Producers and Important Dietary Sources of Ochratoxin A and Citrinin
Abstract
:1. Introduction
2. Ochratoxin A and Citrinin Producers
2.1. OTA Producers
Genera | Section | Species | Foodstuffs (example) |
---|---|---|---|
Aspergillus | Circumdati | A. ochraceus G. Wilh. | Soya bean, nuts, red pepper, cereals, green coffee beans |
A. steynii Frisvad & Samson | Coffee beans | ||
A. westerdijkiae Frisvad & Samson | Coffee beans | ||
Nigri | A. carbonarius (Bainier) Thom | Grapes, red pepper, coffee beans | |
A. foetidus Thom & Raper | Grapes | ||
A. lacticoffeatus Frisvad & Samson | Coffee beans | ||
A. niger Tiegh | Grapes, peanuts | ||
A. sclerotioniger Frisvad & Samson | Coffee beans | ||
A. tubingensis Mosseray | Grapes |
Genera | Subgenus | Series | Species | Foodstuffs (example) |
---|---|---|---|---|
Penicillium | Penicillium | Verrucosa | P. verrucosum Dierckx | Cereals |
Verrucosa | P. nordicum Dragoni & Cantoni | Dry ham, salami |
2.2. CIT Producers
Genera | Subgenus | Series | Species | Foodstuffs (example) |
---|---|---|---|---|
Penicillium | Furcatum | - | P. citrinum Thom | Cereals, nuts, fruit |
Penicillium | Expansa | P. expansum Link | Fruit, cereals | |
Penicillium | Corymbifera | P. radicicola Overy & Frisvad | Bulbs and root vegetables | |
Penicillium | Verrucosa | P. verrucosum Dierckx | Cereals |
Genera | Species | Foodstuffs (example) |
---|---|---|
Monascus | M. purpureus Went | Food supplements with fermented red rice |
M. ruber Tiegh | Soya bean, sorghum, rice, oat |
3. Important Dietary Sources of Ochratoxin A (OTA) and Citrinin (CIT)
3.1. Important Dietary Sources of OTA
Foodstuffs | n | n+% | Mean a (μg/kg) | Median a (μg/kg) | Range minimum-maximum (μg/kg) |
---|---|---|---|---|---|
hot red pepper | 12 | 100 | 19.00 | 12.10 | 0.2–91.8 |
sweet red pepper | 12 | 100 | 16.00 | 13.50 | 0.2–38.4 |
chili | 12 | 92 | 6.70 | 3.43 | 0.1–32.7 |
spices mix | 12 | 83 | 1.64 | 1.06 | 0.1–9.4 |
coffee instant | 12 | 92 | 1.04 | 0.79 | 0.1–4.91 |
cocoa powder | 12 | 50 | 0.94 | 0.31 | 0.1–4.1 |
black pepper | 12 | 92 | 0.83 | 0.66 | 0.1–2.82 |
non-chocolate sweets | 12 | 83 | 0.67 | 0.78 | 0.1–1.78 |
biscuits | 12 | 58 | 0.57 | 0.22 | 0.1–1.69 |
raisins | 12 | 42 | 0.46 | 0.10 | 0.1–2.17 |
rice | 12 | 8 | 0.41 | 0.10 | 0.1–3.76 |
sponge biscuits | 12 | 58 | 0.41 | 0.15 | 0.1–2.14 |
coffee | 12 | 58 | 0.41 | 0.22 | 0.1–1.04 |
chocolate sweets | 12 | 50 | 0.29 | 0.17 | 0.1–1.16 |
bitter chocolate | 12 | 42 | 0.29 | 0.10 | 0.1–1.01 |
chocolate wafers | 12 | 75 | 0.24 | 0.22 | 0.1–0.56 |
muesli | 12 | 17 | 0.23 | 0.10 | 0.1–1.44 |
beer 10° | 12 | 83 | 0.066 | 0.05 | 0.005–0.26 |
lager beer | 12 | 100 | 0.064 | 0.05 | 0.01–0.18 |
red wine | 12 | 25 | 0.069 | 0.005 | 0.005–0.7 |
white wine | 12 | 42 | 0.017 | 0.005 | 0.005–0.036 |
Foodstuffs | n | n+% | Mean a (μg/kg) | Median a (μg/kg) | Range minimum-maximum (μg/kg) |
