Bacterial Protein Toxins as Anticancer Agents: Clinical Potential of Pseudomonas and Anthrax Toxins
Abstract
1. Introduction
2. Pseudomonas aeruginosa Toxin-Based Therapeutics
- Full length PE: The earliest immunotoxins used intact PE, chemically coupled to OVB3 mAbs (specific to ovarian cancer). These showed dose-dependent neurotoxicity (by OVB3 antibodies) and hepatotoxicity (by binding PE via domain I to the hepatocytes) with the development of antibodies against the immunotoxin within 2 weeks of injection in ovarian cancer patients [41].
- LysPE40: After structural optimization, this truncated version of PE was generated. The domain Ia (aa 1–252) was removed with an added lysine residue at the amino terminus for effective antibody coupling. PE40 was 200-fold less toxic to mice as compared to full length PE [42].
- PE38: This version of PE was further truncated by removing both domain Ia (aa 1–252) and a portion of domain Ib (aa 365–380). The removal of non-essential aa 365–380 eliminated T-cell epitopes from PE40, thus reducing immunogenicity. To decrease the non-specific toxicity of PE, a recombinant protein PElys38 was generated. B3 mAbs against ovarian cancer were chemically coupled to lysPE38 to generate LMB-1, effective against colon and breast cancers. However, immune responses and vascular leak syndrome (VLS) limited its clinical application and further versions of the immunotoxin were developed [43].
- Recombinant chimeric PE: The next generation of PE was developed by fusing the truncated PE toxin gene with antibody gene on a single DNA construct, instead of chemical conjugation. The single-chain immunotoxin versions of OVB3-PE and LMB-1 (B3-LysPE38) were less immunogenic, cost effective, and easy to produce in Escherichia coli. They also had better tumor penetration due to their smaller size [44]. The LMB-1 trial was discontinued due to VLS and the formation of NAbs.
- KDEL-modified variants (PE40KDEL, PE38KDEL, and LysPE38KDEL): The native REDL sequence at the C-terminus was replaced by KDEL sequence in PE 40 and PE38, which enhanced ER retention and the cytotoxicity of toxin. PE40KDEL was fused to the Fv portion of the anti-Tac mAb targeting CD25, which is highly expressed on T-cell leukemia cells. However, in murine models, the administration of this immunotoxin resulted in VLS [45]. To overcome this, PE38KDEL was developed, a further truncated and less immunogenic variant, which was fused to single chain variable fragment (scFv) of the anti-Tac mAb to create LMB-2. This construct exhibited improved specificity, reduced toxicity, and enhanced anti-tumor activity. Similarly, LMB-7 was engineered by making a chimera of lysPE38KDEL (a version with an additional N-terminal lysine for improved conjugation) with scFv of B3 mAb. Although LMB-7 was effective in the immunodeficient mouse models of epidermoid carcinoma, its clinical progress was hindered by intracellular aggregation [46]. A more recent construct, D2C7-(scdsFv)-PE38KDEL (D2C7-immunotoxin), was developed by fusing a disulfide stabilized scFv of D2C7 with PE38KDEL. This design aimed to enhance structural stability and tumor-targeting precision, particularly for glioblastoma models expressing the wild-type epidermal growth factor receptor (EGFR) and EGFRvIII.
- PE38QQR: This is a PE38-optimized immunotoxin with increased toxicity. The PE38QQR toxin was generated by replacing lysine 590 and lysine 606 of PE with glutamines and lysine 613 with arginine. At the N-terminus, a lysine residue was added for antibody coupling. PE38QRR had a better synthetic yield, increased intracellular retention, enhanced cytotoxicity, and lower hepatotoxicity [47]. The immunotoxin was taken for a Phase III trial called PRECISE with 256 patients where intratumoral therapy was provided for high-grade gliomas. As expected, the immunotoxin was well tolerated when administered via convention-enhanced delivery but had no survival advantage [48].
- PE35: Domain II (aa 253–279) was removed from PE38KDEL to generate PE35, lacking disulfide linkages and T-cell epitopes, thus lowering immunogenicity. The PE35/TGFα-KDEL immunotoxin targeted EGFR-bearing bladder carcinomas with improved tolerance [49].
- PE24: A highly minimized form retaining only the furin cleavage site and catalytic domain III, eliminating domain I and domain II entirely. This variant helped in achieving maximum efficacy with minimal side effects such as hepatotoxicity and VLS. It forms the basis of LMB-110, which is generated by fusing PE24 with a fully humanized anti-mesothelin Fab. A single cycle of LMB-100 led to a marked reduction in lung carcinoma in a murine model [50]. In phase I trials, LMB-100 has shown promising results in mesothelioma and other solid tumors expressing mesothelin [50].
- PE25X6/PE25X7: These are next-generation immunotoxins with six or seven site-directed mutations in domain III to eliminate B-cell and T-cell epitopes while preserving activity. They retain only the furin site from domains I/II, significantly reducing immunogenicity and off-target effects [51].
3. Bacillus anthracis Toxin-Based Therapeutics
4. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Popoff, M.R. Overview of Bacterial Protein Toxins from Pathogenic Bacteria: Mode of Action and Insights into Evolution. Toxins 2024, 16, 182. [Google Scholar] [CrossRef]
- Xiao, Y.; Yan, Z.; Ren, F.; Tan, Y. Bacterial Exotoxins in Medicine: Potential Value and Perspectives. Int. J. Med. Sci. 2025, 22, 2010–2019. [Google Scholar] [CrossRef]
- Bacterial Protein Toxins. In Handbook of Experimental Pharmacology; Aepfelbacher, M., Aktories, K., Just, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; ISBN 978-3-642-08540-6. [Google Scholar]
- Wilson, J.W.; Rolland, A.D.; Klausen, G.M.; Prell, J.S. Ion Mobility-Mass Spectrometry Reveals That α-Hemolysin from Staphylococcus Aureus Simultaneously Forms Hexameric and Heptameric Complexes in Detergent Micelle Solutions. Anal. Chem. 2019, 91, 10204–10211. [Google Scholar] [CrossRef] [PubMed]
