Metabolic and Phytotoxic Profile of Phytopathogens in Main Extensive Crops of Argentina
Abstract
1. Introduction
2. Results and Discussion
2.1. Extraction of Culture Filtrates and Phytoxic Assay
2.2. Preliminary TLC Analysis and Optimization of Targeted LC-MS/MS Analysis
2.3. Metabolites from C. nicotinae
2.4. Metabolites from C. kikuchii and C. sojina
2.5. Metabolites from D. longicolla
2.6. Metabolites from S. glycines, P. teres, and P. tritici-repentis
3. Conclusions
4. Materials and Methods
4.1. General Experimental Procedure
4.2. Fungi
4.3. Fungal In Vitro Growth
4.4. Extraction of Specialized Metabolites from Fungal Liquid Culture Filtrated
4.5. Phytotoxic Assays Tested on Tomato Leaf
4.6. Standards of Fungal Specialized Metabolites
4.7. NMR Analysis
4.8. LC-MS/MS Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aramburu Merlos, F.; Monzon, J.P.; Mercau, J.L.; Taboada, M.; Andrade, F.H.; Hall, A.J.; Jobbagy, E.; Cassman, K.G.; Grassini, P. Potential for crop production increase in Argentina through closure of existing yield gaps. Field Crops Res. 2015, 184, 145–154. [Google Scholar] [CrossRef]
- de Abelleyra, D.; Banchero, S.; Verón, S. Characterization of crop sequences in Argentina. Spatial distribution and determinants. Agric. Syst. 2024, 220, 104069. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2001, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Rosegrant, M.W.; Cline, S.A. Global food security: Challenges and policies. Science 2003, 302, 1917–1919. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef]
- FAO. The Future of Food and Agriculture: Trends and Challenges; FAO: Rome, Italy, 2017. [Google Scholar]
- Mainardi, P.H.; Bidoia, E.D. Food safety management: Preventive strategies and control of pathogenic microorganisms in food. Eur. J. Biol. Res. 2024, 14, 13–32. [Google Scholar]
- Masi, M.; Sautua, F.; Zatout, R.; Castaldi, S.; Arrico, L.; Isticato, R.; Pescitelli, G.; Carmona, M.A.; Evidente, A. Phaseocyclopentenones A and B, Phytotoxic Penta- and Tetrasubstituted Cyclopentenones Produced by Macrophomina phaseolina, the Causal Agent of Charcoal Rot of Soybean in Argentina. J. Nat. Prod. 2021, 84, 459–465. [Google Scholar] [CrossRef]
- Masi, M.; Castaldi, S.; Sautua, F.; Pescitelli, G.; Carmona, M.A.; Evidente, A. Truncatenolide, a bioactive disubstituted nonenolide produced by Colletotrichum truncatum, the causal agent of anthracnose of soybean in Argentina: Fungal antagonism and SAR Studies. J. Agric. Food Chem. 2022, 70, 9834–9844. [Google Scholar] [CrossRef]
- Sautua, F.J.; Perez Pizá, M.C.; Scandiani, M.M.; Carmona, M.A. Cercospora leaf blight and purple seed stain of soybean: A permanent challenge. Plant Pathol. 2024, 73, 1981–2004. [Google Scholar] [CrossRef]
- Sautua, F.J.; Carmona, M.A. Detection and characterization of QoI resistance in Pyrenophora tritici-repentis populations causing tan spot of wheat in Argentina. Plant Pathol. 2021, 70, 2125–2136. [Google Scholar] [CrossRef]
- Sautua, F.J.; Carmona, M.A. SDHI resistance in Pyrenophora teres f teres and molecular detection of novel double mutations in sdh genes confering high resistance. Pest Manag. Sci. 2023, 79, 3300–3311. [Google Scholar] [CrossRef]