---|---|---|---|---|---|
pork kidney | 12 | 8 | 0.13 | 0.10 | 0.10–0.46 |
pork meat | 12 | 8 | 0.11 | 0.10 | 0.10–0.20 |
chicken liver | 12 | 8 | 0.12 | 0.10 | 0.10–0.28 |
3.2. Important Dietary Sources of CIT
Foodstuffs | n | n+% | Mean (mg/kg) | Range minimum-maximum (mg/kg) | References |
---|---|---|---|---|---|
Red mold rice | 1 | 100 | - | 1.43 | [85] |
Red mold rice | 1 | 100 | - | 15.21 | [86] |
Red mold rice | 12 | 33 | - | 24–189 | [87] |
Red mold rice | 50 | 100 | 4.03 | 0.23–20.65 | [88] |
4. Conclusions
Acknowledgements
Conflicts of Interest
References
- Pfohl-Leszkowicz, A.; Manderville, R.A. Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans. Mol. Nutr. Food Res. 2007, 51, 61–99. [Google Scholar] [CrossRef]
- Malir, F.; Ostry, V.; Novotna, E. Toxicity of the mycotoxin ochratoxin A (OTA) in the light of recent data. Toxin Rev. 2013, 32, 19–33. [Google Scholar] [CrossRef]
- Malir, F.; Ostry, V.; Pfohl-Leszkowicz, A.; Roubal, T. Ochratoxin A exposure biomarkers in the Czech Republic and comparison with foreign countries. Biomarkers 2012, 17, 577–589. [Google Scholar] [CrossRef]
- Pfohl-Leszkowicz, A.; Manderville, R.A. An update on direct genotoxicity as a molecular mechanism of ochratoxin A carcinogenicity. Chem. Res. Toxicol. 2012, 25, 252–262. [Google Scholar] [CrossRef]
- Hibi, D.; Suzuki, Y.; Ishii, Y.; Jin, M.; Watanabe, M.; Sugita-Konishi, Y.; Yanai, T.; Nohmi, T.; Nishikawa, A.; Umemura, T. Site-specific in vivo mutagenicity in the kidney of gpt delta rats given a carcinogenic dose of ochratoxin A. Toxicol. Sci. 2011, 122, 406–414. [Google Scholar] [CrossRef]
- Akman, S.A.; Adams, M.; Case, D.; Park, G.; Manderville, R.A. Mutagenicity of ochratoxin A and its hydroquinone metabolite in the supF gene of the mutation reporter plasmid pS189. Toxins 2012, 4, 267–280. [Google Scholar] [CrossRef]
- Pfohl-Leszkowicz, A.; Tozlovanu, M.; Manderville, R.; Peraica, M.; Castegnaro, M.; Stefanovic, V. New molecular and field evidences for the implication of mycotoxins but not aristolochic acidin Human Nephropathy and Urinary tract tumor. Mol. Nutr. Food Res. 2007, 51, 1131–1146. [Google Scholar] [CrossRef]
- Arai, M.; Hibino, T. Tumorigenicity of citrinin in male F344 rats. Cancer Lett. 1983, 17, 281–287. [Google Scholar] [CrossRef]
- Sándor, G.; Busch, A.; Watzke, H.; Reek, J.; Ványi, A. Subacute toxicity testing of ochratoxin-A and citrinin in swine. Acta Vet. Hung. 1991, 39, 149–160. [Google Scholar]
- Ammar, H.; Michailis, G.; Lisovsky, T. A screen of yeast respiratory mutants for sensitivity against the mycotoxin citrinin identifies the vascular ATPase as an essential factor for the toxicity mechanism. Curr. Genet. 2000, 37, 277–284. [Google Scholar]
- Sharma, R.P. Imunotoxicity of mycotoxins. J. Dairy Sci. 1993, 76, 892–897. [Google Scholar] [CrossRef]
