Toxic Shock Syndrome Toxin-1 (TSST-1) in Staphylococcus aureus: Prevalence, Molecular Mechanisms, and Public Health Implications
Abstract
1. Introduction
2. Prevalence of TSST-1-Producing S. aureus
2.1. Africa
2.2. Asia
2.3. Europe
2.4. Americas
2.5. Epidemiology of TSST-1-Producing S. aureus
3. Methods of Detection
3.1. Molecular Methods
3.1.1. PCR-Based Detection
3.1.2. Sequencing and Genomic Approaches
3.2. Immunological Methods
3.2.1. Enzyme-Linked Immunosorbent Assay (ELISA)
3.2.2. Passive Latex Agglutination
3.2.3. Western Blot and Immunoblot Analysis
3.2.4. Functional Assays for Neutralizing Antibodies and Cytokine Profiling
3.3. Other Methods
3.3.1. Phenotypic Assays
3.3.2. Advanced Proteomic Methods
3.3.3. Bead-Based Flow Cytometry Assay
3.3.4. Functional and Imaging-Based Analyses
3.3.5. MALDI-TOF MS
3.4. Combined Approaches and Validation and Quality Control
3.4.1. Combined Molecular and Immunological Approaches
3.4.2. Validation Strategies
3.4.3. Quality Control Measures
4. Structure of TSST-1
4.1. Molecular Characteristics of TSST-1
4.2. Domain Architecture and Functionality
4.2.1. N-Terminal Domain and MHC Class II Binding
4.2.2. C-Terminal Domain and TCR Binding
4.2.3. Central β-Sheet and β-Barrel Domain
4.3. Structural Comparisons with Other Superantigens
5. Mechanism of Action of TSST-1
5.1. Superantigenic Activity and Immune Dysregulation
5.2. Cytokine Storm and Pathophysiological Consequences
5.3. Epithelial Interactions and Barrier Disruption
5.4. Clinical Relevance and Host Factors
6. Genetic Regulation of TSST-1
6.1. Regulation Systems
6.1.1. agr System
6.1.2. SaeRS Two-Component System
6.1.3. sarA, Rot, and SigB
6.2. Environmental and Host-Dependent Modulation
6.2.1. Glucose and Iron Availability
6.2.2. Oxygen Tension and pH Levels
6.2.3. Mucosal Surfaces and Abscesses
6.2.4. Biofilms and Chronic Infections
6.3. Host Immune Interactions
6.4. Interactions with Resistance and Co-Regulation
6.5. Strain-Specific Variations and Horizontal Gene Transfer
7. Dissemination, Pathogenesis, and Clinical Impact of TSST-1
7.1. Environmental Sources and Foodborne Transmission
7.2. Infection Control and Surveillance Measures
7.3. Animal and Environmental Reservoirs
7.4. TSST-1 and Its Role in TSS
7.4.1. TSST-1 in Consumer Products and Public Health Implications
7.4.2. Menstrual vs. Non-Menstrual TSS
8. Treatment and Prevention of TSST-1
8.1. Antibiotic Therapy
8.2. Immunotherapy and Adjunctive Therapies
8.3. Antivirulence Strategies
8.4. Vaccine Development
8.5. Prevention Strategies
9. Futures Directions
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TSST-1 | Toxic Shock Syndrome Toxin-1 |
TSS | Toxic Shock Syndrome |
MRSA | Methicillin-Resistant Staphylococcus aureus |
MSSA | Methicillin-Sensitive Staphylococcus aureus |
MHC-II | Major Histocompatibility Complex Class II |
TCR | T-cell Receptor |
PCR | Polymerase Chain Reaction |
ELISA | Enzyme-Linked Immunosorbent Assay |
WGS | Whole-Genome Sequencing |
qPCR | Quantitative Real-Time PCR |
MALDI-TOF MS | Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry |
IVIG | Intravenous Immunoglobulin |
PVL | Panton–Valentine Leukocidin |
DIC | Disseminated Intravascular Coagulation |
ARDS | Acute Respiratory Distress Syndrome |
IL | Interleukin |
TNF-α | Tumor Necrosis Factor-alpha |
IFN-γ | Interferon-gamma |
ST | Sequence Type |
CC | Clonal Complex |
VISA | Vancomycin-Intermediate Staphylococcus aureus |
HGT | Horizontal Gene Transfer |
LA-MRSA | Livestock-Associated Methicillin-Resistant Staphylococcus aureus |
CD40 | Cluster of Differentiation 40 |
ICAM-1 | Intercellular Adhesion Molecule 1 |
VCAM-1 | Vascular Cell Adhesion Molecule 1 |
Agr | Accessory Gene Regulator |
SaeRS | Two-component regulatory system |
Rot | Repressor of Toxins |
SigB | Sigma Factor B |
CcpA | Catabolite Control Protein A |
RPLA | Reversed Passive Latex Agglutination |
LC-SRM | Liquid Chromatography-Selected Reaction Monitoring |