- Pérez-Pizá, M.C.; Sautua, F.J.; Szparaga, A.; Bohata, A.; Kocira, S.; Carmona, M.A. New tools for the management of fungal pathogens in extensive cropping systems for friendly environments. Crit. Rev. Plant Sci. 2024, 43, 63–93. [Google Scholar] [CrossRef]
- El-Baky, N.A.; Amara, A.A.A.F. Recent approaches towards control of fungal diseases in plants: An updated review. J. Fungi 2021, 7, 900. [Google Scholar] [CrossRef]
- Singh, H.P.; Batish, D.R.; Kohli, R.K. Handbook of Sustainable Weed Management; The Harworth Press Inc.: New York, NY, USA, 2006; pp. 507–532. [Google Scholar]
- Joel, D.M.; Hershenhorn, J.; Eizenberg, H.; Aly, R.; Ejeta, G.; Rich, P.J.; Ransom, J.K.; Sauerborn, J.; Rubiales, D. Biology and Management of Weedy Root Parasites. Horticultural Reviews. Hortic. Rev. 2007, 33, 267–349. [Google Scholar]
- Cimmino, A.; Masi, M.; Evidente, M.; Superchi, S.; Evidente, A. Fungal phytotoxins with potential herbicidal activity: Chemical and biological characterization. Nat. Prod. Rep. 2015, 32, 1629–1653. [Google Scholar] [CrossRef] [PubMed]
- Oerke, E.C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Rimando, A.M.; Duke, O.S. Natural Products for Pest Management; Symposium Series 927; ACS Division of Agricultural and Food Chemistry, Inc.: Washington, DC, USA, 2006; pp. 2–21. [Google Scholar]
- Beck, J.J.; Coat, J.R.; Duke, O.S.; Koivunen, M.E. Pest Management with Natural Products; ACS Symposium Series 1141; ACS Division of Agricultural Inc.: Washington, DC, USA, 2013. [Google Scholar]
- Elhamouly, N.A.; Hewedy, O.A.; Zaitoon, A.; Miraples, A.; Elshorbagy, O.T.; Hussien, S.; Peng, D. The hidden power of secondary metabolites in plant-fungi interactions and sustainable phytoremediation. Front. Plant Sci. 2022, 13, 1044896. [Google Scholar] [CrossRef] [PubMed]
- Strobel, G.A. Phytotoxins. Ann. Rev. Biochem. 1982, 51, 309–333. [Google Scholar] [CrossRef]
- Ballio, A.; Graniti, A. Phytotoxins and their involvement in plant disease. Experientia 1991, 47, 751–864. [Google Scholar]
- Abbas, H.K.; Duke, S.O. Phytotoxins from plant pathogen as potential herbicides. J. Toxicol. Toxin Rev. 1995, 14, 523–543. [Google Scholar] [CrossRef]
- Evidente, A.; Cimmino, A.; Masi, M. Phytotoxins produced by pathogenic fungi of agrarian plants. Phytochem. Rev. 2018, 18, 843–870. [Google Scholar] [CrossRef]
- Fleck, C.B.; Schöbel, F.; Brock, M. Nutrient acquisition by pathogenic fungi: Nutrient availability, pathway regulation, and differences in substrate utilization. Int. J. Med. Microbiol. 2011, 301, 400–407. [Google Scholar] [CrossRef]
- Pan, R.; Bai, X.; Chen, J.; Zhang, H.; Wang, H. Exploring structural diversity of microbe secondary metabolites using OSMAC strategy: A literature review. Front. Microbiol. 2019, 10, 294. [Google Scholar] [CrossRef]
- Hubert, J.; Nuzillard, J.M.; Renault, J.H. Dereplication strategies in natural product research: How many tools and methodologies behind the same concept? Phytochem. Rev. 2017, 16, 55–95. [Google Scholar] [CrossRef]
- Pérez-Victoria, I. Natural Products Dereplication: Databases and Analytical Methods. In Progress in the Chemistry of Organic Natural Products; Douglas Kinghorn, A., Falk, H., Gibbons, S., Asakawa, Y., Liu, J.K., Dirsch, V.M., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 1–56. [Google Scholar]
