Rapid Analysis of Deoxynivalenol in Durum Wheat by FT-NIR Spectroscopy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Quantification of DON in Contaminated Wheat Sample
2.2. Classification of DON Contaminated Wheat Samples
Assigned class a (by HPLC reference analysis) | Number of samples classified in the predicted classes (by FT-NIR analysis) | ||
---|---|---|---|
A | B | C | |
A | 92 | 22 | 4 |
B | 6 | 18 | 13 |
C | 2 | 12 | 63 |
Overall classification rate (%) | 75 | ||
FC samples (%) b | 3 | ||
FNC samples (%) c | 7 |
Classification results | Discrimination models (cut-off DON, µg/kg) | ||
---|---|---|---|
LDA II (1,000) | LDA III (1,200) | LDA IV (1,400) | |
Overall classification rate (%) | 89 | 90 | 90 |
FC samples (%) a | 7 | 6 | 5 |
FNC samples (%) b | 4 | 4 | 5 |
3. Experimental Section
3.1. Chemicals
3.2. Durum Wheat Samples
3.3. HPLC Analysis
3.4. FT-NIR Analysis
3.5. Spectral Data Preprocessing and Outlier Identification
3.6. Development and Validation of DON Quantitative Models
3.7. Development and Validation of DON Classification Models
Model | Number of samples (DON, µg/kg) | ||
---|---|---|---|
Class A | Class B | Class C | |
I | 118 (≤1,000) | 37 (1,000–2,500) | 77 (>2,500) |
II | 113 (≤1,000) | 119 (>1,000) | - |
III | 118 (≤1,200) | 114 (>1,200) | - |
IV | 123 (≤1,400) | 109 (>1,400) | - |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Canady, R.A.; Coker, R.D.; Egan, S.K.; Krska, R.; Kuiper-Goodman, T.; Olsen, M.; Pestka, J.; Resnik, S.; Schlatter, J. Deoxynivalenol. In Safety Evaluation of Certain Mycotoxins in Food; WHO Food Additive Series 47; World Health Organization: Geneva, Switzerland, 2001; pp. 419–555. [Google Scholar]
- Shephard, G.S. Fusarium mycotoxins and human health. Plant Breed. Seed Sci. 2011, 64, 113–121. [Google Scholar]
- Arunachalam, C.; Doohan, F.M. Trichothecene toxicity in eukaryotes: Cellular and molecular mechanisms in plants and animals. Toxicol. Lett. 2013, 217, 149–158. [Google Scholar] [CrossRef]
- Antonissen, G.; Martel, A.; Pasmans, F.; Ducatelle, R.; Verbrugghe, E.; Vandenbroucke, V.; Li, S.; Haesebrouck, F.; van Immerseel, F.; Croubels, S.; et al. The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases. Toxins 2014, 6, 430–452. [Google Scholar] [CrossRef] [Green Version]
- Pinton, P.; Oswald, I.P. Effect of deoxynivalenol and other Type B trichothecenes on the intestine: A review. Toxins 2014, 6, 1615–1643. [Google Scholar] [CrossRef]
- Maresca, M. From the gut to the brain: Journey and pathophysiological effects of the food-associated trichothecene mycotoxin deoxynivalenol. Toxins 2013, 5, 784–820. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No. 1126/2007 of 28 September 2007 amending Regulation No. 1881/2006 Setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products. Off. J. Eur. Union 2007, L255, 14–17. [Google Scholar]
- Ran, R.; Wang, W.; Han, Z.; Wu, A.; Zhang, D.; Shi, J. Determination of deoxynivalenol (DON) and its derivatives: Current status of analytical methods. Food Control 2013, 34, 138–148. [Google Scholar] [CrossRef]
- Meneely, J.P.; Ricci, F.; van Egmond, H.P.; Elliott, C.T. Current methods of analysis for thedetermination of trichothecenemycotoxins in food. Trends Anal. Chem. 2011, 30, 192–203. [Google Scholar] [CrossRef]
- Lattanzio, V.M.T.; Pascale, M.; Visconti, A. Current analytical methods for trichothecene mycotoxins in cereals. Trends Anal. Chem. 2011, 28, 758–768. [Google Scholar] [CrossRef]
- Lippolis, V.; Maragos, C. Fluorescence polarization immunoassays for rapid, accurate and sensitive determination of mycotoxins. World Mycotoxin J. 2014, 7, 479–489. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Lin, Z. Recent developments and applications of surface plasmon resonance biosensors for the detection of mycotoxins in foodstuffs. Food Chem. 2012, 132, 1549–1554. [Google Scholar] [CrossRef]