AFM | Atomic Force Microscopy |
SDS-PAGE | Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis |
SAgs | Superantigens |
AD | Atopic Dermatitis |
ICU | Intensive Care Unit |
CA-MRSA | Community-Associated Methicillin-Resistant Staphylococcus aureus |
HAIs | Hospital-Acquired Infections |
LA-MRSA | Livestock-Associated Methicillin-Resistant Staphylococcus aureus |
References
- Dufresne, K.; Al, K.F.; Craig, H.C.; Coleman, C.E.M.; Kasper, K.J.; Burton, J.P.; McCormick, J.K. TSST-1 promotes colonization of Staphylococcus aureus within the vaginal tract by activation of CD8+ T cells. Infect. Immun. 2025, 93, e00439-24. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Jiang, J.; Chen, T.; Xu, D.; Hou, F.; Huang, Q.; Peng, Y.; Ye, C.; Hu, D.-L.; Fang, R. Toxic Shock Syndrome Toxin 1 Induces Immune Response via the Activation of NLRP3 Inflammasome. Toxins 2021, 13, 68. [Google Scholar] [CrossRef] [PubMed]
- Andrey, D.O.; Jousselin, A.; Villanueva, M.; Renzoni, A.; Monod, A.; Barras, C.; Rodriguez, N.; Kelley, W.L. Impact of the Regulators SigB, Rot, SarA and sarS on the Toxic Shock Tst Promoter and TSST-1 Expression in Staphylococcus aureus. PLoS ONE 2015, 10, e0135579. [Google Scholar] [CrossRef] [PubMed]
- Aung, M.S.; San, T.; Aye, M.M.; Mya, S.; Maw, W.W.; Zan, K.N.; Htut, W.H.W.; Kawaguchiya, M.; Urushibara, N.; Kobayashi, N. Prevalence and Genetic Characteristics of Staphylococcus aureus and Staphylococcus argenteus Isolates Harboring Panton-Valentine Leukocidin, Enterotoxins, and TSST-1 Genes from Food Handlers in Myanmar. Toxins 2017, 9, 241. [Google Scholar] [CrossRef]
- Schlievert, P.M.; Gourronc, F.A.; Leung, D.Y.M.; Klingelhutz, A.J. Human Keratinocyte Response to Superantigens. mSphere 2020, 5, e00803-20. [Google Scholar] [CrossRef]
- Atchade, E.; De Tymowski, C.; Grall, N.; Tanaka, S.; Montravers, P. Toxic Shock Syndrome: A Literature Review. Antibiotics 2024, 13, 96. [Google Scholar] [CrossRef]
- Naimi, H.M.; Tristan, A.; Bes, M.; Vandenesch, F.; Nazari, Q.A.; Laurent, F.; Dupieux, C. Molecular characterization and antimicrobial resistance of nasal Staphylococcus aureus in the community of Kabul. J. Glob. Antimicrob. Resist. 2023, 34, 18–22. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, L.; Wang, B.; Rao, L.; Xu, Y.; Wang, X.; Zhao, H.; Yu, J.; Zhou, Y.; Yu, F. Dissemination of Methicillin-Resistant Staphylococcus aureus Sequence Type 764 Isolates with Mupirocin Resistance in China. Microbiol. Spectr. 2023, 11, e03794-22. [Google Scholar] [CrossRef]
- Oliveira, R.; Pinho, E.; Almeida, G.; Azevedo, N.F.; Almeida, C. Prevalence and Diversity of Staphylococcus aureus and Staphylococcal Enterotoxins in Raw Milk from Northern Portugal. Front. Microbiol. 2022, 13, 846653. [Google Scholar] [CrossRef]
- Rukkawattanakul, T.; Sookrung, N.; Seesuay, W.; Onlamoon, N.; Diraphat, P.; Chaicumpa, W.; Indrawattana, N. Human scFvs That Counteract Bioactivities of Staphylococcus aureus TSST-1. Toxins 2017, 9, 50. [Google Scholar] [CrossRef]
- Dufresne, K.; Podskalniy, V.A.; Herfst, C.A.; Lovell, G.F.M.; Lee, I.S.; DeJong, E.N.; McCormick, J.K.; Tuffs, S.W. Glucose Mediates Niche-Specific Repression of Staphylococcus aureus Toxic Shock Syndrome Toxin-1 through the Activity of CcpA in the Vaginal Environment. J. Bacteriol. 2022, 204, e00269-22. [Google Scholar] [CrossRef] [PubMed]
- Tuffs, S.W.; Herfst, C.A.; Baroja, M.L.; Podskalniy, V.A.; DeJong, E.N.; Coleman, C.E.M.; McCormick, J.K. Regulation of toxic shock syndrome toxin-1 by the accessory gene regulator in Staphylococcus aureus is mediated by the repressor of toxins. Mol. Microbiol. 2019, 112, 1163–1177. [Google Scholar] [CrossRef] [PubMed]
- Maeda, M.; Shoji, H.; Shirakura, T.; Takuma, T.; Ugajin, K.; Fukuchi, K.; Niki, Y.; Ishino, K. Analysis of Staphylococcal Toxins and Clinical Outcomes of Methicillin-Resistant Staphylococcus aureus Bacteremia. Biol. Pharm. Bull. 2016, 39, 1195–1200. [Google Scholar] [CrossRef]