- El-Elimat, T.; Figueroa, M.; Ehrmann, B.M.; Cech, N.B.; Pearce, C.J.; Oberlies, N.H. High-resolution MS, MS/MS, and UV database of fungal secondary metabolites as a dereplication protocol for bioactive natural products. J. Nat. Prod. 2013, 76, 1709–1716. [Google Scholar] [CrossRef]
- Poynton, E.F.; van Santen, J.A.; Pin, M.; Contreras, M.M.; McMann, E.; Parra, J.; Showalter, B.; Zaroubi, L.; Duncan, K.R.; Linington, R.G. The natural products atlas 3.0: Extending the database of microbially derived natural products. Nucl. Acids Res. 2025, 53, D691–D699. [Google Scholar] [CrossRef]
- Li, G.; Jian, T.; Liu, X.; Lv, Q.; Zhang, G.; Ling, J. Application of metabolomics in fungal research. Molecules 2022, 27, 7365. [Google Scholar] [CrossRef]
- Nothias, L.F.; Nothias-Esposito, M.; Da Silva, R.; Wang, M.; Protsyuk, I.; Zhang, Z.; Sarvepalli, A.; Leyssen, P.; Touboul, D.; Costa, J.; et al. Bioactivity-based molecular networking for the discovery of drug leads in natural product bioassay-guided fractionation. J. Nat. Prod. 2018, 81, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Wasilewicz, A.; Areesanan, A.; Kirchweger, B.; Nicolay, S.; Waltenberger, E.; Beniddir, M.A.; Gründemann, C.; Rollinger, J.M.; Grienke, U. Combining the strengths of MS and NMR in biochemometrics: A Case Study on Buddleja officinalis. J. Nat. Prod. 2024, 88, 1099–1110. [Google Scholar] [CrossRef]
- Kuyama, S.; Tamura, T. Cercosporin. A pigment of Cercosporina kikuchii Matsumoto et Tomoyasu. I. Cultivation of fungus, isolation and purification of pigment. J. Am. Chem. Soc. 1957, 79, 5725–5726. [Google Scholar] [CrossRef]
- Lousberg, R.C.; Weiss, U.; Salemink, C.A.; Arnone, A.; Merlini, L.; Nasini, G. The structure of cercosporin, a naturally occurring quinone. J. Chem. Soc. D Chem. Commun. 1971, 22, 1463–1464. [Google Scholar] [CrossRef]
- Yamazaki, S.; Ogawa, T. The chemistry and stereochemistry of cercosporin. Agric. Biol. Chem. 1972, 36, 1707–1718. [Google Scholar] [CrossRef][Green Version]
- You, B.J.; Lee, M.H.; Chung, K.R. Production of cercosporin toxin by the phytopathogenic Cercospora fungi is affected by diverse environmental signals. Can. J. Microbiol. 2008, 54, 259–269. [Google Scholar] [CrossRef]
- Świderska-Burek, U.; Daub, M.E.; Thomas, E.; Jaszek, M.; Pawlik, A.; Janusz, G. Phytopathogenic Cercosporoid Fungi—From Taxonomy to Modern Biochemistry and Molecular Biology. Int. J. Mol. Sci. 2020, 21, 8555. [Google Scholar] [CrossRef]
- Daub, M.E.; Ehrenshaft, M. The photoactivated Cercospora toxin cercosporin: Contributions to plant disease and fundamental biology. Ann. Rev. Phytopathol. 2000, 38, 461–490. [Google Scholar] [CrossRef]
- Berestetskiy, A.; Dmitriev, A.; Mitina, G.; Lisker, I.; Andolfi, A.; Evidente, A. Nonenolides and cytochalasins with phytotoxic activity against Cirsium arvense and Sonchus arvensis: A structure–activity relationships study. Phytochemistry 2008, 69, 953–960. [Google Scholar] [CrossRef]