- Oda, M.; Terao, Y.; Sakurai, J.; Nagahama, M. Membrane-Binding Mechanism of Clostridium Perfringens Alpha-Toxin. Toxins 2015, 7, 5268–5275. [Google Scholar] [CrossRef] [PubMed]
- Márquez-López, A.; Fanarraga, M.L. AB Toxins as High-Affinity Ligands for Cell Targeting in Cancer Therapy. Int. J. Mol. Sci. 2023, 24, 11227. [Google Scholar] [CrossRef] [PubMed]
- Lemichez, E.; Barbieri, J.T. General Aspects and Recent Advances on Bacterial Protein Toxins. Cold Spring Harb. Perspect. Med. 2013, 3, a013573. [Google Scholar] [CrossRef]
- Fabbri, A.; Rosadi, F.; Ballan, G.; Del Brocco, A.; Travaglione, S.; Loizzo, S.; Fiorentini, C. Bacterial Protein Toxins: Current and Potential Clinical Use. In Frontiers in Medicinal Chemistry; Atta-ur-Rahman, Reitz, A.B., Choudhary, I., Wang, J., Eds.; Bentham Science Publishers: Singapore, 2015; pp. 274–312. ISBN 978-1-60805-970-6. [Google Scholar]
- Carlson, R.D.; Flickinger, J.C.; Snook, A.E. Talkin’ Toxins: From Coley’s to Modern Cancer Immunotherapy. Toxins 2020, 12, 241. [Google Scholar] [CrossRef]
- Shapira, A.; Benhar, I. Toxin-Based Therapeutic Approaches. Toxins 2010, 2, 2519–2583. [Google Scholar] [CrossRef]
- Hymes, K. Denileukin Diftitox for the Treatment of Cutaneous T-Cell Lymphoma. Biol. Targets Ther. 2008, 2, 717–724. [Google Scholar] [CrossRef]
- Khoshnood, S.; Fathizadeh, H.; Neamati, F.; Negahdari, B.; Baindara, P.; Abdullah, M.A.; Haddadi, M.H. Bacteria-Derived Chimeric Toxins as Potential Anticancer Agents. Front. Oncol. 2022, 12, 953678. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.N.; Saleh, S.E.; Farrag, H.A.; Aboshanab, K.M. New Insights on Pseudomonas aeruginosa Exotoxin A-Based Immunotoxins in Targeted Cancer Therapeutic Delivery. Ther. Deliv. 2023, 14, 31–60. [Google Scholar] [CrossRef] [PubMed]
- Havaei, S.M.; Aucoin, M.G.; Jahanian-Najafabadi, A. Pseudomonas Exotoxin-Based Immunotoxins: Over Three Decades of Efforts on Targeting Cancer Cells with the Toxin. Front. Oncol. 2021, 11, 781800. [Google Scholar] [CrossRef]
- Pang, Z.; Gu, M.-D.; Tang, T. Pseudomonas aeruginosa in Cancer Therapy: Current Knowledge, Challenges and Future Perspectives. Front. Oncol. 2022, 12, 891187. [Google Scholar] [CrossRef]
- Friebe, S.; Van Der Goot, F.; Bürgi, J. The Ins and Outs of Anthrax Toxin. Toxins 2016, 8, 69. [Google Scholar] [CrossRef]
- Bachran, C.; Leppla, S. Tumor Targeting and Drug Delivery by Anthrax Toxin. Toxins 2016, 8, 197. [Google Scholar] [CrossRef]
- Yin, L.; Thaker, H. Cancer Drug Delivery Systems Using Bacterial Toxin Translocation Mechanisms. Bioengineering 2023, 10, 813. [Google Scholar] [CrossRef]
- Qin, S.; Xiao, W.; Zhou, C.; Pu, Q.; Deng, X.; Lan, L.; Liang, H.; Song, X.; Wu, M. Pseudomonas aeruginosa: Pathogenesis, Virulence Factors, Antibiotic Resistance, Interaction with Host, Technology Advances and Emerging Therapeutics. Signal Transduct. Target. Ther. 2022, 7, 199. [Google Scholar] [CrossRef] [PubMed]
- Odumosu, O.; Nicholas, D.; Yano, H.; Langridge, W. AB Toxins: A Paradigm Switch from Deadly to Desirable. Toxins 2010, 2, 1612–1645. [Google Scholar] [CrossRef]
- Wedekind, J.E.; Trame, C.B.; Dorywalska, M.; Koehl, P.; Raschke, T.M.; McKee, M.; FitzGerald, D.; Collier, R.J.; McKay, D.B. Refined Crystallographic Structure of Pseudomonas aeruginosa Exotoxin A and Its Implications for the Molecular Mechanism of Toxicity 1 1Edited by D. Rees. J. Mol. Biol. 2001, 314, 823–837. [Google Scholar] [CrossRef] [PubMed]
- Wolf, P.; Elsässer-Beile, U. Pseudomonas Exotoxin A: From Virulence Factor to Anti-Cancer Agent. Int. J. Med. Microbiol. 2009, 299, 161–176. [Google Scholar] [CrossRef]
- Kounnas, M.Z.; Morris, R.E.; Thompson, M.R.; FitzGerald, D.J.; Strickland, D.K.; Saelinger, C.B. The Alpha 2-Macroglobulin Receptor/Low Density Lipoprotein Receptor-Related Protein Binds and Internalizes Pseudomonas Exotoxin A. J. Biol. Chem. 1992, 267, 12420–12423. [Google Scholar] [CrossRef]
- Ogata, M.; Fryling, C.M.; Pastan, I.; FitzGerald, D.J. Cell-Mediated Cleavage of Pseudomonas Exotoxin between Arg279 and Gly280 Generates the Enzymatically Active Fragment Which Translocates to the Cytosol. J. Biol. Chem. 1992, 267, 25396–25401. [Google Scholar] [CrossRef] [PubMed]
- McKee, M.L.; FitzGerald, D.J. Reduction of Furin-Nicked Pseudomonas Exotoxin A: An Unfolding Story. Biochemistry 1999, 38, 16507–16513. [Google Scholar] [CrossRef] [PubMed]
- Hessler, J.L.; Kreitman, R.J. An Early Step in Pseudomonas Exotoxin Action Is Removal of the Terminal Lysine Residue, Which Allows Binding to the KDEL Receptor. Biochemistry 1997, 36, 14577–14582. [Google Scholar] [CrossRef]
- Kreitman, R.J.; Pastan, I. Importance of the Glutamate Residue of KDEL in Increasing the Cytotoxicity of Pseudomonas Exotoxin Derivatives and for Increased Binding to the KDEL Receptor. Biochem. J. 1995, 307, 29–37. [Google Scholar] [CrossRef]
- Jackson, M.E.; Simpson, J.C.; Girod, A.; Pepperkok, R.; Roberts, L.M.; Lord, J.M. The KDEL Retrieval System Is Exploited by Pseudomonas Exotoxin A, but Not by Shiga-like Toxin-1, during Retrograde Transport from the Golgi Complex to the Endoplasmic Reticulum. J. Cell Sci. 1999, 112, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Hazes, B.; Read, R.J. Accumulating Evidence Suggests That Several AB-Toxins Subvert the Endoplasmic Reticulum-Associated Protein Degradation Pathway to Enter Target Cells. Biochemistry 1997, 36, 11051–11054. [Google Scholar] [CrossRef]
- Koopmann, J.-O.; Albring, J.; Hüter, E.; Bulbuc, N.; Spee, P.; Neefjes, J.; Hämmerling, G.J.; Momburg, F. Export of Antigenic Peptides from the Endoplasmic Reticulum Intersects with Retrograde Protein Translocation through the Sec61p Channel. Immunity 2000, 13, 117–127. [Google Scholar] [CrossRef]