- Wang, B.; Xu, Y.; Zhao, H.; Wang, X.; Rao, L.; Guo, Y.; Yi, X.; Hu, L.; Chen, S.; Han, L.; et al. Methicillin-resistant Staphylococcus aureus in China: A multicentre longitudinal study and whole-genome sequencing. Emerg. Microbes Infect. 2022, 11, 532–542. [Google Scholar] [CrossRef]
- Bergmann, B.; Jirholt, P.; Henning, P.; Lindholm, C.; Ohlsson, C.; McInnes, I.B.; Lerner, U.H.; Gjertsson, I. Antibiotics with Interleukin-15 Inhibition Reduce Joint Inflammation and Bone Erosions but Not Cartilage Destruction in Staphylococcus aureus-Induced Arthritis. Infect. Immun. 2018, 86, e00960-17. [Google Scholar] [CrossRef]
- Schlievert, P.M.; Roller, R.J.; Kilgore, S.H.; Villarreal, M.; Klingelhutz, A.J.; Leung, D.Y.M. Staphylococcal TSST-1 Association with Eczema Herpeticum in Humans. mSphere 2021, 6, e0060821. [Google Scholar] [CrossRef]
- Dai, J.; Huang, J.; Wu, S.; Zhang, F.; Li, Y.; Rong, D.; Zhao, M.; Ye, Q.; Gu, Q.; Zhang, Y.; et al. Occurrence, Antibiotic Susceptibility, Biofilm Formation and Molecular Characterization of Staphylococcus aureus Isolated from Raw Shrimp in China. Foods 2023, 12, 2651. [Google Scholar] [CrossRef]
- Ferreira, M.A.; Bernardo, L.G.; Neves, L.S.; Campos, M.R.H.; Lamaro-Cardoso, J.; André, M.C.P. Virulence profile and genetic variability of Staphylococcus aureus isolated from artisanal cheese. J. Dairy Sci. 2016, 99, 8589–8597. [Google Scholar] [CrossRef]
- Mohammed, R.; Nader, S.M.; Hamza, D.A.; Sabry, M.A. Public health implications of multidrug-resistant and methicillin-resistant Staphylococcus aureus in retail oysters. Sci. Rep. 2025, 15, 4496. [Google Scholar] [CrossRef]
- Khalili, H.; Najar-Peerayeh, S.; Mahrooghi, M.; Mansouri, P.; Bakhshi, B. Methicillin-resistant Staphylococcus aureus colonization of infectious and non-infectious skin and soft tissue lesions in patients in Tehran. BMC Microbiol. 2021, 21, 282. [Google Scholar] [CrossRef]
- Schlievert, P.M. Staphylococcal Enterotoxin B and C Mutants and Vaccine Toxoids. Microbiol. Spectr. 2023, 11, e04446-22. [Google Scholar] [CrossRef] [PubMed]
- Roetzer, A.; Stich, N.; Model, N.; Schwameis, M.; Firbas, C.; Jilma, B.; Eibl, M.M. High Titer Persistent Neutralizing Antibodies Induced by TSST-1 Variant Vaccine Against Toxic Shock Cytokine Storm. Toxins 2020, 12, 640. [Google Scholar] [CrossRef] [PubMed]
- Soezi, M.; Piri-Gavgani, S.; Ghanei, M.; Omrani, M.D.; Soltanmohammadi, B.; Bagheri, K.P.; Cohan, R.A.; Vaziri, F.; Siadat, S.D.; Fateh, A.; et al. Identification of a novel fully human anti-toxic shock syndrome toxin (TSST)-1 single-chain variable fragment antibody averting TSST-1-induced mitogenesis and cytokine secretion. BMC Biotechnol. 2022, 22, 31. [Google Scholar] [CrossRef] [PubMed]
- Nonfoux, L.; Chiaruzzi, M.; Badiou, C.; Baude, J.; Tristan, A.; Thioulouse, J.; Muller, D.; Prigent-Combaret, C.; Lina, G. Impact of Currently Marketed Tampons and Menstrual Cups on Staphylococcus aureus Growth and Toxic Shock Syndrome Toxin 1 Production In Vitro. Appl. Environ. Microbiol. 2018, 84, e00351-18. [Google Scholar] [CrossRef]
- Pérez, V.K.C.; Costa GMda Guimarães, A.S.; Heinemann, M.B.; Lage, A.P.; Dorneles, E.M.S. Relationship between virulence factors and antimicrobial resistance in Staphylococcus aureus from bovine mastitis. J. Glob. Antimicrob. Resist. 2020, 22, 792–802. [Google Scholar] [CrossRef]
- Zhou, Y.; Yu, S.; Su, C.; Gao, S.; Jiang, G.; Zhou, Z.; Li, H. Molecular Characteristics of Methicillin-Resistant and Susceptible Staphylococcus aureus from Pediatric Patients in Eastern China. Pathogens 2023, 12, 549. [Google Scholar] [CrossRef]
- Laceb, Z.M.; Diene, S.M.; Lalaoui, R.; Kihal, M.; Chergui, F.H.; Rolain, J.-M.; Hadjadj, L. Genetic Diversity and Virulence Profile of Methicillin and Inducible Clindamycin-Resistant Staphylococcus aureus Isolates in Western Algeria. Antibiotics 2022, 11, 971. [Google Scholar] [CrossRef]
