialupi, P.; Rossodivita, T.; Valente, M.T.; de Stradis, M.L.; Tranfaglia, A.; Varricchio, P.; Gigliotti, S.; Graziani, F.; et al. A γ-glutamyl transpeptidase of Aphidius ervi venom induces apoptosis in the ovaries of host aphids. Insect Biochem. Mol. Biol. 2007, 37, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Ye, G.; Cheng, X.; Yu, C.; Yao, H.; Hu, C. Novel antimicrobial peptides identified from an endoparasitic wasp cDNA library. J. Peptide Sci. 2009, 16, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Rivers, D.B.; Ruggiero, L.; Hayes, M. The ectoparasitic wasp Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) differentially affects cells mediating the immune response of its flesh fly host, Sarcophaga bullata Parker (Diptera: Sarcophagidae). J. Insect Physiol. 2002, 48, 1053–1064. [Google Scholar] [CrossRef]
- Rivers, D.B.; Denlinger, D.L. Developmental fate of the flesh fly, Sarcophaga Bullata, envenomated by the pupal ectoparasitoid, Nasonia Vitripennis. J. Insect Physiol. 1994, 40, 121–127. [Google Scholar] [CrossRef]
- Rivers, D.B.; Denlinger, D.L. Venom-induced alterations in fly lipid metabolism and Its impact on larval development of the ectoparasitoid Nasonia vitripennis (Walker) (Hymenoptera, Pteromalidae). J. Invertebr. Pathol. 1995, 66, 104–110. [Google Scholar] [CrossRef]
- Danneels, E.L.; Rivers, D.B.; de Graaf, D.C. Venom proteins of the parasitoid wasp Nasonia vitirpennis: Recent discovery of an untapped pharmacopee. Toxins 2010, 2, 494–516. [Google Scholar]
- Qian, C.; Liu, Y.; Fang, Q.; Min-Li, Y.; Liu, S.; Ye, G.; Li, Y. Venom of the ectoparasitoid, Nasonia vitripennis, influences gene expression in Musca domestica hemocytes. Arch. Insect Biochem. Physiol. 2013, 83, 211–231. [Google Scholar] [CrossRef] [PubMed]
- Martinson, E.; Wheeler, D.; Wright, J.; Alini, M.; Siebert, A.; Werren, J. Nasonia vitripennis venom causes targeted gene expression changes in its fly host. Mol. Ecol. 2014, 23, 5918–5930. [Google Scholar] [CrossRef] [PubMed]
- Danneels, E.; Formesyn, E.; Hahn, D.; Denlinger, D.; Cardoen, D.; Wenseleers, T.; Schoofs, L.; de Graaf, D. Early changes in the pupal transcriptome of the flesh fly Sarcophagha crassipalpis to parasitization by the ectoparasitic wasp, Nasonia vitripennis. Insect Biochem. Mol. Biol. 2013, 43, 1189–1200. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wu, G.; Ze, S.; Stanley, D.; Yang, B. Parasitization by Scleroderma guani influences protein expression in Tenebrio molitor pupae. J. Insect Physiol. 2014, 66, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Moreau, S.J.M.; Cherqui, A.; Doury, G.; Dubois, F.; Fourdrain, Y.; Sabatier, L.; Bulet, P.; Saarela, J.; Prevost, G.; Giordanengo, P. Identification of an aspartylglucosaminidase-like protein in the venom of the parasitic wasp Asobara tabida (Hymenoptera: Braconidae). Insect Biochem. Mol. Biol. 2004, 34, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Moreau, S.J.M.; Dingremont, A.; Doury, G.; Giordanengo, P. Effects of parasitism by Asobara tabida (Hymenoptera: Braconidae) on the development, survival and activity of Drosophila melanogaster larvae. J. Insect Physiol. 2002, 48, 337–347. [Google Scholar] [CrossRef]
- Desneux, N.; Barta, R.J.; Delebecque, C.J.; Heimpel, G.E. Transient host paralysis as a means of reducing self-superparasitism in koinobiont endoparasitoids. J. Insect Physiol. 2009, 55, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Ergin, E.; Uckan, F.; Rivers, D.B.; Sak, O. In vivo and in vitro activity of venom from the endoparasitic wasp Pimpla turionellae (L.) (Hymenoptera: Ichneumonidae). Arch. Insect Biochem. Physiol. 2006, 61, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Dowton, M.; Austin, A.D. Molecular phylogeny of the insect order hymenoptera: Apocritan relationships. Proc. Natl. Acad. Sci. USA 1994, 91, 9911–9915. [Google Scholar] [CrossRef] [PubMed]