- Iglewski, B.H.; Liu, P.V.; Kabat, D. Mechanism of Action of Pseudomonas aeruginosa Exotoxin Aiadenosine Diphosphate-Ribosylation of Mammalian Elongation Factor 2 in Vitro and in Vivo. Infect. Immun. 1977, 15, 138–144. [Google Scholar] [CrossRef]
- Jørgensen, R.; Merrill, A.R.; Yates, S.P.; Marquez, V.E.; Schwan, A.L.; Boesen, T.; Andersen, G.R. Exotoxin A–eEF2 Complex Structure Indicates ADP Ribosylation by Ribosome Mimicry. Nature 2005, 436, 979–984. [Google Scholar] [CrossRef]
- Yates, S.P.; Merrill, A.R. Elucidation of Eukaryotic Elongation Factor-2 Contact Sites within the Catalytic Domain of Pseudomonas aeruginosa Exotoxin A. Biochem. J. 2004, 379, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Dyda, F.; Benhar, I.; Pastan, I.; Davies, D.R. Crystal Structure of the Catalytic Domain of Pseudomonas Exotoxin A Complexed with a Nicotinamide Adenine Dinucleotide Analog: Implications for the Activation Process and for ADP Ribosylation. Proc. Natl. Acad. Sci. USA 1996, 93, 6902–6906. [Google Scholar] [CrossRef]
- Armstrong, S.; Li, J.-H.; Zhang, J.; Rod Merrill, A. Characterization of Competitive Inhibitors for the Transferase Activity of Pseudomonas aeruginosa Exotoxin A. J. Enzyme Inhib. Med. Chem. 2002, 17, 235–246. [Google Scholar] [CrossRef]
- Ortiz, P.A. Dominant-Negative Mutant Phenotypes and the Regulation of Translation Elongation Factor 2 Levels in Yeast. Nucleic Acids Res. 2005, 33, 5740–5748. [Google Scholar] [CrossRef][Green Version]
- Proud, C.G. Peptide-Chain Elongation in Eukaryotes. Mol. Biol. Rep. 1994, 19, 161–170. [Google Scholar] [CrossRef]
- Chang, J.-H.; Kwon, H.-Y. Expression of 14-3-3δ, Cdc2 and Cyclin B Proteins Related to Exotoxin A-Induced Apoptosis in HeLa S3 Cells. Int. Immunopharmacol. 2007, 7, 1185–1191. [Google Scholar] [CrossRef] [PubMed]
- Antignani, A.; Segal, D.; Simon, N.; Kreitman, R.J.; Huang, D.; FitzGerald, D.J. Essential Role for Bim in Mediating the Apoptotic and Antitumor Activities of Immunotoxins. Oncogene 2017, 36, 4953–4962. [Google Scholar] [CrossRef] [PubMed]
- Pai, L.H. Immunotoxin Therapy for Cancer. JAMA 1993, 269, 78. [Google Scholar] [CrossRef]
- Kondo, T.; FitzGerald, D.; Chaudhary, V.K.; Adhya, S.; Pastan, I. Activity of Immunotoxins Constructed with Modified Pseudomonas Exotoxin A Lacking the Cell Recognition Domain. J. Biol. Chem. 1988, 263, 9470–9475. [Google Scholar] [CrossRef]
- Pai, L.H.; Wittes, R.; Setser, A.; Willingham, M.C.; Pastan, I. Treatment of Advanced Solid Tumors with Immunotoxin LMB–1: An Antibody Linked to Pseudomonas Exotoxin. Nat. Med. 1996, 2, 350–353. [Google Scholar] [CrossRef] [PubMed]
- Pai, L.H.; Pastan, I. Clinical Trials with Pseudomonas Exotoxin Immunotoxins. In Clinical Applications of Immunotoxins; Frankel, A.E., Ed.; Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 1998; Volume 234, pp. 83–96. ISBN 978-3-642-72155-7. [Google Scholar]
- Siegall, C.B.; Liggitt, D.; Chace, D.; Mixan, B.; Sugai, J.; Davidson, T.; Steinitz, M. Characterization of Vascular Leak Syndrome Induced by the Toxin Component of Pseudomonas Exotoxin-Based Immunotoxins and Its Potential Inhibition with Nonsteroidal Anti-Inflammatory Drugs. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 1997, 3, 339–345. [Google Scholar]
- Chowdhury, P.S.; Viner, J.L.; Beers, R.; Pastan, I. Isolation of a High-Affinity Stable Single-Chain Fv Specific for Mesothelin from DNA-Immunized Mice by Phage Display and Construction of a Recombinant Immunotoxin with Anti-Tumor Activity. Proc. Natl. Acad. Sci. USA 1998, 95, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Debinski, W.; Pastan, I. An Immunotoxin with Increased Activity and Homogeneity Produced by Reducing the Number of Lysine Residues in Recombinant Pseudomonas Exotoxin. Bioconjugate Chem. 1994, 5, 40–46. [Google Scholar] [CrossRef]
- Iwamoto, F.M.; Lamborn, K.R.; Robins, H.I.; Mehta, M.P.; Chang, S.M.; Butowski, N.A.; DeAngelis, L.M.; Abrey, L.E.; Zhang, W.-T.; Prados, M.D.; et al. Phase II Trial of Pazopanib (GW786034), an Oral Multi-Targeted Angiogenesis Inhibitor, for Adults with Recurrent Glioblastoma (North American Brain Tumor Consortium Study 06-02). Neuro-Oncology 2010, 12, 855–861. [Google Scholar] [CrossRef]
- Theuer, C.P.; Fitzgerald, D.J.; Pastan, I. A Recombinant Form of Pseudomonas Exotoxin a Containing Transforming Growth Factor Alpha Near Its Carboxyl Terminus for the Treatment of Bladder Cancer. J. Urol. 1993, 149, 1626–1632. [Google Scholar] [CrossRef] [PubMed]
- Bauss, F.; Lechmann, M.; Krippendorff, B.-F.; Staack, R.; Herting, F.; Festag, M.; Imhof-Jung, S.; Hesse, F.; Pompiati, M.; Kollmorgen, G.; et al. Characterization of a Re-engineered, Mesothelin-targeted Pseudomonas Exotoxin Fusion Protein for Lung Cancer Therapy. Mol. Oncol. 2016, 10, 1317–1329. [Google Scholar] [CrossRef]
- Goleij, Z.; Mahmoodzadeh Hosseini, H.; Sedighian, H.; Behzadi, E.; Halabian, R.; Sorouri, R.; Imani Fooladi, A.A. Breast Cancer Targeted/Therapeutic with Double and Triple Fusion Immunotoxins. J. Steroid Biochem. Mol. Biol. 2020, 200, 105651. [Google Scholar] [CrossRef]
- The Study 1053 investigators; Kreitman, R.J.; Dearden, C.; Zinzani, P.L.; Delgado, J.; Robak, T.; Le Coutre, P.D.; Gjertsen, B.T.; Troussard, X.; Roboz, G.J.; et al. Moxetumomab Pasudotox in Heavily Pre-Treated Patients with Relapsed/Refractory Hairy Cell Leukemia (HCL): Long-Term Follow-up from the Pivotal Trial. J. Hematol. Oncol. 2021, 14, 35. [Google Scholar] [CrossRef]
- Wayne, A.S.; Shah, N.N.; Bhojwani, D.; Silverman, L.B.; Whitlock, J.A.; Stetler-Stevenson, M.; Sun, W.; Liang, M.; Yang, J.; Kreitman, R.J.; et al. Phase 1 Study of the Anti-CD22 Immunotoxin Moxetumomab Pasudotox for Childhood Acute Lymphoblastic Leukemia. Blood 2017, 130, 1620–1627. [Google Scholar] [CrossRef]