- Hood, R.D.; Hayes, A.W.; Scammell, J.G. Effects of prenatal administration of citrinin and viriditoxin to mice. Food Cosmetics Toxicol. 1976, 14, 175–178. [Google Scholar] [CrossRef]
- Singh, N.D.; Sharma, A.K.; Dwivedi, P.; Patil, R.D.; Kumar, M. Citrinin and endosulfan induced maternal toxicity in pregnant Wistar rats: Pathomorphological study. J. Appl. Toxicol. 2007, 27, 589–601. [Google Scholar] [CrossRef]
- Singh, N.D.; Sharma, A.K.; Dwivedi, P.; Patil, R.D.; Kumar, M. Citrinin and endosulfan induced teratogenic effects in Wistar rats. J. Appl. Toxicol. 2007, 27, 143–151. [Google Scholar] [CrossRef]
- Singh, N.D.; Sharma, A.K.; Dwivedi, P.; Patil, R.D.; Kumar, M. Experimentally induced citrinin and endosulfan toxicity in pregnant Wistar rats: Histopathological alterations in liver and kidneys of fetuses. J. Appl. Toxicol. 2008, 28, 901–907. [Google Scholar] [CrossRef]
- Singh, N.D.; Sharma, A.K.; Dwivedi, P.; Patil, R.D.; Kumar, M.; Ahamad, D.B. Toxicity of endosulfan and citrinin alone and in combination in pregnant rats: Clinico-Haematological and serum biochemical alterations. Ind. J. Vet. Pathol. 2006, 30, 27–31. [Google Scholar]
- Ciegler, A.; Vesonder, R.F.; Jackson, L.K. Production and biological activity of patulin and citrinin from Penicillium expansum. Appl. Environ. Microbiol. 1977, 33, 1004–1006. [Google Scholar]
- Vesela, D.; Vesely, D.; Jelinek, R. Toxic effects of ochratoxin A and citrinin, alone and in combination, on chicken embryos. Appl. Environ. Microbiol. 1983, 45, 91–93. [Google Scholar]
- Sansing, G.A.; Lillehoj, E.B.; Detroy, R.W.; Miller, M.A. Synergistic toxic effects of citrinin, ochratoxin A and penicillic acid in mice. Toxicology 1976, 14, 213–220. [Google Scholar]
- Kitchen, D.N.; Carlton, W.W.; Hinsman, J. Ochratoxin A and citrinin induced nephrosis in beagle dogs. III. Terminal renal ultrastructural alterations. Vet. Pathol. 1977, 14, 392–406. [Google Scholar]
- Thacker, H.L.; Carlton, W.W. Citrinin mycotoxicosis in the guinea pig. Food Cosmetics Toxicol. 1977, 15, 553–556. [Google Scholar] [CrossRef]
- Siraj, M.; Phillips, T.D.; Hayes, A.W. Effects of the mycotoxins citrinin and ochratoxin A on hepatic mixed-function oxidase and adenosine triphosphatase in neonatal rats. J. Toxicol. Environ. Health 1981, 8, 131–140. [Google Scholar] [CrossRef]
- Knasmüller, S.; Cavin, C.; Chakraborty, A.; Darroudi, F.; Majer, B.J.; Huber, W.W.; Ehrlich, V.A. Structurally related mycotoxins ochratoxin A, ochratoxin B, and citrinin differ in their genotoxic activities and in their mode of action in human-derived liver (HepG2) cells: Implications for risk assessment. Nutr. Cancer 2004, 50, 190–197. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC), Some Naturally Occurring and Synthetic Food Components, Furocoumarins and Ultraviolet Radiation. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; World Health Organization: Lyon, France, 1986; Vlolume 40, p. 67.