- Parkinson, N.M.; Conyers, C.; Keen, J.; MacNicoll, A.; Smith, I.; Audsley, N.; Weaver, R.J. Towards a comprehensive view of the primary structure of venom proteins from the parasitoid wasp Pimpla hypochondriaca. Insect Biochem. Mol. Biol. 2004, 34, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Richards, E.H.; Parkinson, N.M. Venom from the endoparasitic wasp Pimpla hypochondriaca adversely affects the morphology, viability, and immune function of hemocytes from larvae of the tomato moth, Lacanobia oleracea. J. Invertebr. Pathol. 2000, 76, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Labrosse, C.; Stasiak, K.; Lesobre, J.; Grangeia, A.; Huguet, E.; Drezen, J.M.; Poirie, M. A RhoGAP protein as a main immune suppressive factor in the Leptopilina boulardi (Hymenoptera, Figitidae)-Drosophila melanogaster interaction. Insect Biochem. Mol. Biol. 2005, 35, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Colinet, D.; Schmitz, A.; Depoix, D.; Crochard, D.; Poirié, M. Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens. PLoS Pathog. 2007, 3, e203. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Ye, G.-Y.; Hu, C. Parasitism of Pieris rapae (Lepidoptera: Pieridae) by a pupal endoparasitoid, Pteromalus puparum (Hymenoptera: Pteromalidae): Effects of parasitization and venom on host hemocytes. J. Insect Physiol. 2004, 50, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Wang, L.; Zhu, J.; Li, Y.; Song, Q.; Stanley, D.; Akhtar, Z.; Ye, G. Expression of immune-response genes in lepidopteran host is suppressed by venom from an endoparasitoid, Pteromalus puparum. BMC Genomics 2010, 11, 484. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Wang, F.; Gatehouse, J.; Gatehouse, A.; Chen, X.; Hu, C.; Ye, G. Venom of parasitoid, Pteromalus puparum, suppresses host, Pieris rapae, immune promotion by decreasing host C-type lectin gene expression. PLoS ONE 2011, 6, e26888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Ye, G.; Dong, S.; Fang, Q.; Hu, C. Venom of Pteromalus puparum (Hymenoptera: Pteromalidae) induced endocrine changes in the hemolymph of its host, Pieris rapae (Lepidoptera: Pieridae). Arch. Insect Biochem. Physiol. 2009, 71, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Digilio, M.C.; Isidoro, N.; Tremblay, E.; Pennacchio, F. Host castration by Aphidius ervi venom proteins. J. Insect Physiol. 2000, 46, 1041–1050. [Google Scholar] [CrossRef]
- Doucet, D.; Cusson, M. Role of calyx fluid in alterations of immunity in Choristoneura fumiferana larvae parasitized by Tranosema rostrale. Comp. Biochem. Physiol. 1996, 114, 311–317. [Google Scholar] [CrossRef]
- Dorémus, T.; Urbach, S.; Jouan, V.; Cousserans, F.; Ravallec, M.; Demettre, E.; Wajnberg, E.; Poulain, J.; Azéma-Dossat, C.; Darboux, I.; et al. Venom gland extract is not required for successful parasitism in the polydnavirus-associated endoparasitoid Hyposoter didymator (Hym. Ichneumonidae) despite the presence of numerous novel and conserved venom proteins. Insect Biochem. Mol. Biol. 2013, 43, 292–307. [Google Scholar] [CrossRef] [PubMed]
- Davies, D.H.; Strand, M.R.; Vinson, S.B. Changes in differential haemocyte count and in vitro behaviour of plasmatocytes from host Heliothis virescens caused by Campolethis sonorensis polydnavirus. J. Insect Physiol. 1987, 33, 143–153. [Google Scholar] [CrossRef]
- Dover, B.A.; Davies, D.H.; Strand, M.R.; Gray, R.S.; Keeley, L.L.; Vinson, S.B. Ecdysteroid-titre reduction and developmental arrest of last instar Heliothis virescens larvae by calyx fluid from the parasitoid Campoletis sonorensis. J. Insect Physiol. 1987, 33, 333–338. [Google Scholar] [CrossRef]
- Guzo, D.; Stoltz, D.B. Observation on cellular immunity and parasitism in the tussock moth. J. Insect Physiol. 1987, 33, 19–31. [Google Scholar] [CrossRef]
- Webb, B.A.; Luckhart, S. Evidence for an early immunosuppressive role for related Campoletis sonorensis venom and ovarian proteins in Heliothis virescens. Arch. Insect Biochem. Physiol. 1994, 26, 147–163. [Google Scholar] [CrossRef] [PubMed]
- Stoltz, D.B.; Vinson, S.B. Viruses and parasitism in insects. Adv. Virus Res. 1979, 24, 125–171. [Google Scholar] [PubMed]
