Detection of Type A Trichothecene Di-Glucosides Produced in Corn by High-Resolution Liquid Chromatography-Orbitrap Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Corn Powder Sample
2.3. Stock Solution and Working Solution Preparation
2.4. Extraction and Purification of Mycotoxins
2.5. LC-MS Analysis
Elemental formula | Ion | Calculated mass a | T2GlcGlc (12.94 min) | T2Glc (13.45 min) | T2 (15.85 min) |
---|---|---|---|---|---|
Observed mass b (mass accuracy, ppm) | Observed mass b (mass accuracy, ppm) | Observed mass b (mass accuracy, ppm) | |||
C36H58O19N | [T2GlcGlc + NH4]+ | 808.3598 | N.D c | - | - |
C36H54O19 | [T2GlcGlc + H]+ | 791.3332 | 791.3297 (−4.49) | - | - |
- | - | - | 791.3300 d (−4.11) | - | - |
C30H44O14 | [T2GlcGlc–Glc + H]+ ([T2Glc + H]+) | 629.2804 | N.D c | 629.2792 (−1.91) | - |
- | - | - | - | 629.2797 d (−1.14) | - |
C24H34O9 | [T2GlcGlc–GlcGlc + H]+ ([T2 + H]+) | 467.2276 | N.D c | 467.2276 e (0.15) | N.Dc |
- | - | - | - | - | - |
C19H24O7 | [T2GlcGlc–GlcGlc–C5H10O2 + H]+ | 365.1595 | N.D c | 365.1597 (0.51) | 365.1593 (−0.40) |
- | ([T2–C5H10O2 + H]+ ) | - | - | 365.1596 d (0.34) | 305.1597 d (0.60) |
C17H20O5 | [T2GlcGlc–GlcGlc–C5H10O2–C2H4O2 + H]+ | 305.1384 | - | 305.1383 (−0.15) | 305.1383 (−0.25) |
- | ([T2–C5H10O2–C2H4O2 + H]+) | - | 305.1361 d (−7.25) | 305.1382 d (−0.54) | 305.1382 d (−0.55) |
C15H16O3 | [T2GlcGlc–GlcGlc–C5H10O2–2C2H4O2 + H]+ | 245.1172 | 245.1170 (−0.82) | 245.1179 (−0.14) | 245.1172 e (−0.14) |
- | ([T2–C5H10O2–2C2H4O2 + H]+) | - | - | 245.1169 d (−0.54) | 245.1169 d (−1.44) |
C14H14O2 | [T2GlcGlc–GlcGlc–C5H10O2–2C2H4O2–CH2O + H]+ | 215.1067 | 215.1067 (0.30) | 215.1066 (−0.20) | 215.1068 (0.51) |
- | ([T2–C5H10O2–2C2H4O2–CH2O + H]+) | - | - | 215.1064 d (−1.26) | 215.1065 d (−0.56) |
Elemental formula | Ion | Calculated mass a | HT2GlcGlc (12.36 min) | HT2Glc (12.36 min) | HT2 (14.13 min) |
---|---|---|---|---|---|
Observed mass b (mass acuracy, ppm) | Observed mass b (mass acuracy, ppm) | Observed mass b (mass acuracy, ppm) | |||
C36H56O20 | [HT2GlcGlc + CH3COO]− | 807.3292 | - | - | - |
- | - | - | 807.3296 d (0.46) | - | - |
C34H52O18 | [HT2GlcGlc − H]− | 747.3081 | 747.3080 (−0.14) | - | - |
C28H42O13 | [HT2GlcGlc–Glc − H]− ([HT2Glc − H]−) | 585.2553 | - | - | - |
- | - | - | 585.2551 d (−0.23) | 585.2562 d (1.54) | - |
C22H32O8 | [HT2GlcGlc–GlcGlc − H]− ([HT2 − H]−) | 423.2024 | N.D c | 423.2036 (2.77) | N.D c |
- | - | - | - | 423.2025 d (0.17) | - |
C17H22O6 | [HT2GlcGlc–GlcGlc–C5H10O2 − H]− | 321.1344 | 321.1354 (3.25) | 321.1355 (3.44) | N.Dc |
- | ([HT2–C5H10O2 − H]− ) | - | - | 321.1352 d (2.49) | - |
C15H18O4 | [HT2GlcGlc–GlcGlc–C5H10O2–C2H4O2 − H]− | 261.1132 | 261.1134 (0.54) | 261.1135 (1.12) | 261.1130 (−0.98) |
- | ([HT2–C5H10O2–C2H4O2 − H]−) | - | 261.1345 d (0.61) | 261.1137 d (1.71) | - |
C14H16O3 | [HT2GlcGlc–GlcGlc–C5H10O2–C2H4O2–CH2O − H]− | 231.1027 | 231.1028 (0.57) | 231.1030 (1.29) | 231.1022 (−2.01) |
- | ([HT2–C5H10O2–C2H4O2–CH2O − H]−) | - | 231.1024 d (−1.22) | 231.1027 d,e (0.04) | 231.1021 d (−2.60) |
Elemental formula | Ion | Calculated mass a | MASGlc (10.65 min) | MAS (11.53 min) |
---|---|---|---|---|
Observed mass b (mass acuracy, ppm) | Observed mass b (mass acuracy, ppm) | |||
C25H38O13 | [MASGlc + CH3COO]− | 545.2240 | - | - |
- | - | - | 545.2246 d (1.07) | - |
C23H34O11 | [MASGlc − H]− | 485.2028 | 485.2034 (1.10) | N.D c |
- | - | - | 485.2036 d (1.60) | - |
C17H24O6 | [MASGlc–Glc − H]− ([MAS − H]−) | 323.1500 | 323.1500 e (−0.06) | N.D c |
- | - | - | 323.1509 d (2.68) | - |
C15H18O4 | [MASGlc–Glc–C2H4O2 − H]− | 261.1132 | 261.1134 (0.54) | 261.1134 (0.54) |
- | ([MAS–C2H4O2 − H]−) | - | 261.1134 d (0.65) | 261.1131 d (−0.63) |