- Mairi, A.; Touati, A.; Pantel, A.; Zenati, K.; Martinez, A.Y.; Dunyach-Remy, C.; Sotto, A.; Lavigne, J.-P. Distribution of Toxinogenic Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus from Different Ecological Niches in Algeria. Toxins 2019, 11, 500. [Google Scholar] [CrossRef]
- Socohou, A.; Sina, H.; Degbey, C.; Adjobimey, T.; Sossou, E.; Boya, B.; N’tcha, C.; Adoukonou-Sagbadja, H.; Adjanohoun, A.; Baba-Moussa, L. Pathogenicity and Molecular Characterization of Staphylococcus aureus Strains Isolated from the Hospital Environment of CHU-Z Abomey-Calavi/Sô-Ava (Benin). BioMed Res. Int. 2021, 2021, 6637617. [Google Scholar] [CrossRef]
- Aragão, B.; Trajano, S.; Silva, J.; Silva, B.; Oliveira, R.; Junior, J.W.P.; Peixoto, R.; Mota, R. Short communication: High frequency of β-lactam-resistant Staphylococcus aureus in artisanal coalho cheese made from goat milk produced in northeastern Brazil. J. Dairy Sci. 2019, 102, 6923–6927. [Google Scholar] [CrossRef]
- Castro, R.; Pedroso, S.; Sandes, S.; Silva, G.; Luiz, K.; Dias, R.; Filho, R.; Figueiredo, H.; Santos, S.; Nunes, A.; et al. Virulence factors and antimicrobial resistance of Staphylococcus aureus isolated from the production process of Minas artisanal cheese from the region of Campo das Vertentes, Brazil. J. Dairy Sci. 2020, 103, 2098–2110. [Google Scholar] [CrossRef] [PubMed]
- Júnior, J.R.; Rodrigues, E.; Dias, B.; da Silva, E.; Alexandrino, B.; Lobo, C.; Tamanini, R.; Alfieri, A. Toxigenic characterization, spoilage potential, and antimicrobial susceptibility of coagulase-positive Staphylococcus species isolated from Minas Frescal cheese. J. Dairy Sci. 2024, 107, 1386–1396. [Google Scholar] [CrossRef] [PubMed]
- Fursova, K.; Shchannikova, M.; Loskutova, I.; Shepelyakovskaya, A.; Laman, A.; Boutanaev, A.; Sokolov, S.; Artem’Eva, O.; Nikanova, D.; Zinovieva, N.; et al. Exotoxin diversity of Staphylococcus aureus isolated from milk of cows with subclinical mastitis in Central Russia. J. Dairy Sci. 2018, 101, 4325–4331. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Sun, C.; Li, J.; Ji, X.; Wang, Y.; Song, C.; Wang, G. Characterisation of Staphylococcus aureus isolates from bovine mastitis in Ningxia, Western China. J. Glob. Antimicrob. Resist. 2021, 25, 232–237. [Google Scholar] [CrossRef]
- Zhong, J.; Wei, M.; Yang, C.; Yin, Y.; Bai, Y.; Li, R.; Gu, L. Molecular Epidemiology of Community-Acquired Methicillin-Resistant Staphylococcus aureus and Clinical Characteristics of Different Sites of Infection. Infect. Drug Resist. 2023, 16, 1485–1497. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, Y.; Mediavilla, J.R.; Chen, L.; Kreiswirth, B.N.; Song, Y.; Yang, R.; Du, H. Hospital Dissemination of tst-1-Positive Clonal Complex 5 (CC5) Methicillin-Resistant Staphylococcus aureus. Front. Cell. Infect. Microbiol. 2017, 7, 101. [Google Scholar] [CrossRef]
- Enan, G.; Al-Mohammadi, A.-R.; Mahgoub, S.; Abdel-Shafi, S.; Askar, E.; Ghaly, M.F.; Taha, M.A.; El-Gazzar, N. Inhibition of Staphylococcus aureus LC 554891 by Moringa oleifera Seed Extract either Singly or in Combination with Antibiotics. Molecules 2020, 25, 4583. [Google Scholar] [CrossRef]
- Elsherif, H.M.; Helal, Z.H.; El-Ansary, M.R.; Fahmy, Z.A.; Eltayeb, W.N.; Radwan, S.; Aboshanab, K.M. Staphylococcal Enterotoxins and Toxic Shock Syndrome Toxin-1 and Their Association among Bacteremic and Infective Endocarditis Patients in Egypt. BioMed Res. Int. 2020, 2020, 6981095. [Google Scholar] [CrossRef]
- A Ibrahim, R.; Berhe, N.; Mekuria, Z.; Seyoum, E.T.; Balada-Llasat, J.-M.; Abebe, T.; Mariam, S.H.; Tsige, E.; Dinku, S.F.; Wang, S.-H. Antimicrobial Resistance and Virulence Gene Profile of Clinical Staphylococcus aureus: A Multi-Center Study from Ethiopia. Infect. Drug Resist. 2023, 16, 4835–4844. [Google Scholar] [CrossRef]
- Tarekgne, E.K.; Skjerdal, T.; Skeie, S.; Rudi, K.; Porcellato, D.; Félix, B.; Narvhus, J.A. Enterotoxin Gene Profile and Molecular Characterization of Staphylococcus aureus Isolates from Bovine Bulk Milk and Milk Products of Tigray Region, Northern Ethiopia. J. Food Prot. 2016, 79, 1387–1395. [Google Scholar] [CrossRef]