- Bézier, A.; Annaheim, M.; Herbinière, J.; Wetterwald, C.; Gyapay, G.; Bernard-Samain, S.; Wincker, P.; Roditi, I.; Heller, M.; Belghazi, M.; et al. Polydnaviruses of braconid wasps derive from an ancestral nudivirus. Science 2009, 323, 926–930. [Google Scholar] [CrossRef] [PubMed]
- Burke, G.; Thomas, S.; Eum, J.; Strand, M. Mutualistic polydnaviruses share essential replication gene functions with pathogenic ancestors. PLoS Pathog. 2013, 9, e1003348. [Google Scholar] [CrossRef] [PubMed]
- Burke, G.; Strand, M.R. Systematic analysis of a wasp parasitism arsenal. Mol. Ecol. 2014, 23, 890–901. [Google Scholar] [CrossRef] [PubMed]
- Strand, M.R.; Noda, T. Alterations in the haemocytes of Pseudoplusia includens after parasitism by Microplitis demolitor. J. Insect Physiol. 1991, 37, 839–850. [Google Scholar] [CrossRef]
- Strand, M.R.; Dover, B.A. Developmental disruption of Pseudoplusia includens and Heliothis virescens larvae by calyx fluid and venom of Microplitis demolitor. Arch. Insect Biochem. Physiol. 1991, 18, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Stoltz, D.B.; Guzo, D.; Belland, E.R.; Lucarotti, C.J.; MacKinnon, E.A. Venom promotes uncoating in vitro and persistence in vivo of DNA from a braconid polydnavirus. J. Gen. Virol. 1988, 69, 903–907. [Google Scholar] [CrossRef]
- Pennacchio, F.; Falabella, P.; Vinson, S.B. Regulation of Heliothis virescens prothoracic glands by Cardiochiles nigriceps polydnavirus. Arch. Insect Biochem. Physiol. 1998, 38, 1–10. [Google Scholar] [CrossRef]
- Goecks, J.; Mortimer, N.; Mobley, J.; Bowersock, G.; Taylor, J.; Schlenke, T. Integrative approach reveals composition of endoparasitoid wasp venoms. PLoS ONE 2013, 8, e64125. [Google Scholar] [CrossRef] [PubMed]
- De Graaf, D.; Aerts, M.; Brunain, M.; Desjardins, C.; Jacobs, F.; Werren, J.; Devreese, B. Insights into the venom composition of the ectoparasitoid wasp Nasonia vitripennis from bioinformatic and proteomic studies. Insect Mol. Biol. 2010, 19 (Suppl. 1), 11–26. [Google Scholar] [CrossRef] [PubMed]
- Furihata, S.; Matsumoto, H.; Kimura, M.; Hayakawa, Y. Venom components of Asobara japonica impair cellular immune responses of host Drosophila melanogaster. Arch. Insect Biochem. Physiol. 2013, 83, 86–100. [Google Scholar] [CrossRef] [PubMed]
- Asgari, S.; Zhang, G.; Zareie, R.; Schmidt, O. A serine proteinase homolog venom protein from an endoparasitoid wasp inhibits melanization of the host hemolymph. Insect Biochem. Mol. Biol. 2003, 33, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.; Asgari, S. Inhibition of melanization by a parasitoid serine protease homolog venom protein requires both the clip and the non-catalytic protease-like domains. Insects 2011, 2, 509–514. [Google Scholar] [CrossRef]
- Jiang, H.; Kanost, M.R. The clip-domain family of serine proteinases in arthropods. Insect Biochem. Mol. Biol. 2000, 30, 95–105. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, Z.-Q.; Jiang, H.; Asgari, S. Negative regulation of prophenoloxidase (proPO) activation by a clip-domain serine proteinase homolog (SPH) from endoparasitoid venom. Insect Biochem. Mol. Biol. 2004, 34, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Vinson, S.B. Interaction between venom and calyx fluids of three parasitoids, Cardiochiles nigriceps, Microplitis croceipes (Hymenoptera:Braconidae), and Campoletis sonorensis (Hymenoptera: Ichneumonidae) in affecting a delay in the pupation of Heliothis virescens (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 1991, 84, 87–92. [Google Scholar]
- Pennacchio, F.; Flabella, P.; Sordetti, R.; Varricchio, P.; Malva, C.; Vinson, S.B. Prothoracic gland inactivation in Heliothis virescens (F.) (Lepidoptera: Noctuidae) larvae parasitized by Cardiochiles nigriceps Viereck (Hymenoptera: Braconidae). J. Insect Physiol. 1998, 44, 845–857. [Google Scholar] [CrossRef]
- Xu, J.; Cherry, S. Viruses and antiviral immunity in Drosophila. Dev. Comp. Immunol. 2014, 42, 67–84. [Google Scholar] [CrossRef] [PubMed]
- Kolliopoulou, A.; Swevers, L. Recent progress in RNAi research in Lepidoptera: Intracellular machinery, antiviral immune response and prospects for insect pest control. Curr. Opin. Insect Sci. 2015, 6, 28–34. [Google Scholar] [CrossRef]