- Lippolis, V.; Pascale, M.; Cervellieri, S.; Damascelli, A.; Visconti, A. Screening of deoxynivalenol contamination in durum wheat by MOS-based electronic nose and identification of the relevant pattern of volatile compounds. Food Control 2014, 37, 263–271. [Google Scholar] [CrossRef]
- McClure, W. Review: 204 years of near infrared technology: 1800–2003. J. Near Infrared Spectrosc. 2003, 11, 487–518. [Google Scholar] [CrossRef]
- Santos, C.; Frafa, M.E.; Kozakiewicz, Z.; Lima, N. Fourier transform infrared as a powerful technique for the identification and characterization of filamentous fungi and yeasts. Res. Microb. 2010, 161, 168–175. [Google Scholar] [CrossRef] [Green Version]
- Pettersson, H.; Aberg, L. Near infrared spectroscopy for determination of mycotoxins in cereals. Food Control 2003, 14, 229–232. [Google Scholar] [CrossRef]
- Kos, G.; Krska, R.; Lohninger, H.; Griffiths, P.R. A comparative study of mid-infrared diffuse reflection (DR) and attenuated total reflection (ATR) spectroscopy for the detection of fungal infection on RWA2-corn. Anal. Bioanal. Chem. 2004, 378, 159–166. [Google Scholar] [CrossRef]
- Abramovic, B.; Jajic, I.; Abramovic, B.; Cosic, J.; Juric, V. Detection of deoxynivalenol in wheat by Fourier transform infrared spectroscopy. Acta Chim. Slov. 2007, 54, 859–867. [Google Scholar]
- De Girolamo, A.; Lippolis, V.; Nordkvist, E.; Visconti, A. Rapid and non-invasive analysis of deoxynivalenol in durum and common wheat by Fourier-Transform Near Infrared (FT-NIR) spectroscopy. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2009, 26, 907–917. [Google Scholar] [CrossRef]
- Siuda, R.; Balcerowska, G.; Kupcewicz, B.; Lenc, L. A modified approach to evaluation of DON content in scab-damaged ground wheat by use of diffuse reflectance spectroscopy. Food Anal. Methods 2008, 1, 283–292. [Google Scholar] [CrossRef]
- Bolduan, C.; Montes, J.M.; Dhillon, B.S.; Mirdita, V.; Melchinger, A.E. Determination of mycotoxin concentration by ELISA and near-infrared spectroscopy in Fusarium-inoculated maize. Cereal Res. Commun. 2009, 37, 521–529. [Google Scholar] [CrossRef]
- Beyer, M.; Pogoda, F.; Ronellenfitsch, F.K.; Hoffmann, L.; Udelhoven, T. Estimating deoxynivalenol contents of wheat samples containing different levels of Fusarium-damaged kernels by diffuse reflectance spectrometry and partial least square regression. Int. J. Food Microb. 2010, 142, 370–374. [Google Scholar] [CrossRef]
- Dvořáček, V.; Prohasková, A.; Chrpová, J.; Štočková, L. Near infrared spectroscopy for deoxynivalenol content estimation in intact wheat grain. Plant Soil Environ. 2012, 58, 196–203. [Google Scholar]
- Czechlowski, M.; Laskowska, M. The development and validation of the calibration model for the VIS-NIR spectrometer used for the evaluation of deoxynivalenol content in wheat grain directly during combine harvest. J. Res. Appl. Agric. Eng. 2013, 58, 27–30. [Google Scholar]
- Galvis-Sánchez, A.C.; Barros, A.S.; Delgadillo, I. Method for analysis dried vine fruits contaminated with ochratoxin A. Anal. Chim. Acta 2008, 617, 59–63. [Google Scholar] [CrossRef]
- Bozza, A.; Tralamazza, S.M.; Rodriguez, J.I.; Scholz, M.B.S.; Reynaud, D.T.; Dalzoto, P.R.; Pimentel, I.C. Potential of Fourier Transform infrared Spectroscopy (FT-IR) to detection and quantification of ochratoxin A: A comparison between reflectance and transmittance techniques. Int. J. Pharm. Chem. Biol. Sci. 2013, 3, 1242–1247. [Google Scholar]
- Berardo, N.; Pisacane, V.; Battilani, P.; Scandolara, A.; Pietri, A.; Marocco, A. Rapid detection of kernel rots and mycotoxins in maize by near-infrared reflectance spectroscopy. J. Agric. Food Chem. 2005, 53, 8128–8134. [Google Scholar] [CrossRef]
- Gaspardo, B.; del Zotto, S.; Torelli, E.; Cividino, S.R.; Firrao, G.; Della Riccia, G.; Stefanon, B. A rapid method for detection of fumonisins B1 and B2 in corn meal using Fourier transform near infrared (FT-NIR) spectroscopy implemented with integrating sphere. Food Chem. 2012, 135, 1608–1612. [Google Scholar] [CrossRef]