- Evidente, A.; Berestetskiy, A.; Cimmino, A.; Tuzi, A.; Superchi, S.; Melck, D.; Andolfi, A. Papyracillic acid, a phytotoxic 1,6-dioxaspiro [4, 4] nonene produced by Ascochyta agropyrina var. nana, a potential mycoherbicide for Elytrigia repens biocontrol. J. Agric. Food Chem. 2009, 57, 11168–11173. [Google Scholar] [CrossRef]
- Shan, R.; Heidren, A.; Stadler, M.; Sterner, O. Papyracillic acid, a new penicillic acid analogue from the ascomycete Lachnum papyraceum. Tetrahedron 1996, 52, 10249–10254. [Google Scholar] [CrossRef]
- Hansske, F.; Sterner, O.; Satadler, M.; Anke, H.; Dorge, L.; Shan, R. Papyracillic Acid, Method for Preparation and Its Use as Synthon for Bioactive Substances. U.S. Patent 5,907,047, 25 May 1999. [Google Scholar]
- Masi, M.; Meyer, S.; Górecki, M.; Mandoli, A.; Di Bari, L.; Pescitelli, G.; Evidente, A. Pyriculins A and B, two monosubstituted hex-4-ene-2, 3-diols and other phytotoxic metabolites produced by Pyricularia grisea isolated from buffelgrass (Cenchrus ciliaris). Chirality 2017, 29, 726–736. [Google Scholar] [CrossRef]
- Bell, A.A.; Stipanovic, R.D.; Puhalla, J.E. Pentaketide metabolites of Verticillium dahliae: Identification of (+)-scytalone as a natural precursor to melanin. Tetrahedron 1976, 32, 1353–1356. [Google Scholar] [CrossRef]
- Stipanovic, R.D.; Bell, A.A. Pentaketide metabolites of Verticillium dahliae. II. Accumulation of naphthol derivatives by the aberrantmelanin mutant BRM-2. Mycologia 1977, 69, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Andolfi, A.; Mugnai, L.; Luque, J.; Surico, G.; Cimmino, A.; Evidente, A. Phytotoxins produced by fungi associated with grapevine trunk diseases. Toxins 2011, 3, 1569–1605. [Google Scholar] [CrossRef]
- Masi, M.; Cimmino, A.; Reveglia, P.; Mugnai, L.; Surico, G.; Evidente, A. Advances on fungal phytotoxins and their role in grapevine trunk diseases. J. Agric. Food Chem. 2018, 66, 5948–5958. [Google Scholar] [CrossRef]
- Reveglia, P.; Raimondo, M.L.; Masi, M.; Cimmino, A.; Nuzzo, G.; Corso, G.; Fontana, A.; Carlucci, A.; Evidente, A. Untargeted and targeted LC-MS/MS based metabolomics study on in vitro culture of Phaeoacremonium species. J. Fungi 2022, 8, 55. [Google Scholar] [CrossRef]
- Félix, C.; Salvatore, M.M.; Della Greca, M.; Meneses, R.; Duarte, A.S.; Salvatore, F.; Naviglio, D.; Gallo, M.; Jorrín-Novo, J.V.; Alves, A.; et al. Production of toxic metabolites by two strains of Lasiodiplodia theobromae, isolated from a coconut tree and a human patient. Mycologia 2018, 110, 642–653. [Google Scholar] [CrossRef]
- Carmona, M.A.; Formento, N.; Scandiani, M.M. Manual “Mancha ojo de Rana”; Ediciones Horizonte A: Buenos Aires, Argentina, 2010; 48p. [Google Scholar]
- Scandiani, M.; Ferri, M.; Ferrari, B.; Formento, N.; Carmona, M.; Luque, A.; Balatti, P. First Report of races 11 and 12 of Cercospora sojina, the causal agent of Soybean Frogeye Leaf Spot in Argentina. Plant Dis. 2012, 96, 1067. [Google Scholar] [CrossRef]
- Pérez-Pizá, M.C.; Grijalba, P.E.; Cejas, E.; Chamorro Garcés, J.C.; Ferreyra, M.; Zilli, C.; Balestrasse, K. Effects of non-thermal plasma technology on Diaporthe longicolla cultures and mechanisms involved. Pest Manag. Sci. 2021, 77, 2068–2077. [Google Scholar] [CrossRef] [PubMed]