- Colinet, D.; Kremmer, L.; Lemauf, S.; Rebuf, C.; Gatti, J.; Poirié, M. Development of RNAi in a Drosophila endoparasitoid wasp and demonstration of its efficiency in impairing venom protein production. J. Insect Physiol. 2014, 63, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Vincent, B.; Kaeslin, M.; Roth, T.; Heller, M.; Poulain, J.; Cousserans, F.; Schaller, J.; Poirié, M.; Lanzrein, B.; Drezen, J.; et al. The venom composition of the parasitic wasp Chelonus inanitus resolved by combined expressed sequence tags analysis and proteomic approach. BMC Genomics 2010, 11, 693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaeslin, M.; Reinhard, M.; Bühler, D.; Roth, T.; Pfister-Wilhelm, R.; Lanzrein, B. Venom of the egg-larval parasitoid Chelonus inanitus is a complex mixture and has multiple biological effects. J. Insect Physiol. 2010, 56, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Colinet, D.; Anselme, C.; Deleury, E.; Mancini, D.; Poulain, J.; Azéma-Dossat, C.; Belghazi, M.; Tares, S.; Pennacchio, F.; Poirié, M.; et al. Identification of the main venom protein components of Aphidius ervi, a parasitoid wasp of the aphid model Acyrthosiphon pisum. BMC Genomics 2014, 15, 342. [Google Scholar] [CrossRef] [PubMed]
- Heavner, M.; Gueguen, G.; Rajwani, R.; Pagan, P.; Small, C.; Govind, S. Partial venom gland transcriptome of a Drosophila parasitoid wasp, Leptopilina heterotoma, reveals novel and shared bioactive profiles with stinging Hymenoptera. Gene 2013, 526, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Dupas, S.; Brehelin, M.; Frey, F.; Carton, Y. Immune suppressive virus-like particles in a Drosophila parasitoid: Significance of their intraspecific morphological variations. Parasitology 1996, 113, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Labrosse, C.; Carton, Y.; Dubuffet, A.; Drezen, J.M.; Poirie, M. Active suppression of D. melanogaster immune response by long gland products of the parasitic wasp Leptopilina boulardi. J. Insect Physiol. 2003, 49, 513–522. [Google Scholar] [CrossRef]
- Schlenke, T.A.; Morales, J.; Govind, S.; Clark, A.G. Contrasting infection strategies in generalist and specialist wasp parasitoids of Drosophila melanogaster. PLoS Pathog. 2007, 3, e158. [Google Scholar] [CrossRef] [PubMed]
- Dowton, M.; Austin, A.D. Simultaneous analysis of 16S, 28S, CO1 and morphology in the Hymenoptera: Apocrita-evolutionary transitions among parasitic wasps. Biol. J. Linn. Soc. 2001, 74, 87–111. [Google Scholar]
- Whitfield, J.B. Phylogenetic insights into the evolution of parasitism in Hymenoptera. Adv. Parasitol. 2003, 54, 69–100. [Google Scholar] [PubMed]
- Piek, T. Venoms of the Hymenoptera. Biochemical, pharmacological and Behavioural Aspects; Academic Press: London, UK, 1986. [Google Scholar]
- Quicke, D.L.J. Parasitic Wasps; Chapman and Hall: London, UK, 1997. [Google Scholar]
- Grimaldi, D.; Engel, M. Evolution of the Insects; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- Schmidt, J. Chemistry, pharmacology and chemical ecology of ant venoms. In Venoms of the Hymenoptera. Biochemical, Pharmacological and Behavioural Aspects; Piek, T., Ed.; Academic Press: London, UK, 1986; pp. 425–508. [Google Scholar]
- Asgari, S. Venoms from endoparasitoids. In Parasitoid Viruses, Symbionts and Pathogens; Beckage, N., Drezen, J.-M., Eds.; Academic Press: London, UK, 2012; pp. 217–231. [Google Scholar]
- Moreau, S.J.M.; Guillot, S. Advances and prospects on biosynthesis, structures and functions of venom proteins from parasitic wasps. Insect Biochem. Mol. Biol. 2005, 35, 1209–1223. [Google Scholar] [CrossRef] [PubMed]
- Leluk, J.; Schmidt, J.; Jones, D. Comparative studies on the protein composition of hymenopteran venom reservoirs. Toxicon 1989, 27, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.; Wozniak, M. Regulatory mediators in the venom of Chelonus sp.: Their biosynthesis and subsequent processing in homologous and heterologous systems. Biochem. Biophys. Res. Commun. 1991, 178, 213–220. [Google Scholar] [CrossRef]