- Kanisawa, M. Synergistic effect of citrinin on hepatorenal carcinogenesis of ochratoxin A in mice. Dev. Food Sci. 1984, 7, 245–254. [Google Scholar]
- Jeswal, P. Cumulative effect of ochratoxin A and citrinin on induction of hepatorenal carcinogenesis in mice (Mus musculus). Biomed. Lett. 1995, 52, 269–275. [Google Scholar]
- Heussner, A.H.; Dietrich, D.R.; O’Brien, E. In vitro investigation of individual and combined cytotoxic effects of ochratoxin A and other selected mycotoxins on renal cells. Toxicol. In Vitro 2006, 20, 332–341. [Google Scholar] [CrossRef]
- Grenier, B.; Oswald, I.P. Mycotoxin co-contamination of food and feed: Meta-Analysis of publications describing toxicological interactions. World Mycotoxin. J. 2011, 4, 285–313. [Google Scholar] [CrossRef]
- Pfohl-Leszkowicz, A.; Molinié, A.; Tozlovanu, M.; Manderville, R.A. Combined Toxic Effects of Ochratoxin A and Citrinin, in Vitro and in Vivo. In Food Contaminats: Mycotoxins & Food Allergens; Siantar, D.P., Trucksess, M.W., Scott, P.M., Herman, E.M., Eds.; American Chemical Society Symposium Series, 1001; American Society of Microbiology: Washington D.C., USA, 2008; pp. 56–80. [Google Scholar]
- Manderville, R.; Pfohl-Leszkowicz, A. Bioactivation and DNA adduction as a rationale for ochratoxin A carcinogenesis. World Mycotoxin. J. 2008, 1, 357–367. [Google Scholar] [CrossRef]
- Trivedi, A.B.; Doi, E.; Kitabatake, N. Toxic compounds formed on prolonged heating of citrinin under watery conditions. J. Food Sci. 1993, 58, 229–232. [Google Scholar] [CrossRef]
- Trivedi, A.B.; Hirota, M.; Doi, E.; Kitabatake, N. Formation of a new toxic compound, citrinin H1, from citrinin on mild heating in water. J. Chem. Soc. 1993, 2167–2171. [Google Scholar]
- Kitabatake, N.; Trivedi, A.B.; Doi, E. Thermal decomposition and detoxification of citrinin under various moisture conditions. J. Agric. Food Chem. 1991, 39, 2240–2244. [Google Scholar] [CrossRef]
- Van der Merwe, K.J.; Steyn, P.S.; Fourie, L.; Scott, D.B.; Theron, L.L. Ochratoxin A, a toxic metabolite produced by Aspergillus ochraceus Wilh. Nature 1965, 205, 1112–1113. [Google Scholar] [CrossRef]
- Abarca, M.L.; Bragulat, M.R.; Castella, G.; Cabañes, F.J. Ochratoxin A production by strains of Aspergillus niger var. niger. Appl. Environ. Microbiol. 1994, 60, 2650–2652. [Google Scholar]
- Teren, J.; Varga, J.; Hamari, Z.; Rinyu, E.; Kevei, E. Immunochemical detection of ochratoxin A in black Aspergillus strains. Mycopathologia 1996, 134, 171–176. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Fank, J.M.; Houbraken, J.A.M.P.; Kuipers, A.F.A.; Samson, R.A. New ochratoxin A producing species of Aspergillus section Circumdati. Stud. Mycol. 2004, 50, 23–43. [Google Scholar]
- Samson, R.A.; Houbraken, J.A.M.P.; Kuipers, A.F.A.; Frank, J.M.; Frisvad, J.C. New ochratoxin A or sclerotium producing species in Aspergillus section Nigri. Stud. Mycol. 2004, 50, 45–46. [Google Scholar]
- Perrone, G.; Susca, A.; Epifani, F.; Mule, G. AFLP characterization of Southern Europe population of Aspergillus Section Nigri from grapes. Int. J. Food Microbiol. 2006, 111, 22–27. [Google Scholar] [CrossRef]
- Larsen, T.O.; Svendsen, A.; Smedsgaard, J. Biochemical characterization of ochratoxin A-producing strains of the genus Penicillium. Appl. Env. Microb. 2001, 67, 3630–3635. [Google Scholar] [CrossRef]
- Battilani, P.; Pietri, V.A.; Giorni, P.; Formenti, S.; Bertuzzi, T.; Toscani, T.; Virgili, R.; Kozakiewicz, Z. Penicillium populations in dry-cured ham manufacturing plants. J. Food Prot. 2007, 70, 975–980. [Google Scholar]