- Della Riccia, G.; del Zotto, S. A multivariate regression model for detection of fumonisins content in maize from near infrared spectra. Food Chem. 2013, 141, 4289–4294. [Google Scholar] [CrossRef]
- Hernández-Hierro, J.M.; García-Villanova, R.J.; Gonzáles-Martín, I. Potential of near infrared spectroscopy for the analysis of mycotoxins applied to naturally contaminated red paprika found in the Spanish market. Anal. Chim. Acta 2008, 622, 189–194. [Google Scholar] [CrossRef]
- Fernández-Ibañez, V.; Soldado, A.; Martínez-Fernández, A.; de la Roza-Delgado, B. Application of near infrared spectroscopy for rapid detection of aflatoxin B1 in maize and barley as analytical quality assessment. Food Chem. 2009, 113, 629–634. [Google Scholar] [CrossRef]
- Tekle, S.; Bjørnstad, A.; Skinnes, H.; Dong, Y.; Segtnan, V.H. Estimating deoxynivalenol content of ground oats using VIS-NIR spectroscopy. Cereal Chem. J. 2013, 90, 181–185. [Google Scholar] [CrossRef]
- Ruan, R.; Li, Y.; Lin, X.; Chen, P. Non-destructive determination of deoxynivalenol levels in barley using near-infrared spectroscopy. Appl. Eng. Agric. 2002, 18, 549–553. [Google Scholar] [CrossRef]
- Peiris, K.H.S.; Dong, Y.; Bockus, B.B.; Dowell, F.E. Estimation of bulk deoxynivalenol and moisture content of wheat grain samples by FT-NIR spectroscopy. In Proceedings of the 2013 ASABE Annual International Meeting, St. Joseph, MI, USA, 21–24 July 2013; ASABE Paper N. 131593402. pp. 1–8.
- Garon, D.; el Kaddoumi, A.; Carayon, A.; Amiel, C. FT-IR spectroscopy for rapid differentiation of Aspergillus flavus, Aspergillus fumigatus, Aspergillus parasiticus and characterization of aflatoxigenic isolates collected from agricultural environments. Mycopathologia 2010, 170, 131–142. [Google Scholar] [CrossRef]
- Dachoupakan Sirisomboon, C.; Putthang, R.; Sirisomboon, P. Application of near infrared spectroscopy to detect aflatoxigenic fungal contamination in rice. Food Control 2013, 33, 207–214. [Google Scholar] [CrossRef]
- Levasseur-Garcia, C.; Kleiber, D.; Surel, O. Infrared spectroscopy used as a decision-making support for the determination of fungal and mycotoxic risk. Cah. Agric. 2013, 22, 216–227. [Google Scholar]
- European Commission. Commission Decision No 657/2002 of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off. J. Eur. Commun. 2002, L221, 8–36. [Google Scholar]
- Visconti, A.; Haidukowski, M.; Pascale, M.; Silvestri, M. Reduction of deoxynivalenol during durum wheat processing and spaghetti cooking. Toxicol. Lett. 2004, 153, 181–189. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Williams, P.C. Near-infrared technology: Getting the best out of light. In A Short Course in the Practical Implementation of Near Infrared Spectroscopy for the User; PDK Projects Inc.: Nanaimo, BC, Canada, 2004; p. 109. [Google Scholar]
- Fearn, T. Assessing calibrations: SEP, RPD, RER and R2. NIR News 2002, 13, 12–14. [Google Scholar] [CrossRef]
- Williams, P.C. Implementation of near-infrared technology. In Near Infrared Technology in the Agricultural and Food Industries, 2nd ed.; Williams, P., Norris, K., Eds.; American Association of Cereal Chemists: St. Paul, MN, USA, 2001. [Google Scholar]
- Johnson, D.E. Discriminant analysis. In Applied Multivariate Methods for Data Analysts; Johnson, D.E., Ed.; Duxbury Press Brookes/Cole Publishing Company: Pacific Grove, CA, USA, 1998; pp. 217–285. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Girolamo, A.; Cervellieri, S.; Visconti, A.; Pascale, M. Rapid Analysis of Deoxynivalenol in Durum Wheat by FT-NIR Spectroscopy. Toxins 2014, 6, 3129-3143. https://doi.org/10.3390/toxins6113129
De Girolamo A, Cervellieri S, Visconti A, Pascale M. Rapid Analysis of Deoxynivalenol in Durum Wheat by FT-NIR Spectroscopy. Toxins. 2014; 6(11):3129-3143. https://doi.org/10.3390/toxins6113129
Chicago/Turabian StyleDe Girolamo, Annalisa, Salvatore Cervellieri, Angelo Visconti, and Michelangelo Pascale. 2014. "Rapid Analysis of Deoxynivalenol in Durum Wheat by FT-NIR Spectroscopy" Toxins 6, no. 11: 3129-3143. https://doi.org/10.3390/toxins6113129