- Sapugahawatte, D.N.; Li, C.; Yeoh, Y.K.; Dharmaratne, P.; Zhu, C.; Ip, M. Swine methicillin-resistant Staphylococcus aureus carrying toxic-shock syndrome toxin gene in Hong Kong, China. Emerg. Microbes Infect. 2020, 9, 1534–1536. [Google Scholar] [CrossRef] [PubMed]
- Pakbaz, Z.; Sahraian, M.A.; Sabzi, S.; Mahmoodi, M.; Pourmand, M.R. Prevalence of sea, seb, sec, sed, and tsst-1 genes of Staphylococcus aureus in nasal carriage and their association with multiple sclerosis. Germs 2017, 7, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Parco, A.; Macaluso, G.; Foti, M.; Vitale, M.; Fisichella, V.; Tolone, M.; Loria, G.R. Phenotypic and genotypic study on antibiotic resistance and pathogenic factors of Staphylococcus aureus isolates from small ruminant mastitis milk in South of Italy (Sicily). Ital. J. Food Saf. 2021, 10, 9722. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, H.; Yanagi, Y.; Otake, S.; Sato, M.; Saito, T.; Nakaminami, H. The emerging threat of methicillin-resistant Staphylococcus aureus (MRSA) clone ST22-PT, carrying both Panton-Valentine leucocidin and toxic shock syndrome toxin 1 genes. J. Antimicrob. Chemother. 2023, 78, 1023–1027. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Nakamura, I.; Sato, T.; Ono, D.; Sato, A.; Sonoda, S.; Aoki, K.; Miura, Y.; Koyama, S.; Tamai, K.; et al. Changes in the Genotypic Characteristics of Community-Acquired Methicillin-Resistant Staphylococcus aureus Collected in 244 Medical Facilities in Japan between 2010 and 2018: A Nationwide Surveillance. Microbiol. Spectr. 2022, 10, e0227221. [Google Scholar] [CrossRef]
- Obanda, B.A.; Cook, E.A.J.; Fèvre, E.M.; Bebora, L.; Ogara, W.; Wang, S.-H.; Gebreyes, W.; Ngetich, R.; Wandede, D.; Muyodi, J.; et al. Characteristics of Staphylococcus aureus Isolated from Patients in Busia County Referral Hospital, Kenya. Pathogens 2022, 11, 1504. [Google Scholar] [CrossRef]
- Beshiru, A.; Igbinosa, I.H.; Akinnibosun, O.; Ogofure, A.G.; Dunkwu-Okafor, A.; Uwhuba, K.E.; Igbinosa, E.O. Characterization of resistance and virulence factors in livestock-associated methicillin-resistant Staphylococcus aureus. Sci. Rep. 2024, 14, 13235. [Google Scholar] [CrossRef]
- Dincer, S.; Demirci, M.; Celepler, Y.; Namal, N.; Aksaray, S.; Aktepe, O.; Torun, M. Molecular characterization and antimicrobial susceptibility of methicillin-resistant staphylococcus aureus isolates from clinical samples and asymptomatic nasal carriers in Istanbul (Turkey). Niger. J. Clin. Pract. 2021, 24, 997–1004. [Google Scholar] [CrossRef]
- Nowakiewicz, A.; Zięba, P.; Ziółkowska, G.; Gnat, S.; Muszyńska, M.; Tomczuk, K.; Dziedzic, B.M.; Ulbrych, Ł.; Trościańczyk, A. Free-Living Species of Carnivorous Mammals in Poland: Red Fox, Beech Marten, and Raccoon as a Potential Reservoir of Salmonella, Yersinia, Listeria spp. and Coagulase-Positive Staphylococcus. PLoS ONE 2016, 11, e0155533. [Google Scholar] [CrossRef]
- Marek, A.; Pyzik, E.; Stępień-Pyśniak, D.; Urban-Chmiel, R.; Jarosz, Ł.S. Association Between the Methicillin Resistance of Staphylococcus aureus Isolated from Slaughter Poultry, Their Toxin Gene Profiles and Prophage Patterns. Curr. Microbiol. 2018, 75, 1256–1266. [Google Scholar] [CrossRef]
- Ogonowska, P.; Szymczak, K.; Empel, J.; Urbaś, M.; Woźniak-Pawlikowska, A.; Barańska-Rybak, W.; Świetlik, D.; Nakonieczna, J. Staphylococcus aureus from Atopic Dermatitis Patients: Its Genetic Structure and Susceptibility to Phototreatment. Microbiol. Spectr. 2023, 11, e0459822. [Google Scholar] [CrossRef] [PubMed]