- Carmona, M.; Sautua, F.; Scandiani, M.; Bello, R.; Lopez, V.; Luque, A. In vitro sensitivity assessment of late season soybean pathogens to fungicide mixtures. Australas. Plant Dis. Notes 2017, 12, 20. [Google Scholar] [CrossRef]
- Sautua, F.J.; Pérez-Pizá, M.C.; Carmona, M.A. Primer Reporte de Mutación g143a en Septoria glycines en Argentina, Resúmenes del 6º Congreso Argentino de Fitopatología; Asociación Argentina de Fitopatólogos (AAF): Mar del Plata, Argentina, 2024; Abstract A2.050; p. 202. [Google Scholar]
- Pinkerton, F.; Strobel, G. Serinol as an activator of toxin production in attenuated cultures of Helminthosporium sacchari. Proc. Natl. Acad. Sci. USA 1976, 73, 4007–4011. [Google Scholar] [CrossRef] [PubMed]
- Zonno, M.C.; Vurro, M.; Lucretti, S.; Andolfi, A.; Perrone, C.; Evidente, A. Phyllostictine A, a potential natural herbicide produced by Phyllosticta cirsii: In vitro production and toxicity. Plant Sci. 2008, 175, 818–825. [Google Scholar] [CrossRef]
- Evidente, A.; Bruno, G.; Andolfi, L.; Sparapano, L. Two naphthalenone pentakides from liquid cultures of Phaeoacremonium aleophilum, a fungus associated with esca of grapevine. Phytopathol. Mediterr. 2000, 39, 1000–1007. [Google Scholar]
- Evidente, A.; Capasso, R.; Vurro, M.; Bottalico, A. Ascosalitoxin, a phytotoxic trisubstituted salicylic aldehyde from Ascochyta pisi. Phytochemistry 1993, 34, 995–998. [Google Scholar] [CrossRef]
- Barilli, E.; Reveglia, P.; RAgudo-Jurado, F.J.; Cañete García, V.; Cimmino, A.; Evidente, A.; Rubiales, D. Comparative analysis of secondary metabolites produced by Ascochyta fabae under in vitro conditions and their phytotoxicity on the primary host, Vicia faba, and related legume crops. Toxins 2023, 15, 693. [Google Scholar] [CrossRef]
- Cabras, A.; Mannoni, M.A.; Serra, S.; Andolfi, A.; Fiore, M.; Evidente, A. Occurrence, isolation and biological activity of phytotoxic metabolites produced in vitro by Sphaeropsis sapinea, pathogenic fungus of Pinus radiata. Eur. J. Plant Pathol. 2006, 115, 187–193. [Google Scholar] [CrossRef]
- Evidente, M.; Cimmino, A.; Zonno, M.C.; Masi, M.; Berestetskyi, A.; Santoro, E.; Superchi, S.; Vurro, M.; Evidente, A. Phytotoxins produced by Phoma chenopodiicola, a fungal pathogen of Chenopodium album. Phytochemistry 2015, 117, 482–488. [Google Scholar] [CrossRef]
- Cimmino, A.; Andolfi, A.; Fondevilla, S.; Abouzeid, M.A.; Rubiales, D.; Evidente, A. Pinolide, a new nonenolide produced by Didymella pinodes, the causal agent of Ascochyta blight on Pisum sativum. J. Agric. Food Chem. 2012, 60, 5273–5278. [Google Scholar] [CrossRef]
- Masi, M.; Zonno, M.C.; Boari, A.; Vurro, M.; Evidente, A. Terpestacin, a toxin produced by Phoma exigua var. heteromorpha, the causal agent of a severe foliar disease of oleander (Nerium oleander L.). Nat. Prod. Res. 2022, 36, 1253–1259. [Google Scholar] [CrossRef]
- Capasso, R.; Evidente, A.; Randazzo, G.; Ritieni, A.; Bottalico, A.; Vurro, M.; Logrieco, A. Isolation of cytochalasins A and B from Ascochyta heteromorpha. J. Nat. Prod. 1987, 50, 989–990. [Google Scholar] [CrossRef]
- Evidente, A.; Sparapano, L.; Motta, A.; Giordano, F.; Fierro, O.; Frisullo, S. A phytotoxic pimarane diterpene of Sphaeropsis sapinea f. sp. cupressi, the pathogen of a canker disease of cypress. Phytochemistry 1996, 42, 1541–1546. [Google Scholar] [CrossRef]