- Shah, N.N.; Bhojwani, D.; August, K.; Baruchel, A.; Bertrand, Y.; Boklan, J.; Dalla-Pozza, L.; Dennis, R.; Hijiya, N.; Locatelli, F.; et al. Results from an International Phase 2 Study of the anti-CD22 Immunotoxin Moxetumomab Pasudotox in Relapsed or Refractory Childhood B-lineage Acute Lymphoblastic Leukemia. Pediatr. Blood Cancer 2020, 67, e28112. [Google Scholar] [CrossRef]
- Kreitman, R.J.; Yuan, C.; Wang, H.-W.; Zhou, H.; Raffeld, M.; Xi, L.; Arons, E.; Feurtado, J.; James-Echenique, L.; Steinberg, S.M.; et al. Effect of Rituximab on Remissions without Minimal Residual Disease and Immunogenicity in Patients with Relapsed/Refractory Hairy Cell Leukemia Receiving Moxetumomab Pasudotox. J. Clin. Oncol. 2024, 42, e19015. [Google Scholar] [CrossRef]
- Hassan, R.; Alewine, C.; Mian, I.; Spreafico, A.; Siu, L.L.; Gomez-Roca, C.; Delord, J.; Italiano, A.; Lassen, U.; Soria, J.; et al. Phase 1 Study of the Immunotoxin LMB-100 in Patients with Mesothelioma and Other Solid Tumors Expressing Mesothelin. Cancer 2020, 126, 4936–4947. [Google Scholar] [CrossRef]
- Alewine, C.; Ahmad, M.; Peer, C.J.; Hu, Z.I.; Lee, M.-J.; Yuno, A.; Kindrick, J.D.; Thomas, A.; Steinberg, S.M.; Trepel, J.B.; et al. Phase I/II Study of the Mesothelin-Targeted Immunotoxin LMB-100 with Nab-Paclitaxel for Patients with Advanced Pancreatic Adenocarcinoma. Clin. Cancer Res. 2020, 26, 828–836. [Google Scholar] [CrossRef] [PubMed]
- Skorupan, N.; Peer, C.J.; Zhang, X.; Choo-Wosoba, H.; Ahmad, M.I.; Lee, M.-J.; Rastogi, S.; Sato, N.; Yu, Y.; Pegna, G.J.; et al. Tofacitinib to Prevent Anti-Drug Antibody Formation against LMB-100 Immunotoxin in Patients with Advanced Mesothelin-Expressing Cancers. Front. Oncol. 2024, 14, 1386190. [Google Scholar] [CrossRef]
- Hassan, R.; Sharon, E.; Thomas, A.; Zhang, J.; Ling, A.; Miettinen, M.; Kreitman, R.J.; Steinberg, S.M.; Hollevoet, K.; Pastan, I. Phase 1 Study of the Antimesothelin Immunotoxin SS1P in Combination with Pemetrexed and Cisplatin for Front-line Therapy of Pleural Mesothelioma and Correlation of Tumor Response with Serum Mesothelin, Megakaryocyte Potentiating Factor, and Cancer Antigen 125. Cancer 2014, 120, 3311–3319. [Google Scholar] [CrossRef]
- Kreitman, R.J.; Stetler-Stevenson, M.; Margulies, I.; Noel, P.; FitzGerald, D.J.P.; Wilson, W.H.; Pastan, I. Phase II Trial of Recombinant Immunotoxin RFB4(dsFv)-PE38 (BL22) in Patients with Hairy Cell Leukemia. J. Clin. Oncol. 2009, 27, 2983–2990. [Google Scholar] [CrossRef]
- Wayne, A.S.; Kreitman, R.J.; Findley, H.W.; Lew, G.; Delbrook, C.; Steinberg, S.M.; Stetler-Stevenson, M.; FitzGerald, D.J.; Pastan, I. Anti-CD22 Immunotoxin RFB4(dsFv)-PE38 (BL22) for CD22-Positive Hematologic Malignancies of Childhood: Preclinical Studies and Phase I Clinical Trial. Clin. Cancer Res. 2010, 16, 1894–1903. [Google Scholar] [CrossRef]
- Kreitman, R.J.; Stetler-Stevenson, M.; Jaffe, E.S.; Conlon, K.C.; Steinberg, S.M.; Wilson, W.; Waldmann, T.A.; Pastan, I. Complete Remissions of Adult T-Cell Leukemia with Anti-CD25 Recombinant Immunotoxin LMB-2 and Chemotherapy to Block Immunogenicity. Clin. Cancer Res. 2016, 22, 310–318. [Google Scholar] [CrossRef]
- Kreitman, R.J.; Wilson, W.H.; White, J.D.; Stetler-Stevenson, M.; Jaffe, E.S.; Giardina, S.; Waldmann, T.A.; Pastan, I. Phase I Trial of Recombinant Immunotoxin Anti-Tac(Fv)-PE38 (LMB-2) in Patients with Hematologic Malignancies. J. Clin. Oncol. 2000, 18, 1622–1636. [Google Scholar] [CrossRef] [PubMed]
- Masilamani, A.P.; Huber, N.; Nagl, C.; Dettmer-Monaco, V.; Monaco, G.; Wolf, I.; Schultze-Seemann, S.; Taromi, S.; Gratzke, C.; Fuchs, H.; et al. Enhanced Cytotoxicity of a Pseudomonas Exotoxin A Based Immunotoxin against Prostate Cancer by Addition of the Endosomal Escape Enhancer SO1861. Front. Pharmacol. 2023, 14, 1211824. [Google Scholar] [CrossRef]
- Pai, B.L.H.; Bookman, M.A.; Ozols, R.F.; Young, R.C.; Smith, J.W.; Longo, D.L.; Gould, B.; Frankel, A.; McClay, E.F.; Howell, S.; et al. Clinical Evaluation of Intraperitoneal Pseudomonas Exotoxin Immunoconjugate OVB3-PE in Patients with Ovarian Cancer. J. Clin. Oncol. 1991, 9, 2095–2103. [Google Scholar] [CrossRef]
- Von Minckwitz, G.; Harder, S.; Hövelmann, S.; Jäger, E.; Al-Batran, S.-E.; Loibl, S.; Atmaca, A.; Cimpoiasu, C.; Neumann, A.; Abera, A.; et al. Phase I Clinical Study of the Recombinant Antibody Toxin scFv(FRP5)-ETA Specific for the ErbB2/HER2 Receptor in Patients with Advanced Solid Malignomas. Breast Cancer Res. 2005, 7, R617. [Google Scholar] [CrossRef]
- Posey, J.A.; Khazaeli, M.B.; Bookman, M.A.; Nowrouzi, A.; Grizzle, W.E.; Thornton, J.; Carey, D.E.; Lorenz, J.M.; Sing, A.P.; Siegall, C.B.; et al. A Phase I Trial of the Single-Chain Immunotoxin SGN-10 (BR96 sFv-PE40) in Patients with Advanced Solid Tumors. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2002, 8, 3092–3099. [Google Scholar]
- Andersson, Y.; Engebraaten, O.; Juell, S.; Aamdal, S.; Brunsvig, P.; Fodstad, Ø.; Dueland, S. Phase I Trial of EpCAM-Targeting Immunotoxin MOC31PE, Alone and in Combination with Cyclosporin. Br. J. Cancer 2015, 113, 1548–1555. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, M.; Guindon, J.; Brazas, L.; Moore, C.; Entwistle, J.; Cizeau, J.; Jewett, M.A.S.; MacDonald, G.C. A Phase II Study of Oportuzumab Monatox: An Immunotoxin Therapy for Patients with Noninvasive Urothelial Carcinoma In Situ Previously Treated with Bacillus Calmette-Guérin. J. Urol. 2012, 188, 1712–1718. [Google Scholar] [CrossRef]
- Parker, S.; McDowall, C.; Sanchez-Perez, L.; Osorio, C.; Duncker, P.C.; Briley, A.; Swartz, A.M.; Herndon, J.E.; Yu, Y.-R.A.; McLendon, R.E.; et al. Immunotoxin-αCD40 Therapy Activates Innate and Adaptive Immunity and Generates a Durable Antitumor Response in Glioblastoma Models. Sci. Transl. Med. 2023, 15, eabn5649. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Suzuki, A.; Leland, P.; Joshi, B.H.; Puri, R.K. Identification of a Novel Role of IL-13Rα2 in Human Glioblastoma Multiforme: Interleukin-13 Mediates Signal Transduction through AP-1 Pathway. J. Transl. Med. 2018, 16, 369. [Google Scholar] [CrossRef]