C14H16O3 | [MASGlc–Glc–C2H4O2–CH2O − H]− | 231.1027 | 231.1024 (−1.35) | 231.1028 (0.63) |
- | ([MAS–C2H4O2–CH2O − H]−) | - | 231.1023 d (−1.48) | 231.1027 d,e (0.24) |
3. Results
3.1. Detection and Identification of T2GlcGlc
3.2. Detection and Identification of HT2GlcGlc
3.3. Detection and Identification of MASGlc
4. Discussion
5. Conclusions
References
- Lewis, L.; Onsongo, M.; Njapau, H.; Schurz-Rogers, H.; Luber, G.; Kieszak, S.; Njamongo, J.; Backer, L.; Dahiye, A.M.; Misore, A.; et al. Aflatoxin contamination of commercial maize products during an outbreak of acute aflatoxicosis in eastern and central Kenya. Environ. Health Perspect. 2005, 113, 1763–1767. [Google Scholar] [CrossRef]
- Desjardins, A.E. Fusarium mycotoxins, Chemistry, Genetics, and Biology; APS Press: St. Paul, MN, USA, 2006; pp. 13–108. [Google Scholar]
- World Health Organization. WHO Food Additives Series 47: Safety Evaluation of Certain Mycotoxins in Food. In Proceedings of Fifty-Sixth Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), Geneva, Italy, 2001; pp. 419–555.
- Food and Agriculture Organization of the United Nations (FAO). FAO Food and Nutrition Papers 81: Worldwide Regulations for Mycotoxins in Food and Feed in 2003. Available online: http://www.fao.org/docrep/007/y5499e/y5499e00.htm (accessed on 22 February 2013).
- Berthiller, F.; Dall’Asta, C.; Schuhmacher, R.; Lemmens, M.; Adam, G.; Krska, R. Masked mycotoxins: Determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem. 2005, 53, 3421–3425. [Google Scholar] [CrossRef]
- Lancova, K.; Hajslova, J.; Poustka, J.; Krplova, A.; Zachariasova, M.; Dostalek, P.; Saschambula, L. Transfer of Fusarium mycotoxins and “masked” deoxynivalenol (deoxynivalenol-3-glucoside) from field barley through malt to beer. Food Addit. Contam. A 2008, 25, 732–744. [Google Scholar]
- Schneweis, I.; Meyer, K.; Engelhardt, G.; Bauer, J. Occurrence of zearalenone-4-β-D-glucopyranoside in wheat. J. Agric. Food Chem. 2002, 50, 1736–1738. [Google Scholar] [CrossRef]
- Berthiller, F.; Werner, U.; Sulyok, M.; Krska, R.; Hauer, M.-T.; Schuhmacher, R. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) determination of phase II metabolites of the mycotoxin zearalenone in the model plant Arabidopsis thaliana. Food Addit. Contam. 2006, 23, 1194–1200. [Google Scholar] [CrossRef]
- Berthiller, F.; Sulyok, M.; Krska, R. Chromatographic methods for the simultaneous determination of mycotoxins and their conjugates in cereals. Int. J. Food Microbiol. 2007, 119, 33–37. [Google Scholar] [CrossRef]
- Gareis, M.; Bauer, J.; Thiem, J.; Plank, G.; Grabley, S.; Gedek, B. Cleavage of zearalenone-glycoside, a masked mycotoxin, during digestion in swine. J. Vet. Med. B 1990, 37, 236–240. [Google Scholar] [CrossRef]
- Berthiller, F.; Schuhmacher, R.; Adam, G.; Krska, R. Formation, determination and significance of masked and other conjugated mycotoxins. Anal. Bioanal. Chem. 2009, 395, 1243–1252. [Google Scholar] [CrossRef]
- Berthiller, F.; Krska, R.; Domig, K.J.; Kneifel, W.; Juge, N.; Schuhmacher, R.; Adam, G. Hydrolytic fate of deoxynivalenol-3-glucoside during digestion. Toxicol. Lett. 2011, 206, 264–267. [Google Scholar] [CrossRef]
- Nakagawa, H.; Ohmichi, K.; Sakamoto, S.; Sago, Y.; Kushiro, M.; Nagashima, H.; Yoshida, M.; Nakajima, T. Detection of new Fusarium masked mycotoxin in wheat grain by high-resolution LC-Orbitrap™ MS. Food Addit. Contam. A. 2011, 28, 1447–1456. [Google Scholar] [CrossRef]
- Nakagawa, H.; Sakamoto, S.; Ohmichi, K.; Sago, Y.; Kushiro, M.; Nagashima, H. Detection of Type A Trichothecene Masked Mycotoxins by High-Resolution LC-Orbitrap MS. In Book of Abstracts of the 5th International Symposium on Recent Advances in Food Analysis (RAFA); Institute of Chemical Technology Praque: Prague, Czech Republic, 2011; p. 283. [Google Scholar]