- Rappuoli, R.; Montecucco, C. Guidebook to Protein Toxins and Their Use in Cell Biology; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Parkinson, N.; Richards, E.H.; Conyers, C.; Smith, I.; Edwards, J.P. Analysis of venom constituents from the parasitoid wasp Pimpla hypochondriaca and cloning of a cDNA encoding a venom protein. Insect Biochem. Mol. Biol. 2002, 32, 729–735. [Google Scholar] [CrossRef]
- Parkinson, N.M.; Conyers, C.; Keen, J.N.; MacNicoll, A.D.; Weaver, I.S.R. cDNAs encoding large venom proteins from the parasitoid wasp Pimpla hypochondriaca identified by random sequence analysis. Comp. Biochem. Physiol. C 2003, 134, 513–520. [Google Scholar] [CrossRef]
- Dani, M.P.; Richards, E.H.; Isaac, R.E.; Edwards, J.P. Antibacterial and proteolytic activity in venom from the endoparasitic wasp Pimpla hypochondriaca (Hymenoptera: Ichneumonidae). J. Insect Physiol. 2003, 49, 945–954. [Google Scholar] [CrossRef]
- Nakamatsu, Y.; Tanaka, T. Venom of ectoparasitoid, Euplectrus sp. near plathypenae (Hymenoptera: Eulophidae) regulates the physiological state of Pseudaletia separata (Lepidoptera: Noctuidae). J. Insect Physiol. 2003, 49, 149–159. [Google Scholar] [CrossRef]
- Crawford, A.M.; Brauning, R.; Smolenski, G.; Ferguson, C.; Barton, D.; Wheeler, T.T.; Mcculloch, A. The constituents of Microctonus sp. parasitoid venoms. Insect Mol. Biol. 2008, 17, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Zhao, H.; Wang, H.; Bian, J.; Zheng, R. A defensin antimicrobial peptide from the venoms of Nasonia vitripennis. Toxicon 2010, 56, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Moreau, S. “It stings a bit but it cleans well”: Venoms of Hymenoptera and their antimicrobial potential. J. Insect Physiol. 2013, 59, 186–204. [Google Scholar] [CrossRef] [PubMed]
- Asgari, S.; Rivers, D.B. Venom proteins from endoparasitoid wasps and their role in host-parasite interactions. Annu. Rev. Entomol. 2011, 56, 313–335. [Google Scholar] [CrossRef] [PubMed]
- Formesyn, E.M.; Danneels, E.L.; de Graaf, D.C. Proteomics of the venom of the parasitoid Nasonia vitripennis. In Parasitoid Viruses, Symbionts and Pathogens; Beckage, N.E., Drezen, J.-M., Eds.; Academic Press: London, UK, 2012; pp. 233–246. [Google Scholar]
- Escoubas, P.; Quinton, L.; Nicholson, G.M. Venomics: Unravelling the complexity of animal venoms with mass spectrometry. J. Mass Spectrom. 2008, 43, 279–295. [Google Scholar] [CrossRef] [PubMed]
- Casewell, N.; Wüster, W.; Vonk, F.; Harrison, R.; Fry, B. Complex cocktails: The evolutionary novelty of venoms. Trends Ecol. Evol. 2013, 28, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Fry, B.G.; Roelants, K.; Champagne, D.E.; Scheib, H.; Tyndall, J.D.A.; King, G.F.; Nevalainen, T.J.; Norman, J.A.; Lewis, R.J.; Norton, R.S.; et al. The toxicogenomic multiverse: Convergent recruitment of proteins into animal venoms. Annu. Rev. Genomics Hum. Genet. 2009, 10, 483–511. [Google Scholar] [CrossRef] [PubMed]
- Bronner, R. Anatomy of the ovipositor and oviposition behavior of the gall wasp Diplolepis rosae (Hymenoptera: Cynipidae). Can. Entomol. 1985, 117, 849–858. [Google Scholar] [CrossRef]
- Vårdal, H. Venom gland and reservoir morphology in cynipoid wasps. Arthropod Struct. Dev. 2006, 35, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Fang, Q.; Wang, L.; Hu, C.; Ye, G. Proteomic analysis of the venom from the endoparasitoid wasp Pteromalus puparum (Hymenoptera: Pteromalidae). Arch. Insect Biochem. Physiol. 2010, 75, 28–44. [Google Scholar] [CrossRef] [PubMed]
- Colinet, D.; Deleury, E.; Anselme, C.; Cazes, D.; Poulain, J.; Azema-Dossat, C.; Belghazi, M.; Gatti, J.-L.; Poirié, M. Extensive inter- and intraspecific venom variation in closely related parasites targeting the same host: The case of Leptopilina parasitoids of Drosophila. Insect Biochem. Mol. Biol. 2013, 43, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Fry, B.G.; Roelants, J.; Norman, J.A. Tentacles of venom: Toxic protein convergence in the Kingdom Animalia. J. Mol. Evol. 2009, 68, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Moreau, S.J.M.; Vinchon, S.; Cherqui, A.; Prévost, G. Components of Asobara venoms and their effects on hosts. Adv. Parasitol. 2009, 70, 217–232. [Google Scholar] [PubMed]