- Khokhlova, O.E.; Hung, W.-C.; Wan, T.-W.; Iwao, Y.; Takano, T.; Higuchi, W.; Yachenko, S.V.; Teplyakova, O.V.; Kamshilova, V.V.; Kotlovsky, Y.V.; et al. Healthcare- and Community-Associated Methicillin-Resistant Staphylococcus aureus (MRSA) and Fatal Pneumonia with Pediatric Deaths in Krasnoyarsk, Siberian Russia: Unique MRSA’s Multiple Virulence Factors, Genome, and Stepwise Evolution. PLoS ONE 2015, 10, e0128017. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.J.; You, J.-Y.; Kim, S.H.; Moon, J.-S.; Kim, H.-Y.; Kim, J.-M.; Lee, Y.J.; Kang, H.-M. Characteristics of methicillin-resistant Staphylococcus aureus isolates from bovine mastitis milk in South Korea: Molecular characteristics, biofilm, virulence, and antimicrobial resistance. Microbiol. Spectr. 2024, 12, e0119724. [Google Scholar] [CrossRef]
- Bwanga, F.; Mukashyaka, C.; Kateete, D.P.; Tumuhamye, J.; Okeng, A.; Aboce, E.; Namugga, O.; Kwizera, R.; Sommerfelt, H.; Nankabirwa, V. Vaginal colonization with virulent and methicillin resistant Staphylococcus aureus among Ugandan women in Labour. BMC Microbiol. 2024, 24, 307. [Google Scholar] [CrossRef]
- Sharma, H.; Turner, C.E.; Siggins, M.K.; El-Bahrawy, M.; Pichon, B.; Kearns, A.; Sriskandan, S. Toxic Shock Syndrome Toxin 1 Evaluation and Antibiotic Impact in a Transgenic Model of Staphylococcal Soft Tissue Infection. mSphere 2019, 4, e00665-19. [Google Scholar] [CrossRef]
- Chiaruzzi, M.; Barbry, A.; Muggeo, A.; Tristan, A.; Jacquemond, I.; Badiou, C.; Cluzeau, L.; Bourdeau, S.; Durand, T.; Engelmann, A.; et al. Vaginal Tampon Colonization by Staphylococcus aureus in Healthy Women. Appl. Environ. Microbiol. 2020, 86. [Google Scholar] [CrossRef]
- Agabou, A.; Ouchenane, Z.; Essebe, C.N.; Khemissi, S.; Chehboub, M.T.E.; Chehboub, I.B.; Sotto, A.; Dunyach-Remy, C.; Lavigne, J.-P. Emergence of Nasal Carriage of ST80 and ST152 PVL+ Staphylococcus aureus Isolates from Livestock in Algeria. Toxins 2017, 9, 303. [Google Scholar] [CrossRef]
- Omar, A.; El-Banna, T.E.; Sonbol, F.I.; El-Bouseary, M.M. Potential antivirulence and antibiofilm activities of sub-MIC of oxacillin against MDR S. aureus isolates: An in-vitro and in-vivo study. BMC Microbiol. 2024, 24, 295. [Google Scholar] [CrossRef]
- Somda, N.S.; Traoré, A.M.E.; Hien, D.F.d.S.; Bockarie, Y.; Tankoano, A.; Kaboré, D.; Bonkoungou, O.J.I.; Sawadogo-Lingani, H.; Savadogo, A. Molecular characterization of Methicillin-resistant Staphylococcus aureus isolated in ready-to-eat food sold in supermarkets in Bobo-Dioulasso: Case of charcuterie products. BMC Infect. Dis. 2024, 24, 722. [Google Scholar] [CrossRef]
- Dayie, N.T.K.D.; Sekoh, D.N.K.; Kotey, F.C.N.; Egyir, B.; Tetteh-Quarcoo, P.B.; Adutwum-Ofosu, K.K.; Ahenkorah, J.; Osei, M.-M.; Donkor, E.S. Nasopharyngeal Carriage of Methicillin-Resistant Staphylococcus aureus (MRSA) among Sickle Cell Disease (SCD) Children in the Pneumococcal Conjugate Vaccine Era. Infect. Dis. Rep. 2021, 13, 191–204. [Google Scholar] [CrossRef]
- Antók, F.I.; Mayrhofer, R.; Marbach, H.; Masengesho, J.C.; Keinprecht, H.; Nyirimbuga, V.; Fischer, O.; Lepuschitz, S.; Ruppitsch, W.; Ehling-Schulz, M.; et al. Characterization of Antibiotic and Biocide Resistance Genes and Virulence Factors of Staphylococcus Species Associated with Bovine Mastitis in Rwanda. Antibiotics 2019, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Parsonnet, J.; Goering, R.V.; Hansmann, M.A.; Jones, M.B.; Ohtagaki, K.; Davis, C.C.; Totsuka, K. Prevalence of Toxic Shock Syndrome Toxin 1 (TSST-1)-Producing Strains of Staphylococcus aureus and Antibody to TSST-1 among Healthy Japanese Women. J. Clin. Microbiol. 2008, 46, 2731–2738. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Sun, H.; Pan, Y.; Zhai, Y.; Cai, T.; Yuan, X.; Gao, Y.; He, D.; Liu, J.; Yuan, L.; et al. and molecular characterization of Staphylococcus aureus isolates from healthy animals and sick populations in Henan Province, China. Gut Pathog. 2018, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Jin, Y.; Liu, X.; Chen, Y.; Shen, P.; Xiao, Y. Comparison of Genetic Features and Evolution of Global and Chinese Strains of Community-Associated Methicillin-Resistant Staphylococcus aureus ST22. Microbiol. Spectr. 2022, 10, e0203721. [Google Scholar] [CrossRef]