- Stark, A.A. Threat assessment of mycotoxins as weapons: Molecular mechanisms of acute toxicity. J. Food Prot. 2005, 68, 1285–1293. [Google Scholar]
- Samson, R.A.; Frisvad, J.C. Penicillium subgenus Penicillium: New taxonomic schemes and mycotoxins and other extrolites. Stud. Mycol. 2004, 49, 260. [Google Scholar]
- Samson, R.A.; Pitt, J.I. Integration of Modern Taxonomic Methods for Penicillium. and Aspergillus. Classification; Harwood Academic Publishers: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Pitt, J.I. Biology and Ecology of Toxigenic Penicillium Species. In Mycotoxins and Food Safety; DeVries, J.W., Truckseess, M.W., Jackson, L.S., Eds.; Kluwer Academic, Plenum Publishers: New York, NY, USA, 2002; pp. 29–41. [Google Scholar]
- Somma, S.; Perrone, G.; Logrieco, A.F. Diversity of black Aspergilli and mycotoxin risks in grape, wine and dried vine fruits. Phytopathol. Mediterr. 2012, 51, 131–147. [Google Scholar]
- Rodriguez, A.; Rodriguez, M.; Martin, A.; Nunez, F.; Cordoba, J.J. Evaluation of hazard of aflatoxin B1, ochratoxin A and patulin production in dry-cured ham and early detection of producing moulds by qPCR. Food Contr. 2012, 27, 118–126. [Google Scholar] [CrossRef]
- Dall’Asta, C.; Galaverna, G.; Bertuzzi, T.; Moseriti, A.; Pietri, A.; Dossena, A.; Marchelli, R. Occurrence of ochratoxin A in raw ham muscle, salami and dry-cured ham from pigs fed with contaminated diet. Food Chem. 2010, 120, 978–983. [Google Scholar] [CrossRef]
- Duarte, S.C.; Lino, C.M.; Pena, A. Food safety implications of ochratoxin A in animal-derived food products. Vet. J. 2012, 192, 286–292. [Google Scholar] [CrossRef]
- Overy, D.P.; Frisvad, J.C. New Penicillium species associated with bulbs and root vegetables. Syst. Appl. Microbiol. 2003, 26, 631–639. [Google Scholar] [CrossRef]
- Blanc, P.J.; Loret, M.O.; Goma, G. Production of citrinin by various species of Monascus. Biotechnol. Lett. 1995, 17, 291–294. [Google Scholar] [CrossRef]
- Samson, R.A.; Seifert, K.A.; Kuijpers, A.F.A.; Houbraken, J.A.M.P.; Frisvad, J.C. Phylogenetic analysis of Penicillium subgenus Penicillium using partial β-tubulin sequences. Stud. Mycol. 2004, 49, 175–200. [Google Scholar]
- Hawksworth, D.L.; Pitt, J.I. A new taxonomy for Monascus species based on cultural and microscopical characters. Aust. J. Bot. 1983, 31, 51–61. [Google Scholar] [CrossRef]
- EFSA. Opinion of the scientific panel on contaminants in the food chain on request from the commission related to ochratoxin A in food. EFSA J. 2006, 365, 1–56.
- Degen, G.H.; Mayer, S.; Blaszkewicz, M. Biomonitoring of ochratoxin A in grain workers. Mycotox. Res. 2007, 23, 88–93. [Google Scholar] [CrossRef]
- Zimmerli, B.; Dick, R. Determination of ochratoxin A at the ppt level in human blood, serum, milk and some foodstuffs by high, performance liquid chromatography with enhanced fluorescence detection and immunoaffinity column cleanup: Methodology and Swiss data. J. Chromatogr. B 1995, 666, 85–99. [Google Scholar] [CrossRef]
- Rizzo, A.; Eskola, M.; Atroshi, F. Ochratoxin A in cereals, foodstuffs and human plasma. Eur. J. Plant Pathol. 2002, 108, 631–637. [Google Scholar] [CrossRef]
- Bonvehi, J.S. Occurrence of ochratoxin A in cocoa products and chocolate. J. Agric. Food Chem. 2004, 52, 6347–6352. [Google Scholar] [CrossRef]
- Molinié, A.; Faucet, V.; Castegnaro, P.; Pfohl-Leszkowicz, A. Analysis of some breakfast cereals on the French market for their contents of ochratoxin A, citrinin and fumonisin B-1: Development of a method for simultaneous extraction of ochratoxin A and citrinin. Food Chem. 2005, 92, 391–400. [Google Scholar] [CrossRef]