- Kunwar, S.; Chang, S.; Westphal, M.; Vogelbaum, M.; Sampson, J.; Barnett, G.; Shaffrey, M.; Ram, Z.; Piepmeier, J.; Prados, M.; et al. Phase III Randomized Trial of CED of IL13-PE38QQR vs Gliadel Wafers for Recurrent Glioblastoma. Neuro-Oncology 2010, 12, 871–881. [Google Scholar] [CrossRef]
- Heiss, J.D.; Jamshidi, A.; Shah, S.; Martin, S.; Wolters, P.L.; Argersinger, D.P.; Warren, K.E.; Lonser, R.R. Phase I Trial of Convection-Enhanced Delivery of IL13-Pseudomonas Toxin in Children with Diffuse Intrinsic Pontine Glioma. J. Neurosurg. Pediatr. 2019, 23, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Dieffenbach, M.; Pastan, I. Mechanisms of Resistance to Immunotoxins Containing Pseudomonas Exotoxin A in Cancer Therapy. Biomolecules 2020, 10, 979. [Google Scholar] [CrossRef]
- St Croix, B.; Rago, C.; Velculescu, V.; Traverso, G.; Romans, K.E.; Montgomery, E.; Lal, A.; Riggins, G.J.; Lengauer, C.; Vogelstein, B.; et al. Genes Expressed in Human Tumor Endothelium. Science 2000, 289, 1197–1202. [Google Scholar] [CrossRef]
- Carson-Walter, E.B.; Watkins, D.N.; Nanda, A.; Vogelstein, B.; Kinzler, K.W.; St Croix, B. Cell Surface Tumor Endothelial Markers Are Conserved in Mice and Humans. Cancer Res. 2001, 61, 6649–6655. [Google Scholar] [PubMed]
- Reeves, C.V.; Dufraine, J.; Young, J.A.T.; Kitajewski, J. Anthrax Toxin Receptor 2 Is Expressed in Murine and Tumor Vasculature and Functions in Endothelial Proliferation and Morphogenesis. Oncogene 2010, 29, 789–801. [Google Scholar] [CrossRef] [PubMed]
- Cryan, L.M.; Rogers, M.S. Targeting the Anthrax Receptors, TEM-8 and CMG-2, for Anti-Angiogenic Therapy. Front. Biosci. Landmark Ed. 2011, 16, 1574–1588. [Google Scholar] [CrossRef]
- Hardenbrook, N.J.; Liu, S.; Zhou, K.; Ghosal, K.; Zhou, Z.H.; Krantz, B.A. Atomic Structures of Anthrax Toxin Protective Antigen Channels Bound to Partially Unfolded Lethal and Edema Factors. Nat. Commun. 2020, 11, 840. [Google Scholar] [CrossRef]
- Balfanz, J.; Rautenberg, P.; Ullmann, U. Molecular Mechanisms of Action of Bacterial Exotoxins. Zentralblatt Bakteriol. 1996, 284, 170–206. [Google Scholar] [CrossRef]
- Zhang, Y. Why Do We Study Animal Toxins? Dong Wu Xue Yan Jiu Zool. Res. 2015, 36, 183–222. [Google Scholar] [CrossRef]
- Mechaly, A.; McCluskey, A.J.; Collier, R.J. Changing the Receptor Specificity of Anthrax Toxin. mBio 2012, 3, e00088-12. [Google Scholar] [CrossRef] [PubMed]
- Aktories, K. Treatment of Ovarian Cancer with Modified Anthrax Toxin. Proc. Natl. Acad. Sci. USA 2022, 119, e2210179119. [Google Scholar] [CrossRef]
- Jack, S.; Madhivanan, K.; Ramadesikan, S.; Subramanian, S.; Edwards, D.F.; Elzey, B.D.; Dhawan, D.; McCluskey, A.; Kischuk, E.M.; Loftis, A.R.; et al. A Novel, Safe, Fast and Efficient Treatment for Her2-positive and Negative Bladder Cancer Utilizing an EGF-anthrax Toxin Chimera. Int. J. Cancer 2020, 146, 449–460. [Google Scholar] [CrossRef]
- Messing, E.M. Clinical Implications of the Expression of Epidermal Growth Factor Receptors in Human Transitional Cell Carcinoma. Cancer Res. 1990, 50, 2530–2537. [Google Scholar]
- Loftis, A.R.; Santos, M.S.; Truex, N.L.; Biancucci, M.; Satchell, K.J.F.; Pentelute, B.L. Anthrax Protective Antigen Retargeted with Single-Chain Variable Fragments Delivers Enzymes to Pancreatic Cancer Cells. ChemBioChem 2020, 21, 2772–2776. [Google Scholar] [CrossRef]
- Lu, Z.; Truex, N.L.; Melo, M.B.; Cheng, Y.; Li, N.; Irvine, D.J.; Pentelute, B.L. IgG-Engineered Protective Antigen for Cytosolic Delivery of Proteins into Cancer Cells. ACS Cent. Sci. 2021, 7, 365–378. [Google Scholar] [CrossRef]
- Bahar, M.E.; Kim, H.J.; Kim, D.R. Targeting the RAS/RAF/MAPK Pathway for Cancer Therapy: From Mechanism to Clinical Studies. Signal Transduct. Target. Ther. 2023, 8, 455. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Harper, A.; McCormack, V.; Sung, H.; Houssami, N.; Morgan, E.; Mutebi, M.; Garvey, G.; Soerjomataram, I.; Fidler-Benaoudia, M.M. Global Patterns and Trends in Breast Cancer Incidence and Mortality across 185 Countries. Nat. Med. 2025, 31, 1154–1162. [Google Scholar] [CrossRef]
- Iqbal, N.; Iqbal, N. Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications. Mol. Biol. Int. 2014, 2014, 852748. [Google Scholar] [CrossRef]
- McCluskey, A.J.; Olive, A.J.; Starnbach, M.N.; Collier, R.J. Targeting HER2-Positive Cancer Cells with Receptor-Redirected Anthrax Protective Antigen. Mol. Oncol. 2013, 7, 440–451. [Google Scholar] [CrossRef]
- Panda, V.K.; Mishra, B.; Mahapatra, S.; Swain, B.; Malhotra, D.; Saha, S.; Khanra, S.; Mishra, P.; Majhi, S.; Kumari, K.; et al. Molecular Insights on Signaling Cascades in Breast Cancer: A Comprehensive Review. Cancers 2025, 17, 234. [Google Scholar] [CrossRef]
- El-Chami, D.; Al Haddad, M.; Abi-Habib, R.; El-Sibai, M. Recombinant Anthrax Lethal Toxin Inhibits Cell Motility and Invasion in Breast Cancer Cells through the Dysregulation of Rho GTPases. Oncol. Lett. 2021, 21, 163. [Google Scholar] [CrossRef]
- Al-Dimassi, S.; Salloum, G.; Saykali, B.; Khoury, O.; Liu, S.; Leppla, S.H.; Abi-Habib, R.; El-Sibai, M. Targeting the MAP Kinase Pathway in Astrocytoma Cells Using a Recombinant Anthrax Lethal Toxin as a Way to Inhibit Cell Motility and Invasion. Int. J. Oncol. 2016, 48, 1913–1920. [Google Scholar] [CrossRef]
- Fernando, S.; Fletcher, B.S. Targeting Tumor Endothelial Marker 8 in the Tumor Vasculature of Colorectal Carcinomas in Mice. Cancer Res. 2009, 69, 5126–5132. [Google Scholar] [CrossRef] [PubMed]
- Sotoudeh, M.; Shakeri, R.; Dawsey, S.M.; Sharififard, B.; Ahmadbeigi, N.; Naderi, M. ANTXR1 (TEM8) Overexpression in Gastric Adenocarcinoma Makes the Protein a Potential Target of Immunotherapy. Cancer Immunol. Immunother. 2019, 68, 1597–1603. [Google Scholar] [CrossRef]