- Evidente, A.; Andolfi, A.; Cimmino, A.; Vurro, M.; Fracchiolla, M.; Charudattan, R. Herbicidal potential of ophiobolins produced by Drechslera gigantea. J. Agric. Food Chem. 2006, 54, 1779–1783. [Google Scholar] [CrossRef] [PubMed]
- Masi, M.; Andolfi, A.; Mathieu, V.; Boari, A.; Cimmino, A.; Banuls, L.M.Y.; Vurro, M.; Kornienko, A.; Kiss, R.; Evidente, A. Fischerindoline, a pyrroloindole sesquiterpenoid isolated from Neosartorya pseudofischeri, with in vitro growth inhibitory activity in human cancer cell lines. Tetrahedron 2013, 69, 7466–7470. [Google Scholar] [CrossRef]
- Evidente, A.; Lanzetta, R.; Capasso, R.; Andolfi, A.; Bottalico, A.; Vurro, M.; Zonno, M.C. Putaminoxin, a phytotoxic nonenolide from Phoma putaminum. Phytochemstry 1995, 40, 1637–1641. [Google Scholar] [CrossRef]
- Ballio, A.; Brufani, M.; Casinovi, C.G.; Cerrini, S.; Fedeli, W.; Pellicciari, R.; Santurbano, R.; Vaciago., A. The structure of fusicoccin. Experientia 1968, 24, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Sassa, T. Structure of cotylenol, the aglycone of the cotylenins leaf growth substances. Agric. Biol. Chem. 1972, 36, 2037–2039. [Google Scholar] [CrossRef]
- Evidente, A.; Motta, A.; Sparapano, L. Seiricardines B and C, phytotoxic sesquiterpenes from three species of Seiridium pathogenic for cypress. Phytochemistry 1993, 33, 69–78. [Google Scholar] [CrossRef]
- Graniti, A.; Sparapano, L.; Evidente, A. Cyclopaldic acid, a major phytotoxic metabolite of Seiridium cupressi, the pathogen of a canker disease of cypress. Plant Pathol. 1992, 41, 563–568. [Google Scholar] [CrossRef]
Fungal Name | Source | EtOAc Extract 1 (Original pH) mg | EtOAc Extract 1 (pH 2) mg |
---|---|---|---|
Cercospora kikuchii | soybean crop 2016 (−24.7823, −63.7352) | 12.4 | 1.5 |
Cercospora nicotianae | soybean crop 2016 (−26.5116, −64.4988) | 13.6 | 18.9 |
Cercospora sojina | soybean crop 2009 (−32.690518, −62.170683) | 8.4 2 | 18.8 |
Diaporthe longicolla | soybean crop 2018 (−33.870845, −60.675023) | 67.4 | 50.4 |
Septoria glycines | soybean crop 2021 (−33.406699, −61.195419) | 32.1 | 65.4 |
Pyrenophora teres | barley crop 2021 (−37.7990, −57.9496) | 181.0 | 186.4 |
Pyrenophora tritici-repentis | wheat crop 2018 (−34.5874, −60.4825) | 51.7 2 | - |
Isolates | Phytotoxic Activity of EtOAc Extract (Original pH) 1 | Phytotoxic Activity of EtOAc Extract (pH = 2) 1 |
---|---|---|
Cercospora kikuchii | Moderately phytotoxic | - |
Cercospora nicotianae | Low phytotoxic activity | Moderate phytotoxic activity |
Cercospora sojina | Low phytotoxic activity | Low phytotoxic activity |
Diaporthe longicolla | Low phytotoxic activity | Low phytotoxic activity |
Septoria glycines | Low phytotoxic activity | No phytotoxic activity |
Pyrenophora teres | High phytotoxic activity | High phytotoxic activity |
Pyrenophora tritici-repentis | Moderately phytotoxic | - |
Metabolite | Precursor Ion (m/z) | Product Ion (m/z) | CE a | CXP b | RT c (min) |
---|---|---|---|---|---|
scytalone | 195.2 [M + H]+ | 177.0 | 18 | 15 | 3.48 |
149.0 | |||||
isosclerone | 179.2 [M + H]+ | 161.0 | 18 | 15 | 4.13 |
133.0 | |||||