- Krishnan, A.; Nair, P.N.; Jones, D. Isolation, cloning and characterization of new chitinase stored in active form in chitin-lined venom reservoir. J. Biol. Chem. 1994, 269, 20971–20976. [Google Scholar] [PubMed]
- Parkinson, N.M.; Weaver, R.J. Noxious components of venom from the pupa-specific parasitoid Pimpla hypochondriaca. J. Invertebr. Pathol. 1999, 73, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Colinet, D.; Mathé-Hubert, H.; Allemand, R.; Gatti, J.-L.; Poirié, M. Variability of venom components in immune suppressive parasitoid wasps: From a phylogenetic to a population approach. J. Insect Physiol. 2013, 59, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Kitano, H. The role of Apanteles glomeratus venom in the defensive response of its host, Pieris rapae crucivora. J. Insect Physiol. 1986, 32, 369–375. [Google Scholar] [CrossRef]
- Wago, H.; Tanaka, T. Synergistic effects of calyx fluid and venom of Apanteles kariyai Watanabe (Hymenoptera: Braconidae) on the granular cells of Pseudaletia separata Walker (Lepidoptera: Noctuidae). Zool. Sci. 1989, 6, 691–696. [Google Scholar]
- Lanzrein, B.; Pfister-Wilhelm, R.; Kaeslin, M.; Wespi, G.; Roth, T. The orchestrated manipulation of the host by Chelonus inanitus and its polydnavirus. In Parasitoid Viruses: Symbionts and Pathogens; Beckage, N., Drezen, J.-M., Eds.; Academic Press: London, UK, 2012; pp. 169–178. [Google Scholar]
- Prévost, G.; Eslin, P.; Cherqui, A.; Moreau, S.; Doury, G. When parasitoids lack polydnaviruses, can venoms subdue the hosts? The case study of Asobara species. In Parasitoid Viruses: Symbionts and Pathogens; Beckage, N., Drezen, J.-M., Eds.; Academic Press: London, UK, 2012; pp. 255–266. [Google Scholar]
- Beckage, N.E.; Tan, F.F.; Schleifer, K.W.; Lane, R.D.; Cherubin, L.L. Characterization and biological effects of Cotesia congregata polydnavirus on host larvae of the tobacco hornworm, Manduca sexta. Arch. Insect Physiol. Biochem. 1994, 26, 165–195. [Google Scholar] [CrossRef]
- Doucet, D.; Cusson, M. Alteration of developmental rate and growth of Choristoneura fumiferana parasitized by Tranosema rostrale—Role of the calyx fluid. Entomol. Exp. Appl. 1996, 81, 21–30. [Google Scholar] [CrossRef]
- Moreau, S.; Huguet, E.; Drezen, J.-M. Polydnaviruses as tools to deliver wasp virulence factors to impair lepidopteran host immunity. In Insect Infection and Immunity: Evolution, Ecology and Mechanisms; Reynolds, S.E., Ed.; Oxford University Press: Oxford, UK, 2009; pp. 137–158. [Google Scholar]
- Volkoff, A.; Jouan, V.; Urbach, S.; Samain, S.; Bergoin, M.; Wincker, P.; Demettre, E.; Cousserans, F.; Provost, B.; Coulibaly, F.; et al. Analysis of virion structural components reveals vestiges of the ancestral ichnovirus genome. PLoS Pathog. 2010, 6, e1000923. [Google Scholar] [CrossRef] [PubMed]
- Herniou, E.A.; Huguet, E.; Thézé, J.; Bézier, A.; Periquet, G.; Drezen, J.-M. When parasitic wasps hijacked viruses: Genomic and functional evolution of polydnaviruses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368, 20130051. [Google Scholar] [CrossRef] [PubMed]
- Kadash, K.; Harvey, J.A.; Strand, M.R. Cross-protection experiments with parasitoids in the genus Microplitis (Hymenoptera: Braconidae) suggest a high level of specificity in their associated bracoviruses. J. Insect Physiol. 2003, 49, 473–482. [Google Scholar] [CrossRef]
- Fellowes, M.D.; Godfray, H.C. The evolutionary ecology of resistance to parasitoids by Drosophila. Heredity 2000, 84, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Prévost, G.; Doury, G.; Mabiala-Moundoungou, A.; Cherqui, A.; Eslin, P. Strategies of avoidance of host immune defenses in Asobara species. Adv. Parasitol. 2009, 70, 235–255. [Google Scholar] [PubMed]