- Kareff, S.A.; Corbett, V.; Hallenbeck, P.; Chauhan, A. TEM8 in Oncogenesis: Protein Biology, Pre-Clinical Agents, and Clinical Rationale. Cells 2023, 12, 2623. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.-R.; Lv, H.-F.; Chen, B.-B.; Nie, C.-Y.; Zhao, J.; Chen, X.-B. Latest Therapeutic Target for Gastric Cancer: Anthrax Toxin Receptor 1. World J. Gastrointest. Oncol. 2021, 13, 216–222. [Google Scholar] [CrossRef]
- Pietrzyk, Ł. Biomarkers Discovery for Colorectal Cancer: A Review on Tumor Endothelial Markers as Perspective Candidates. Dis. Markers 2016, 2016, 1–11. [Google Scholar] [CrossRef]
- Chen, K.-H.; Liu, S.; Leysath, C.E.; Miller-Randolph, S.; Zhang, Y.; Fattah, R.; Bugge, T.H.; Leppla, S.H. Anthrax Toxin Protective Antigen Variants That Selectively Utilize Either the CMG2 or TEM8 Receptors for Cellular Uptake and Tumor Targeting. J. Biol. Chem. 2016, 291, 22021–22029. [Google Scholar] [CrossRef]
- Moradi, F.; Ghorbanian, N.; Hadi, N.; Khashyar, F.; Behbahani, M.R.; Nasrollahian, S.; Nasoohian, N.; Jazi, N.N.; Akbari, M. From Pathogenicity to Therapy: Investigating the Therapeutic Potential of Bacillus Anthracis Anthrax Toxin in Novel Cancer Therapies and Oncological Research. Arch. Microbiol. 2025, 207, 205. [Google Scholar] [CrossRef]
- Liu, S.; Wang, H.; Currie, B.M.; Molinolo, A.; Leung, H.J.; Moayeri, M.; Basile, J.R.; Alfano, R.W.; Gutkind, J.S.; Frankel, A.E.; et al. Matrix Metalloproteinase-Activated Anthrax Lethal Toxin Demonstrates High Potency in Targeting Tumor Vasculature. J. Biol. Chem. 2008, 283, 529–540. [Google Scholar] [CrossRef]
- Bachran, C.; Hasikova, R.; Leysath, C.E.; Sastalla, I.; Zhang, Y.; Fattah, R.J.; Liu, S.; Leppla, S.H. Cytolethal Distending Toxin B as a Cell-Killing Component of Tumor-Targeted Anthrax Toxin Fusion Proteins. Cell Death Dis. 2014, 5, e1003. [Google Scholar] [CrossRef]
- Fischer, E.S.; Campbell, W.A.; Liu, S.; Ghirlando, R.; Fattah, R.J.; Bugge, T.H.; Leppla, S.H. Bismaleimide Cross-linked Anthrax Toxin Forms Functional Octamers with High Specificity in Tumor Targeting. Protein Sci. 2019, 28, 1059–1070. [Google Scholar] [CrossRef]
- Liu, S.; Aaronson, H.; Mitola, D.J.; Leppla, S.H.; Bugge, T.H. Potent Antitumor Activity of a Urokinase-Activated Engineered Anthrax Toxin. Proc. Natl. Acad. Sci. USA 2003, 100, 657–662. [Google Scholar] [CrossRef]
- Liu, S.; Ma, Q.; Fattah, R.; Bugge, T.H.; Leppla, S.H. Anti-Tumor Activity of Anthrax Toxin Variants That Form a Functional Translocation Pore by Intermolecular Complementation. Oncotarget 2017, 8, 65123–65131. [Google Scholar] [CrossRef][Green Version]
- Telang, S.; Rasku, M.A.; Clem, A.L.; Carter, K.; Klarer, A.C.; Badger, W.R.; Milam, R.A.; Rai, S.N.; Pan, J.; Gragg, H.; et al. Phase II Trial of the Regulatory T Cell-Depleting Agent, Denileukin Diftitox, in Patients with Unresectable Stage IV Melanoma. BMC Cancer 2011, 11, 515. [Google Scholar] [CrossRef] [PubMed]
- Pemmaraju, N.; Lane, A.A.; Sweet, K.L.; Stein, A.S.; Vasu, S.; Blum, W.; Rizzieri, D.A.; Wang, E.S.; Duvic, M.; Sloan, J.M.; et al. Tagraxofusp in Blastic Plasmacytoid Dendritic-Cell Neoplasm. N. Engl. J. Med. 2019, 380, 1628–1637. [Google Scholar] [CrossRef]
- Frankel, A.E.; Woo, J.H.; Ahn, C.; Pemmaraju, N.; Medeiros, B.C.; Carraway, H.E.; Frankfurt, O.; Forman, S.J.; Yang, X.A.; Konopleva, M.; et al. Activity of SL-401, a Targeted Therapy Directed to Interleukin-3 Receptor, in Blastic Plasmacytoid Dendritic Cell Neoplasm Patients. Blood 2014, 124, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Weaver, M.; Laske, D.W. Transferrin Receptor Ligand-Targeted Toxin Conjugate (Tf-CRM107) for Therapy of Malignant Gliomas. J. Neuro-Oncol. 2003, 65, 3–13. [Google Scholar] [CrossRef]
- Yang, X.; Kessler, E.; Su, L.-J.; Thorburn, A.; Frankel, A.E.; Li, Y.; La Rosa, F.G.; Shen, J.; Li, C.-Y.; Varella-Garcia, M.; et al. Diphtheria Toxin-Epidermal Growth Factor Fusion Protein DAB389EGF for the Treatment of Bladder Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2013, 19, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Vallera, D.A.; Chen, H.; Sicheneder, A.R.; Panoskaltsis-Mortari, A.; Taras, E.P. Genetic Alteration of a Bispecific Ligand-Directed Toxin Targeting Human CD19 and CD22 Receptors Resulting in Improved Efficacy against Systemic B Cell Malignancy. Leuk. Res. 2009, 33, 1233–1242. [Google Scholar] [CrossRef]
- Hamlin, P.A.; Musteata, V.; Park, S.I.; Burnett, C.; Dabovic, K.; Strack, T.; Williams, E.T.; Anand, B.S.; Higgins, J.P.; Persky, D.O. Safety and Efficacy of Engineered Toxin Body MT-3724 in Relapsed or Refractory B-Cell Non-Hodgkin’s Lymphomas and Diffuse Large B-Cell Lymphoma. Cancer Res. Commun. 2022, 2, 307–315. [Google Scholar] [CrossRef]
- Rezaei Khozani, N.; Shayesteh Pour, M.; Yekani, M.; Hejazi, S.H.; Saffari, M. Anti-Tumor Effects of Recombinant Clostridium α-Toxin on Breast Cancer: An In Vitro and In Vivo Study. Int. J. Mol. Cell. Med. 2024, 13, 404–416. [Google Scholar] [CrossRef]
- Akpınar, O.; Özşimşek, A.; Güzel, M.; Nazıroğlu, M. Clostridium Botulinum Neurotoxin A Induces Apoptosis and Mitochondrial Oxidative Stress via Activation of TRPM2 Channel Signaling Pathway in Neuroblastoma and Glioblastoma Tumor Cells. J. Recept. Signal Transduct. 2020, 40, 620–632. [Google Scholar] [CrossRef]
- Shim, M.K.; Na, J.; Cho, I.K.; Jang, E.H.; Park, J.; Lee, S.; Kim, J.-H. Targeting of Claudin-4 by Clostridium Perfringens Enterotoxin-Conjugated Polysialic Acid Nanoparticles for Pancreatic Cancer Therapy. J. Control. Release 2021, 331, 434–442. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Li, H.; Chen, W.; Liu, W. Clostridium Difficile Toxin B Recombinant Protein Inhibits Tumor Growth and Induces Apoptosis through Inhibiting Bcl-2 Expression, Triggering Inflammatory Responses and Activating C-erbB-2 and Cox-2 Expression in Breast Cancer Mouse Model. Biomed. Pharmacother. 2018, 101, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Dailey, K.M.; Small, J.M.; Pullan, J.E.; Winfree, S.; Vance, K.E.; Orr, M.; Mallik, S.; Bayles, K.W.; Hollingsworth, M.A.; Brooks, A.E. An Intravenous Pancreatic Cancer Therapeutic: Characterization of CRISPR/Cas9n-Modified Clostridium Novyi-Non Toxic. PLoS ONE 2023, 18, e0289183. [Google Scholar] [CrossRef] [PubMed]