- Rahbarnia, L.; Khosravi Rad, R.; Dehnad, A.R.; Naghili, B. The examination of some virulence factors in S. aureus isolates obtained from the healthy human population, sheep mastitis, and cheese. Iran. J. Vet. Res. 2023, 24, 110–115. [Google Scholar]
- Arfatahery, N.; Davoodabadi, A.; Abedimohtasab, T. Characterization of Toxin Genes and Antimicrobial Susceptibility of Staphylococcus aureus Isolates in Fishery Products in Iran. Sci. Rep. 2016, 6, 34216. [Google Scholar] [CrossRef]
- Tajik, S.; Najar-Peerayeh, S.; Bakhshi, B.; Golmohammadi, R. Molecular Characterization of Community-Associated Methicillin-Resistant Staphylococcus aureus in Iranian Burn Patients. Iran. J. Pathol. 2019, 14, 284–289. [Google Scholar] [CrossRef]
- Merriman, J.A.; Mueller, E.A.; Cahill, M.P.; Beck, L.A.; Paller, A.S.; Hanifin, J.M.; Ong, P.Y.; Schneider, L.; Babineau, D.C.; David, G.; et al. Temporal and Racial Differences Associated with Atopic Dermatitis Staphylococcusaureus and Encoded Virulence Factors. mSphere 2016, 1, e00295-16. [Google Scholar] [CrossRef]
- Kaga, A.; Watanabe, H.; Miyabayashi, H.; Metoki, T.; Kitaoka, S.; Kumaki, S. A Term Infant of Neonatal Toxic Shock Syndrome-Like Exanthematous Disease Complicated with Hemophagocytic Syndrome. Tohoku J. Exp. Med. 2016, 240, 167–170. [Google Scholar] [CrossRef]
- Abrudan, M.I.; Shamanna, V.; Prasanna, A.; Underwood, A.; Argimón, S.; Nagaraj, G.; Di Gregorio, S.; Govindan, V.; Vasanth, A.; Dharmavaram, S.; et al. Novel multidrug-resistant sublineages of Staphylococcus aureus clonal complex 22 discovered in India. mSphere 2023, 8, e0018523. [Google Scholar] [CrossRef]
- Hayakawa, K.; Yamaguchi, T.; Ono, D.; Suzuki, H.; Kamiyama, J.; Taguchi, S.; Kiyota, K. Two Cases of Intrafamilial Transmission of Community-Acquired Methicillin-Resistant Staphylococcus aureus Producing Both PVL and TSST-1 Causing Fatal Necrotizing Pneumonia and Sepsis. Infect. Drug Resist. 2020, 13, 2921–2927. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.; Smith, D.; Turner, C.E.; Game, L.; Pichon, B.; Hope, R.; Hill, R.; Kearns, A.; Sriskandan, S. Clinical and Molecular Epidemiology of Staphylococcal Toxic Shock Syndrome in the United Kingdom. Emerg. Infect. Dis. 2018, 24, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Bruce, S.A.; Smith, J.T.; Mydosh, J.L.; Ball, J.; Needle, D.B.; Gibson, R.; Andam, C.P. Shared antibiotic resistance and virulence genes in Staphylococcus aureus from diverse animal hosts. Sci. Rep. 2022, 12, 4413. [Google Scholar] [CrossRef]
- King, J.M.; Kulhankova, K.; Stach, C.S.; Vu, B.G.; Salgado-Pabón, W. Phenotypes and Virulence among Staphylococcus aureus USA100, USA200, USA300, USA400, and USA600 Clonal Lineages. mSphere 2016, 1, e00071-16. [Google Scholar] [CrossRef]
- Dufresne, K.; DiMaggio, D.A.; Maduta, C.S.; Brinsmade, S.R.; McCormick, J.K. Discovery of an antivirulence compound that targets the Staphylococcus aureus SaeRS two-component system to inhibit toxic shock syndrome toxin-1 production. J. Biol. Chem. 2024, 300, 107455. [Google Scholar] [CrossRef]
- Baroja, M.L.; Herfst, C.A.; Kasper, K.J.; Xu, S.X.; Gillett, D.A.; Li, J.; Reid, G.; McCormick, J.K. The SaeRS Two-Component System Is a Direct and Dominant Transcriptional Activator of Toxic Shock Syndrome Toxin 1 in Staphylococcus aureus. J. Bacteriol. 2016, 198, 2732–2742. [Google Scholar] [CrossRef]
- Breshears, L.M.; Gillman, A.N.; Stach, C.S.; Schlievert, P.M.; Peterson, M.L. Local Epidermal Growth Factor Receptor Signaling Mediates the Systemic Pathogenic Effects of Staphylococcus aureus Toxic Shock Syndrome. PLoS ONE 2016, 11, e0158969. [Google Scholar] [CrossRef]
- McCormick, J.K.; Schlievert, P.M. Toxic Shock Syndrome. In eLS; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001; Available online: https://onlinelibrary.wiley.com/doi/abs/10.1038/npg.els.0002185 (accessed on 7 June 2025).