- Mabiala-Moundoungou, A.D.N.; Doury, G.; Eslin, P.; Cherqui, A.; Prevost, G. Deadly venom of Asobara japonica parasitoid needs ovarian antidote to regulate host physiology. J. Insect Physiol. 2010, 56, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Kraaijeveld, A.R. Kleptoparasitism as an explanation for paradoxical oviposition decisions of the parasitoid Asobara tabida. J. Evol. Biol. 1999, 12, 129–133. [Google Scholar] [CrossRef]
- Eslin, P.; Prévost, G. Racing against host’s immunity defenses: A likely strategy for passive evasion of encapsulation in Asobara tabida parasitoids. J. Insect Physiol. 2000, 46, 1161–1167. [Google Scholar] [CrossRef]
- Eslin, P.; Giordanengo, P.; Fourdrain, Y.; Prévost, G. Avoidance of encapsulation in the absence of VLP by a braconid parasitoid of Drosophila larvae: An ultrastructural study. Can. J. Zool. 1996, 74, 2193–2198. [Google Scholar] [CrossRef]
- Havard, S.; Doury, G.; Ravallec, M.; Brehélin, M.; Prévost, G.; Eslin, P. Structural and functional characterization of pseudopodocyte, a shaggy immune cell produced by two Drosophila species of the obscura group. Dev. Comp. Immunol. 2012, 36, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Moreau, S.J.M.; Doury, G.; Giordanengo, P. Intraspecific variation in the effects of parasitism by Asobara tabida on phenoloxidase activity of Drosophila melanogater larvae. J. Invertebr. Pathol. 2000, 76, 151–153. [Google Scholar] [CrossRef] [PubMed]
- Dowton, M.; Austin, A.D.; Antolin, M.F. Evolutionary relationships among the Braconidae (Hymenoptera: Ichneumonoidae) inferred from partial 16S rDNA gene sequences. Insect Mol. Biol. 1998, 7, 129–150. [Google Scholar] [CrossRef] [PubMed]
- Mathé-Hubert, H.; Gatti, J.-L.; Colinet, D.; Poirié, M.; Malausa, T. Statistical analysis of the individual variability of 1D protein profiles as a tool in ecology: An application to parasitoid venom. Mol. Ecol. Res. 2015, in press. [Google Scholar] [CrossRef] [PubMed]
- Peiren, N.; Vanrobaeys, F.; de Graaf, D.; Devreese, B.; van Beeumen, J.; Jacobs, F. The protein composition of honeybee venom reconsidered by a proteomic approach. Biochem. Biophys. Acta 2005, 1752, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Drapeau, M.; Albert, S.; Kucharski, R.; Prusko, C.; Maleszka, R. Evolution of the Yellow/Major Royal Jelly Protein family and the emergence of social behavior in honey bees. Genome Res. 2006, 16, 1385–1394. [Google Scholar] [CrossRef] [PubMed]
- Beckage, N.E.; Gelman, D.B. Wasp parasitoid disruption of host development: Implications for new biologically based strategies for insect control. Annu. Rev. Entomol. 2004, 49, 299–330. [Google Scholar] [CrossRef] [PubMed]
- Braun, L. Notes on desensitization of a patient hypersensitive to bee stings. S. Afr. Med. Res. 1925, 23, 408–409. [Google Scholar]
- Biló, B.; Rueff, F.; Mosbech, H.; Bonifazi, F.; Oude-Elberink, J. The EAACI interest group on insect venom hypersensitivity: Diagnosis of Hymenoptera venom allergy. Allergy 2005, 60, 1339–1349. [Google Scholar] [CrossRef] [PubMed]
- Czaikoski, P.; Menaldo, D.; Marcussi, S.; Baseggio, A.; Fuly, A.; Paula, R.; Quadros, A.; Romão, P.; Buschini, M.; Cunha, F.; et al. Anticoagulant and fibrinogenolytic properties of the venom of Polybia occidentalis social wasp. Blood Coagul. Fibrinolysis 2010, 21, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Choo, Y.; Lee, K.; Yoon, H.; Kim, B.; Sohn, M.; Roh, J.; Je, Y.; Kim, N.; Kim, I.; Woo, S.; et al. Dual function of a bee venom serine protease: Prophenoloxidase-activating factor in arthropods and fibrin(ogen)olytic enzyme in mammals. PLoS ONE 2010, 5, e10393. [Google Scholar] [CrossRef] [PubMed]
- Kuhn-Nentwig, L. Antimicrobial and cytolytic peptides of venomous arthropods. Cell. Mol. Life Sci. 2003, 60, 2651–2668. [Google Scholar] [CrossRef] [PubMed]
- Konno, K.; Rangel, M.; Oliveira, J.; Dos Santos Cabrera, M.; Fontana, R.; Hirata, I.; Hide, I.; Nakata, Y.; Mori, K.; Kawano, M.; et al. Decoralin, a novel linear cationic alpha-helical peptide from the venom of the solitary eumenine wasp Oreumenes decoratus. Peptides 2007, 28, 2320–2327. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.-Y.; Ye, G.-Y.; Hu, C. Venom of the endoparasitoid wasp Pteromalus puparum: An overview. Psyche 2011, 2011, 520926. [Google Scholar] [CrossRef]