- Jørgensen, K. Occurrence of ochratoxin A in commodities and processed food—A review of EU occurrence data. Food Addit. Contam. 2005, S1, 26–30. [Google Scholar] [CrossRef]
- Clark, H.A.; Snedeker, S.M. Ochratoxin A: Its cancer risk and potential for exposure. J. Toxicol. Environ. Health Part B 2006, 9, 265–296. [Google Scholar] [CrossRef]
- Napolitano, A.; Fogliano, V.; Tafuri, A.; Ritieni, A. Natural occurrence of ochratoxin A and antioxidant activities of green and roasted coffees and corresponding byproducts. J. Agric. Food Chem. 2007, 55, 10499–10504. [Google Scholar] [CrossRef]
- De Almeida, A.P.; Alaburda, J.; Shundo, L.; Ruvieri, V.; Navas, S.A.; Lamardo, L.C.A.; Sabino, M. Ochratoxin A in Brazilian instant coffee. Braz. J. Microbiol. 2007, 38, 300–303. [Google Scholar] [CrossRef]
- Mounjouenpou, P.; Gueule, D.; Fontana-Tachon, A.; Guyot, B.; Tondje, P.R.; Guiraud, J.P. Filamentous fungi producing ochratoxin A during cocoa processing in Cameroon. Int. J. Food Microbiol. 2008, 121, 234–241. [Google Scholar] [CrossRef]
- Tozlovanu, M.; Pfohl-Leszkowicz, A. Ochratoxin A in roasted coffee purchased in french super market. Transfer in coffee beverage: Comparison of several methods. Toxins 2010, 2, 1928–1949. [Google Scholar] [CrossRef] [Green Version]
- Skarkova, J.; Ostry, V.; Malir, F.; Roubal, T. The determination of ultra-trace amounts of ochratoxin A in foodstuffs by HPLC method. Anal. Lett. 2013, 1–26. [Google Scholar] [CrossRef]
- Pietri, A.; Rastelli, S.; Bertuzzi, T. Ochratoxin A and aflatoxins in liquorice products. Toxins 2010, 2, 758–770. [Google Scholar] [CrossRef]
- Pietri, A.; Rastelli, S.; Mulazzi, A.; Bertuzzi, T. Aflatoxins and ochratoxin A in dried chestnuts and chestnut flour produced in Italy. Food Contr. 2012, 25, 601–606. [Google Scholar] [CrossRef]
- Bertuzzi, T.; Gualla, A.; Morlacchini, M.; Pietri, A. Direct and indirect contamination with ochratoxin A of ripened pork products. Food Control 2013, 34, 79–83. [Google Scholar] [CrossRef]
- Schmidt-Heydt, M.; Graf, E.; Batzler, J.; Geisen, R. The application of transcriptomics to understand the ecological reasons of ochratoxin A biosynthesis by Penicillium nordicum on sodium chloride rich dry cured food. Trends Food Sci. Tech. 2013, 22, 39–48. [Google Scholar] [CrossRef]
- Biancardi, A.; Piro, R.; Galaverna, G.; Dall’Asta, C. A simple and reliable liquid chromatography-tandem mass spectrometry method for determination of ochratoxin A in hard cheese. Inter. J. Food Sci. Nutr. 2013, 64, 632–640. [Google Scholar] [CrossRef]
- Dall’Asta, C.; De Dea Lindner, J.; Galaverna, G.; Dossena, A.; Neviani, E.; Marchelli, R. The occurrence of ochratoxin A in blue cheese. Food Chem. 2008, 106, 729–734. [Google Scholar] [CrossRef]
- Pfohl-Leszkowicz, A.; Petkova-Bocharova, T.; Chernozemsky, I.N.; Castegnaro, M. Balkan endemic nephropathy and the associated urinary tract tumours: Review on etiological causes, potential role of mycotoxins. Food Addit. Contam. 2002, 19, 282–302. [Google Scholar] [CrossRef]
- Castegnaro, M.; Canadas, D.; Vrabcheva, T.; Petkova-Bocharova, T.; Chernozemsky, I.N.; Pfohl-Leszkowicz, A. Balkan endemic nephropathy: Role of ochratoxins A through biomarkers. Mol. Nutr. Food Res. 2006, 50, 519–529. [Google Scholar] [CrossRef]
- Markov, K.; Pleadin, J.; Bevardi, M.; Vahčić, N.; Sokolić-Mihalak, D.; Frece, J. Natural occurrence of aflatoxin B1, ochratoxin A and citrinin in Croatian fermented meat products. Food Contr. 2013, 34, 312–317. [Google Scholar] [CrossRef]
- Reddy, R.V.; Berndt, W.O. Citrinin. In Mycotoxins and Phytoalexins; Sharma, R.P., Salunk, D.K., Eds.; CRC Press: Boca Raton, FL, USA, 1991; pp. 237–250. [Google Scholar]