- Nakagawa, H.; Sakamoto, S.; Sago, Y.; Kushiro, M.; Nagashima, H. The use of LC-orbitrap MS for the detection of Fusarium masked mycotoxins: A case of type A trichothecenes. World Mycotoxin J. 2012, 5, 271–280. [Google Scholar] [CrossRef]
- Lattanzio, V.M.T.; Visconti, A.; Haidukowski, M.; Pascale, M. Identification and characterization of new Fusarium masked mycotoxins, T2 and HT2 glycosyl derivatives, in naturally contaminated wheat and oats by liquid chromatography-high-resolution mass spectrometry. J. Mass Spectrom. 2012, 47, 466–475. [Google Scholar] [CrossRef]
- Veprikova, Z.; Vaclavikova, M.; Lacina, O.; Dzuman, Z.; Zachariasova, M.; Hajslova, J. Occurrence of mono- and di-glucosylated conjugates of T-2 and HT-2 toxins in naturally contaminated cereals. World Mycotoxin J. 2012, 5, 231–240. [Google Scholar] [CrossRef]
- Busman, M.; Poling, S.M.; Maragos, C.M. Observation of T-2 toxin and HT-2 toxin glucosides from Fusarium sporotrichioides by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Toxins 2011, 3, 1554–1568. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the Risks for Animal and Public Health Related to the Presence of T-2 and HT-2 Toxin in Food and Feed. Available online: http://www.efsa.europa.eu/en/efsajournal/pub/2481.htm (accessed on 22 February 2013).
- European Commission. Method Validation and Quality Control Procedures for Pesticide Residues Analysis in Food and Feed. Available online: http://ec.europa.eu/food/plant/protection/resources/qualcontrol_en.pdf (accessed on 22 February 2013).
- Nakagawa, H.; Sakamoto, S.; Sago, Y.; Kushiro, M.; Nagashima, H. Detection of masked mycotoxins derived from type A trichothecenes in corn by high-resolution LC-Orbitrap MS. Food Addit. Contam. A 2013, in press. [Google Scholar]
- Gorst-Allman, C.P.; Steyn, P.S.; Vleggaar, R.; Rabie, C.J. Structure elucidation of a novel trichothecene glycoside using 1H and 13C nuclear magnetic resonance spectroscopy. J. Chem. Soc. Perkin Trans. 1 1985. [Google Scholar] [CrossRef]
- Zachariasova, M.; Cajka, T.; Godula, M.; Kostelanska, M.; Malachova, A.; Hajslova, J. The Benefits of Orbitrap High Resolution Mass Spectrometry for Free and Masked Mycotoxins in Malt and Beer. In Book of Abstracts of the 4th International Symposium on Recent Advances in Food Analysis (RAFA); Institute of Chemical Technology Praque: Prague, Czech Republic, 2009; p. 391. [Google Scholar]
- Kostelanska, M.; Dzuman, Z.; Malachova, A.; Capouchova, I.; Prokinova, E.; Skerikova, A.; Hajslova, J. Effects of milling and baking technologies on levels of deoxynivalenol and its masked form from deoxynivalenol-3-glucoside. J. Agric. Food Chem. 2011, 59, 9303–9312. [Google Scholar] [CrossRef]
- Makarov, A. Electronic axially harmonic orbital trapping: A high-performance technique of mass analysis. Anal. Chem. 2000, 72, 1156–1162. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Nakagawa, H.; Sakamoto, S.; Sago, Y.; Nagashima, H. Detection of Type A Trichothecene Di-Glucosides Produced in Corn by High-Resolution Liquid Chromatography-Orbitrap Mass Spectrometry. Toxins 2013, 5, 590-604. https://doi.org/10.3390/toxins5030590
Nakagawa H, Sakamoto S, Sago Y, Nagashima H. Detection of Type A Trichothecene Di-Glucosides Produced in Corn by High-Resolution Liquid Chromatography-Orbitrap Mass Spectrometry. Toxins. 2013; 5(3):590-604. https://doi.org/10.3390/toxins5030590
Chicago/Turabian StyleNakagawa, Hiroyuki, Shigeru Sakamoto, Yuki Sago, and Hitoshi Nagashima. 2013. "Detection of Type A Trichothecene Di-Glucosides Produced in Corn by High-Resolution Liquid Chromatography-Orbitrap Mass Spectrometry" Toxins 5, no. 3: 590-604. https://doi.org/10.3390/toxins5030590