- Khasnis, A.; Nettleman, M. Global warming and infectious disease. Arch. Med. Res. 2005, 36, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, C.; Tewksbury, J.; Huey, R.; Sheldon, K.; Ghalambor, C.; Haak, D.; Martin, P. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. USA 2008, 105, 6668–6672. [Google Scholar] [CrossRef] [PubMed]
- Konno, K.; Hisada, M.; Naoki, H.; Itagaki, Y.; Yasuhara, T.; Juliano, M.; Juliano, L.; Palma, M.; Yamane, T.; Nakajima, T. Isolation and sequence determination of peptides in the venom of the spider wasp (Cyphononyx dorsalis) guided by matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry. Toxicon 2001, 39, 1257–1260. [Google Scholar] [CrossRef]
- Rohrbach, M.; Clarke, J. Treatment of lysosomal storage disorders: Progress with enzyme replacement therapy. Drugs 2007, 67, 2697–2716. [Google Scholar] [CrossRef] [PubMed]
- Windass, J.D.; Suner, M.-M.; Earley, F.G.P.; Guest, P.J. Biological control agents containing mollusc toxins. International Patent WO/1994/023047, 13 October 1994. [Google Scholar]
- Ely, S. Insecticidal Proteins. International Patent WO 1995/011305 A2, 27 April 1995. [Google Scholar]
- Quistad, G.B.; Leisy, D.J. Insecticidal toxins from the parasitic wasp, Bracon hebetor. Patent WO 1993018145 A1, 16 September 1993. [Google Scholar]
- Windass, J.D.; Duncan, R.E.; Christian, P.D.; Baule, V.J. Agents biologiques antiparasites contenant des toxines de mollusques. International Patent WO 1994023047 A1, 13 October 1994. [Google Scholar]
- Johnson, J.H.; Kral, R.M., Jr.; Krapcho, K. Insecticidal toxins from Bracon hebetor. International Patent WO/1996/025429 A1, 22 August 1996. [Google Scholar]
- Johnson, J.H.; Kral, R.M., Jr.; Krapcho, K. Insecticidal toxins from Bracon hebetor nucleic acid encoding said toxin and methods of use. US Patent No. 5,874,298, 23 February 1999. [Google Scholar]
- Pennachio, F.; Tranfaglia, A.; Malva, C. Host-parasitoid antagonism in insects: New opportunities for pest control? Agro FOOD Industry Hi Tech. 2003, 14, 53–56. [Google Scholar]
- Manzoor, A.; Zain-ul-Abdin; Arshad, M.; Gogi, M.D.; Shaina, H.; Mubarik, E.; Abbas, S.K.; Khan, M.A. Biological activity of the toxic peptides from venom of Bracon hebetor (Say.) (Hymenoptera: Braconidae). Pak. Entomol. 2011, 33, 125–130. [Google Scholar]
- ActionAid AstraZeneca and Its Genetic Research: Feeding the world or fuelling hunger? Available online: http://www.actionaid.org.uk/sites/default/files/doc_lib/astrazeneca.pdf (accessed on 24 June 2015).
- Nguyen, T.; Magnoli, I.; Cloutier, C.; Michaud, D.; Muratori, F.; Hance, T. Early presence of an enolase in the oviposition injecta of the aphid parasitoid Aphidius ervi analyzed with chitosan beads as artificial hosts. J. Insect Physiol. 2013, 59, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Richards, E.; Bradish, H.; Dani, M.; Pietravalle, S.; Lawson, A. Recombinant immunosuppressive protein from Pimpla hypochondrica venom (rVPr1) increases the susceptibility of Mamestra brassicae larvae to the fungal biological control agent, Beauveria bassiana. Arch. Insect Biochem. Physiol. 2011, 78, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Richards, E.; Dani, M.; Bradish, H. Immunosuppressive properties of a protein (rVPr1) from the venom of the endoparasitic wasp, Pimpla hypochondriaca: Mechanism of action and potential use for improving biological control strategies. J. Insect Physiol. 2013, 59, 213–222. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreau, S.J.M.; Asgari, S. Venom Proteins from Parasitoid Wasps and Their Biological Functions. Toxins 2015, 7, 2385-2412. https://doi.org/10.3390/toxins7072385
Moreau SJM, Asgari S. Venom Proteins from Parasitoid Wasps and Their Biological Functions. Toxins. 2015; 7(7):2385-2412. https://doi.org/10.3390/toxins7072385
Chicago/Turabian StyleMoreau, Sébastien J. M., and Sassan Asgari. 2015. "Venom Proteins from Parasitoid Wasps and Their Biological Functions" Toxins 7, no. 7: 2385-2412. https://doi.org/10.3390/toxins7072385