- Jimenez, M.; Mateo, R.; Querol, A.; Huerta, T.; Hernandez, E. Mycotoxins and mycotoxigenic moulds in nuts and sunflower seeds for human consumption. Mycopathologia 1991, 115, 121–127. [Google Scholar] [CrossRef]
- Dietrich, R.; Schmid, A.; Märtlbauer, E. Citrinin in fruit juices. Mycotox. Res. 2001, 17, 156–159. [Google Scholar] [CrossRef]
- Meister, U. New method of citrinin determination by HPLC after polyamide column clean-up. Eur. Food Res. Technol. 2004, 218, 394–399. [Google Scholar] [CrossRef]
- El Adlouni, C.; Tozlovanu, M.; Naman, F.; Faid, M.; Pfohl-Leszkowicz, A. Preliminary data on the presence of mycotoxins (ochratoxin A, citrinin and aflatoxin B1) in black table olives “Greek style” of Moroccan origin. Mol. Nutr. Food Res. 2006, 50, 507–512. [Google Scholar] [CrossRef]
- Heperkan, D.; Meric, B.E.; Sismanoglu, G.; Dalkiliç, G.; Güler, F.K. Mycobiota, mycotoxigenic fungi, and citrinin production in black olives. Adv. Exp. Med. Biol. 2006, 571, 203–210. [Google Scholar] [CrossRef]
- Nguyen Minh, T.; Tozlovanu, M.; Tran Thi, L.; Pfohl-Leszkowicz, A. Occurrence of aflatoxin B1, citrinin and ochratoxin A in rice in five provinces of central region in Vietnam. Food Chem. 2007, 105, 42–47. [Google Scholar] [CrossRef]
- Bailly, J.D.; Querin, A.; le Bars-Bailly, S.; Benard, G.; Guerre, P. Citrinin production and stability in cheese. J. Food Prot. 2002, 65, 1317–1321. [Google Scholar]
- EFSA. Scientific Opinion on the risks for public and animal health related to the presence of citrinin in food and feed. EFSA J. 2012, 12, 1–82.
- Kumari, H.P.M.; Naidu, K.A.; Vishwanatha, S.; Narasimhamurthy, K.; Vijayalakshmi, G. Safety evaluation of Monascus purpureus red mould rice in albino rats. Food Chem. Toxicol. 2009, 47, 1739–1746. [Google Scholar] [CrossRef]
- Zheng, Y.; Xin, Y.; Guo, Y. Study on the fingerprint profile of Monascus products with HPLC-FD, PAD and MS. Food Chem. 2009, 113, 705–711. [Google Scholar] [CrossRef]
- Gordon, R.Y.; Cooperman, T.; Obermeyer, W.; Becker, D.J. Marked variability of monacolin levels in commercial red yeast rice products: buyer beware! Arch. Inter. Med. 2010, 170, 1722–1727. [Google Scholar] [CrossRef]
- Samsudin, N.I.; Abdullah, N. A preliminary survey on the occurrence of mycotoxigenic fungi and mycotoxins contaminating red rice at consumer level in Selangor, Malaysia. Mycotoxin Res. 2013, 29, 89–96. [Google Scholar] [CrossRef]
- Wu, C.L.; Kuo, Y.H.; Lee, C.L.; Hsu, Y.W.; Pan, T.M. Synchronous high-performance liquid chromatography with a photodiode array detector and mass spectrometry for the determination of citrinin, monascin, ankaflavin, and the lactone and acid forms of monacolin K in red mold rice. J. AOAC Int. 2011, 94, 179–190. [Google Scholar]
- Dimmer, T.; Czech Agriculture and Food Inspection Authority, Brno, Czech. personal communication, 2013.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ostry, V.; Malir, F.; Ruprich, J. Producers and Important Dietary Sources of Ochratoxin A and Citrinin. Toxins 2013, 5, 1574-1586. https://doi.org/10.3390/toxins5091574
Ostry V, Malir F, Ruprich J. Producers and Important Dietary Sources of Ochratoxin A and Citrinin. Toxins. 2013; 5(9):1574-1586. https://doi.org/10.3390/toxins5091574
Chicago/Turabian StyleOstry, Vladimir, Frantisek Malir, and Jiri Ruprich. 2013. "Producers and Important Dietary Sources of Ochratoxin A and Citrinin" Toxins 5, no. 9: 1574-1586. https://doi.org/10.3390/toxins5091574
APA StyleOstry, V., Malir, F., & Ruprich, J. (2013). Producers and Important Dietary Sources of Ochratoxin A and Citrinin. Toxins, 5(9), 1574-1586. https://doi.org/10.3390/toxins5091574