ascosalitoxin | 265.1 [M + H]+ | 246.9 | 14 | 20 | 8.22 |
237.0 | |||||
ascosalipyrone | 239.2 [M + H]+ | 155.0 | 14 | 20 | 5.98 |
85.0 | |||||
(R)-mellein | 179.9 [M + H]+ | 162.0 | 20 | 13 | 6.97 |
134.0 | |||||
4-hydroxymellein | 195.4 [M + H]+ | 177.0 | 15 | 20 | 4.07 |
149.1 | |||||
6-methoxymellein | 208.8 [M + H]+ | 191.0 | 22 | 16 | 7.23 |
162.8 | |||||
pinolidoxin | 338.7 [M + H]+ | 181.1 | 11 | 14 | 7.65 |
209.0 | |||||
terpestacin | 402.8 [M + H]+ | 384.7 | 12 | 14 | 7.87 |
367.2 | |||||
Papyracillic acid | 226.9 [M + H]+ | 208.7 | 9 | 15 | 4.59 |
166.9 | |||||
cytochalasin A | 477.9 [M + H]+ | 459.9 | 20 | 23 | 8.39 |
277.8 | |||||
cytochalasin B | 480.0 [M + H]+ | 462.2 | 22 | 21 | 7.06 |
425.8 | |||||
gliotoxin | 326.9 [M + H]+ | 278.7 | 10 | 16 | 3.86 |
230.7 | |||||
pyripyropene A | 583.9 [M + H]+ | 265.1 | 43 | 9 | 7.32 |
445.8 | |||||
sphaeropsidin A | 346.6 [M + H]+ | 328.8 | 13 | 20 | 8.56 |
283.0 | |||||
ophiobolin A | 401.3 [M + H]+ | 364.9 | 13 | 20 | 8.56 |
267.1 | |||||
fusaproliferin | 445.0 [M + H]+ | 367.3 | 15 | 19 | 8.97 |
348.9 | |||||
fusicoccin | 681.0 [M + H]+ | 612.9 | 11 | 15 | 7.67 |
373.1 | |||||
cotylenol | 351.4 [M + H]+ | 301.8 | 13 | 19 | 6.35 |
283.9 | |||||
fisherindoline | 510.7 [M + H]+ | 234.6 | 23 | 28 | 7.63 |
492.6 | |||||
putaminoxin | 213.1 [M + H]+ | 195.2 | 7 | 20 | 6.27 |
96.8 | |||||
seiricaricardin C | 238.8 [M + H]+ | 109.0 | 12 | 27 | 12 |
95.1 | |||||
cyclopaldic acid | 238.7 [M + H]+ | 192.8 | 17 | 15 | 5.98 |
220.7 |
Fungus | EtOAc/pH | Metabolite |
---|---|---|
Cercospora kikuchii | 2 | Putaminoxin |
Cercospora sojina | 9 | Putaminoxin |
Cercospora sojina | 2 | NA 1 |
Diaporthe longicolla | 5 | Papyracillic acid |
Diaporthe longicolla | 2 | Isosclerone |
Septoria glycines | 5 | Scytalone |
Septoria glycines | 2 | NA |
Pyrenophora teres | 5 | Scytalone |
Pyrenophora teres | NA | |
Pyrenophora tritici-repentis | 2 | Scytalone |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sautua, F.J.; Zonno, M.C.; Reveglia, P.; Ciavatta, M.L.; Carbone, M.; Lecce, L.; Pérez-Pizá, M.C.; Corso, G.; Carmona, M.A.; Evidente, A. Metabolic and Phytotoxic Profile of Phytopathogens in Main Extensive Crops of Argentina. Toxins 2025, 17, 466. https://doi.org/10.3390/toxins17090466
Sautua FJ, Zonno MC, Reveglia P, Ciavatta ML, Carbone M, Lecce L, Pérez-Pizá MC, Corso G, Carmona MA, Evidente A. Metabolic and Phytotoxic Profile of Phytopathogens in Main Extensive Crops of Argentina. Toxins. 2025; 17(9):466. https://doi.org/10.3390/toxins17090466
Chicago/Turabian StyleSautua, Francisco José, Maria Chiara Zonno, Pierluigi Reveglia, Maria Letizia Ciavatta, Marianna Carbone, Lucia Lecce, María Cecilia Pérez-Pizá, Gaetano Corso, Marcelo Anibal Carmona, and Antonio Evidente. 2025. "Metabolic and Phytotoxic Profile of Phytopathogens in Main Extensive Crops of Argentina" Toxins 17, no. 9: 466. https://doi.org/10.3390/toxins17090466
APA StyleSautua, F. J., Zonno, M. C., Reveglia, P., Ciavatta, M. L., Carbone, M., Lecce, L., Pérez-Pizá, M. C., Corso, G., Carmona, M. A., & Evidente, A. (2025). Metabolic and Phytotoxic Profile of Phytopathogens in Main Extensive Crops of Argentina. Toxins, 17(9), 466. https://doi.org/10.3390/toxins17090466