- Janku, F.; Zhang, H.H.; Pezeshki, A.; Goel, S.; Murthy, R.; Wang-Gillam, A.; Shepard, D.R.; Helgason, T.; Masters, T.; Hong, D.S.; et al. Intratumoral Injection of Clostridium Novyi-NT Spores in Patients with Treatment-Refractory Advanced Solid Tumors. Clin. Cancer Res. 2021, 27, 96–106. [Google Scholar] [CrossRef]
- Mazor, R.; Pastan, I. Immunogenicity of Immunotoxins Containing Pseudomonas Exotoxin A: Causes, Consequences, and Mitigation. Front. Immunol. 2020, 11, 1261. [Google Scholar] [CrossRef] [PubMed]
- Simon, N.; Antignani, A.; Hewitt, S.M.; Gadina, M.; Alewine, C.; FitzGerald, D. Tofacitinib Enhances Delivery of Antibody-Based Therapeutics to Tumor Cells through Modulation of Inflammatory Cells. JCI Insight 2019, 4, e123281. [Google Scholar] [CrossRef]
- Abi-Habib, R.J.; Singh, R.; Leppla, S.H.; Greene, J.J.; Ding, Y.; Berghuis, B.; Duesbery, N.S.; Frankel, A.E. Systemic Anthrax Lethal Toxin Therapy Produces Regressions of Subcutaneous Human Melanoma Tumors in Athymic Nude Mice. Clin. Cancer Res. 2006, 12, 7437–7443. [Google Scholar] [CrossRef]
- Hassan, R.; Miller, A.C.; Sharon, E.; Thomas, A.; Reynolds, J.C.; Ling, A.; Kreitman, R.J.; Miettinen, M.M.; Steinberg, S.M.; Fowler, D.H.; et al. Major Cancer Regressions in Mesothelioma After Treatment with an Anti-Mesothelin Immunotoxin and Immune Suppression. Sci. Transl. Med. 2013, 5, 208ra147. [Google Scholar] [CrossRef]
- Wein, A.N.; Peters, D.E.; Valivullah, Z.; Hoover, B.J.; Tatineni, A.; Ma, Q.; Fattah, R.; Bugge, T.H.; Leppla, S.H.; Liu, S. An Anthrax Toxin Variant with an Improved Activity in Tumor Targeting. Sci. Rep. 2015, 5, 16267. [Google Scholar] [CrossRef] [PubMed]
- Mathew, M.; Verma, R.S. Humanized Immunotoxins: A New Generation of Immunotoxins for Targeted Cancer Therapy. Cancer Sci. 2009, 100, 1359–1365. [Google Scholar] [CrossRef]
- Liu, Z.; Jiang, W.; Nam, J.; Moon, J.J.; Kim, B.Y.S. Immunomodulating Nanomedicine for Cancer Therapy. Nano Lett. 2018, 18, 6655–6659. [Google Scholar] [CrossRef] [PubMed]
- Khormi, M.A.; Al-maaqar, S.M.; Al Johni, A.R.; Al-Tayyar, N.A.; Alhamad, J.A.; Ghyathuddin, A.A.; Alblawi, Z.; Behairy, S.M.; Alghamdi, M.A.; Alsubhi, W.A.; et al. Oncolytic Bacteria: A Revolutionary Approach to Cancer Therapy. Open Life Sci. 2025, 20, 20251076. [Google Scholar] [CrossRef]
- Manning, M.L.; Mason-Osann, E.; Onda, M.; Pastan, I. Bortezomib Reduces Pre-Existing Antibodies to Recombinant Immunotoxins in Mice. J. Immunol. 2015, 194, 1695–1701. [Google Scholar] [CrossRef]
- Antignani, A.; Sarnovsky, R.; FitzGerald, D.J. ABT-737 Promotes the Dislocation of ER Luminal Proteins to the Cytosol, Including Pseudomonas Exotoxin. Mol. Cancer Ther. 2014, 13, 1655–1663. [Google Scholar] [CrossRef]
Agent | Target | Cancer Type/s | Phase and Status | Key Findings | Reference/s |
---|---|---|---|---|---|
Moxetumomab pasudotox (HA22, PE38-based) Moxetumomab + rituximab | CD22 | Relapsed/refractory hairy cell leukemia (HCL) | Phase III (NCT01829711) FDA-approved 2018 | 41% CR in HCL adults, most MRD-negative | [52] |
Relapsed/refractory childhood ALL | Phase I (NCT00659425) | 32% ORR in pediatric ALL (23% CR; 5 MRD-neg) | [53,54] | ||
HCL | Phase I (NCT03805932) | 78% CR and 72% MRD-free CR with reduced immunogenicity | [55] | ||
LMB-100 (anti-mesothelin Fab-PE24) | Mesothelin | Mesothelioma, pancreatic adenocarcinoma | Phase I (NCT02798536, NCT02317419) | Renal toxicity; short half-life (53 min); reduced efficacy. Synergistic effects with checkpoint inhibitor, pembrolizumab | [56] |
LMB-100 + nab- paclitaxel | Mesothelin | Advanced pancreatic cancer | Phase I/II (NCT02810418) | Significant antitumor activity in 40% patients; severe CLS; combination discontinued | [57] |
LMB-100 + Tofacitinib | Mesothelin/ JAK | Solid tumors | Phase I (NCT04034238) | Study terminated early due to pericarditis in two patients, ADA prevention shown | [58] |
SS1(dsFV)PE38 + pemetrexed/ cisplatin | Mesothelin | Mesothelioma | Phase I (NCT01445392) | SS1P + chemotherapy achieved 60% ORR; 77% at MTD; NAbs formed in 90% after one cycle | [59] |
BL22 (RFB4-dsFv- PE38) | CD22 | Relapsed/refractory hairy cell leukemia | Phase II (NCT00074048) | 25% CR after one cycle (47% after retreatment); 64% CR if spleen <200 mm; HUS in 6% | [60,61] |
LMB-2 [anti- Tac(Fv)-PE38] + chemotherapy | CD25 (IL-2R alpha chain, Tac antigen) | Adult T-cell leukemia/ lymphoma | Phase I/II (NCT00924170) | 60% CR, particularly in leukemia; chemotherapy reduced ADAs | [62,63] |
hD7-1(VL-VH)- PE24mut | PSMA | Prostate cancer | Preclinical (in vivo) | REDLK deletion + endosomal escape enhancer SO1861 significantly increases cytotoxicity of PE | [64] |
OVB3-PE | OVCAR antigens | Ovarian cancer | Phase I | No clinically significant antitumor activity; CNS expression caused lethal DLT | [65] |
FRP-PE40 | HER2/ ErbB2 | Metastatic breast, prostate, head/neck, lung carcinoma | Phase I | Limited efficacy due to tumor accessibility; immunogenicity by week 2; no CR; stable disease in 11% patients | [66] |
SGN-10 (BR96 sFv-PE40) | LeY (Lewis Y) antigen | Colon, pancreatic carcinoma | Phase I | No antitumor response; rapid immunological clearance, limiting efficacy despite stable disease in 31% patients | [67] |
MOC31PE | EpCAM (CD326) | Colorectal, peritoneal carcinomatosis | Phase I/II (NCT02219893) | Good PK/tolerability; safe IP dosing up to 10 μg/kg; no radiological complete/partial response observed; 36% had stable disease | [68] |
Vicinium (VB4-845 or Oportuzumab monatox) | EpCAM | BCG-refractory bladder cancer | Phase II (NCT00462488, NCT02449239) | 16% disease-free at 24 months; well tolerated | [69] |
D2C7-IT (D2C7- (scdsFv)-PE38KDEL) | EGFR/ EGFRvIII | Glioblastoma | Phase I/II (NCT02303678); Phase I with anti- CD40 (NCT04547777) | Partial responses; optimal dosage established; CD40 combination shows promise | [70] |
Cintredekin besudotox (PE38QQR) | IL-13R | Glioblastoma | Phase III (NCT00024570) | Phase I/II showed efficacy but Phase III terminated; thromboembolic toxicity | [71,72,73] |
Agent | Target/ Activation | Cancer Type/s | Phase and Status | Key Findings | Reference |
---|---|---|---|---|---|
PAS (prostasin-activated PA) | MASPs (membrane-anchored serine proteases) | Ovarian cancer | Preclinical (in vivo) | Highly specific cytotoxicity; only binds MASP-overexpressing cells | [83] |
EGF-PA′ | EGFR | HER2 +/− bladder cancer | Preclinical (in vivo) | Drives internalization via PA oligomerization; overcomes EGFR mutations and HER2-mediated inhibition of endocytosis | [84] |
PA-L1/LF | MMP activation | Melanoma (BRAF V600E) | Preclinical (in vivo) | MEK inactivation confirmed indicating successful delivery of the active toxin to the MAPK pathway; BRAF-mutant cells highly susceptible to both PA/LF and PA-L1/LF | [102] |
LFnCdtB | TEM8/CMG2 (ANTXR1/2) | Melanoma, colon, lung cancer | Preclinical (in vivo) | H. ducreyi CdtB fused to N-terminal 255 aa of B. anthracis LFn was engineered. PA-L1+LFnCdtB cured 8/10 melanoma mice; no toxicity vs. severe toxicity with wild-type PA | [103] |
CLPA (Bismaleimide cross-linked PA variants) [PA-L1 and PA-U2] | TEM8/CMG2 (ANTXR1/2) | Melanoma, colon, lung cancer | Preclinical (in vivo) | Functional octamers; highly specific anti-angiogenic activity of this dual-protease-activated toxin; improved manufacturability | [104] |
PA-U2 + LF | uPA activation | Fibrosarcoma, melanoma, Lewis lung carcinoma | Preclinical (in vivo) | Furin cleavage site in PA is replaced by an artificial uPA substrate sequence; eliminated systemic toxicity, while maintaining tumor-specific cytotoxicity | [105] |
PA-L1-I207R + PA-U2- R200A | MMP and uPA dual activation via TEM8/ ANTXR1 | Lewis lung carcinoma | Preclinical (in vivo) | Dose-dependent anti-tumor response; cyclophosphamide prevented NAbs | [106] |
PA-R659S/ M662R variants | TEM8/CMG2 receptor selectivity | Human tumor cells | Preclinical (in vitro) | Enhanced CMG2 selectivity; reduced toxicity in CMG2-deficient mice | [100] |
Agent | Target | Cancer Type/s | Phase and Status | Key Findings | Reference/s |
---|---|---|---|---|---|
Denileukin diftitox (DAB389-IL-2) diphtheria toxin-based | IL-2R | Melanoma, CTCL, CLL, ovarian cancer | FDA-Approved 2008 (CTCL); Phase II Melanoma (NCT00299689) | Significant activity in Stage IV melanoma: 1-year OS 40% vs. historical 25.5%; Treg depletion mechanism | [107] |
Tagraxofusp SL-401 (DT388-IL-3) | IL-3RA (CD123) | BPDCN, AML | FDA-Approved 2018 (BPDCN) Phase I/II (NCT00397579) | 72% complete or clinical response rate in BPDCN; 90% ORR; 52% 2-year survival; side effects included elevated liver enzymes, hypoalbuminemia, edema, and thrombocytopenia. | [108,109] |
Tf-CRM107 (DT-Tf) | Transferrin receptor | GBM | Phase I/II (NCT00052624) | Promising tumor responses; neurotoxicity due to vascular Tf receptor expression | [110] |
DAB389EGF (DT-based) | EGFR | GBM, bladder, breast cancer | Preclinical | Significant tumor reduction in orthotopic mice models; intravesical delivery effective | [111] |
DT2219ARL (DT-based) | CD19 and CD22 | B-cell malignancies | Phase I/II (NCT00889408) | Superior efficacy vs. monospecific variants; long-term tumor-free survival in SCID models | [112] |
MT-3724 (anti-CD20 scFv fused with Shiga-like toxin A subunit) | CD20 | Relapsed/ refractory B-cell NHL | Phase Ia/b (NCT02302381) | 21.7% ORR overall; 41.7% ORR in rituximab-naïve DLBCL | [113] |
Clostridium septicum α-toxin | GPI- anchored proteins | Breast cancer | Preclinical | α-toxin gene expressed in E. coli showed anti-cancer effects on MCF-7 breast cancer cells; significantly reduced tumor size in animal models. | [114] |
Botulinum toxin A (BTX) (Clostridium botulinum) | TRPM2 | Glioblastoma, neuroblastoma | Preclinical | Induced cell death via mitochondrial ROS and TRPM2 signaling | [115] |
Clostridium perfringens enterotoxin (CPE) | CLDN4 | Pancreatic cancer | Preclinical | CPE-conjugated polysialic acid nanoparticles enhanced targeting and enhanced permeability and retention effect | [116] |
Clostridium difficile toxin B (cdtB) | C-terminal CROPs/MBM regions | Breast cancer | Preclinical | Suppressed Bcl-2, decreased C-erbB-2 and Cox-2 expression in breast cancer mouse model | [117] |
Clostridium novyi-NT + RGD peptide modification | αvβ3 integrin | Pancreatic cancer | Preclinical/ Phase 1 (NCT01924689) | Enhanced tumor localization with smaller dose via CRISPR/Cas9 modification | [118,119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misra, R.; Gupta, R.; Nayyar, N.; Baweja, R.; Sharma, V.; Singh, Y.; Baweja, R. Bacterial Protein Toxins as Anticancer Agents: Clinical Potential of Pseudomonas and Anthrax Toxins. Toxins 2025, 17, 459. https://doi.org/10.3390/toxins17090459
Misra R, Gupta R, Nayyar N, Baweja R, Sharma V, Singh Y, Baweja R. Bacterial Protein Toxins as Anticancer Agents: Clinical Potential of Pseudomonas and Anthrax Toxins. Toxins. 2025; 17(9):459. https://doi.org/10.3390/toxins17090459
Chicago/Turabian StyleMisra, Richa, Radhika Gupta, Namita Nayyar, Ritvik Baweja, Vishal Sharma, Yogendra Singh, and Renu Baweja. 2025. "Bacterial Protein Toxins as Anticancer Agents: Clinical Potential of Pseudomonas and Anthrax Toxins" Toxins 17, no. 9: 459. https://doi.org/10.3390/toxins17090459
APA StyleMisra, R., Gupta, R., Nayyar, N., Baweja, R., Sharma, V., Singh, Y., & Baweja, R. (2025). Bacterial Protein Toxins as Anticancer Agents: Clinical Potential of Pseudomonas and Anthrax Toxins. Toxins, 17(9), 459. https://doi.org/10.3390/toxins17090459