- Reingold, A.L.; Hargrett, N.T.; Dan, B.B.; Shands, K.N.; Strickland, B.Y.; Broome, C.V. Nonmenstrual toxic shock syndrome: A review of 130 cases. Ann. Intern Med. 1982, 96 Pt 2, 871–874. [Google Scholar] [CrossRef]
- Descloux, E.; Perpoint, T.; Ferry, T.; Lina, G.; Bes, M.; Vandenesch, F.; Mohammedi, I.; Etienne, J. One in five mortality in non-menstrual toxic shock syndrome versus no mortality in menstrual cases in a balanced French series of 55 cases. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2008, 27, 37–43. [Google Scholar] [CrossRef]
- Auger, N.; Carrier, F.M.; Waechter, J.; Brousseau, É.; Maniraho, A.; Ayoub, A.; Bégin, P. Long-term outcomes of patients with toxic shock syndrome: A matched cohort study. J. Infect. 2024, 89, 106213. [Google Scholar] [CrossRef]
- Schlievert, P.M. Menstrual TSS remains a dangerous threat. EClinicalMedicine 2020, 21, 100316. [Google Scholar] [CrossRef] [PubMed]
- Schlievert, P.M.; Davis, C.C. Device-Associated Menstrual Toxic Shock Syndrome. Clin. Microbiol. Rev. 2020, 33, e00032-19. [Google Scholar] [CrossRef] [PubMed]
- Strom, M.A.; Hsu, D.Y.; Silverberg, J.I. Prevalence, comorbidities and mortality of toxic shock syndrome in children and adults in the USA. Microbiol. Immunol. 2017, 61, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.; Holtfreter, S.; Meyer, T.C.; Schmiedeke, F.; Cammann, C.; Dörr, M.; Felix, S.B.; Grabe, H.J.; Homuth, G.; Kohler, C.; et al. Toxin exposure and HLA alleles determine serum antibody binding to toxic shock syndrome toxin 1 (TSST-1) of Staphylococcus aureus. Front. Immunol. 2023, 14, 1229562. [Google Scholar] [CrossRef]
- Hajjeh, R.A.; Reingold, A.L.; Weil, A.; Shutt, K.; Schuchat, A.; Perkins, B.A. Toxic Shock Syndrome in the United States: Surveillance Update, 1979–1996. Emerg. Infect. Dis. J. CDC 1999, 5, 807. [Google Scholar] [CrossRef]
- Schoergenhofer, C.; Gelbenegger, G.; Hasanacevic, D.; Schöner, L.; Steiner, M.M.; Firbas, C.; Buchtele, N.; Derhaschnig, U.; Tanzmann, A.; Model, N.; et al. A randomized, double-blind study on the safety and immunogenicity of rTSST-1 variant vaccine: Phase 2 results. eClinicalMedicine 2024, 67, 102404. [Google Scholar] [CrossRef]
- Leung, J.; Abrams, J.Y.; Maddox, R.A.; Godfred-Cato, S.; Schonberger, L.B.; Belay, E.D. Toxic Shock Syndrome in Patients Younger than 21 Years of Age, United States, 2006–2018. Pediatr. Infect. Dis. J. 2021, 40, e125–e128. [Google Scholar] [CrossRef]
- Verweij, E.; Kolwijck, E.; Pompe, J. Toxic shock syndrome toxin-I producing Staphylococcus aureus in fulminant necrotizing fasciitis. Clin. Case Rep. Rev. 2016, 1, 268–271. Available online: http://oatext.com/Toxic-shock-syndrome-toxin-I-producing-Staphylococcus-aureus-in-fulminant-necrotizing-fasciitis.php (accessed on 7 June 2025). [CrossRef]
- Kurachi, A.; Ishida, Y.; Nakazawa, K.; Okada, T.; Kishida, T.; Uchino, H. Necrotizing fasciitis and septic shock due to streptococcal toxic shock syndrome in an elderly patient: A case report. Clin. Case Rep. 2023, 11, e6846. [Google Scholar] [CrossRef]
- Casella, T.; Nogueira, M.C.L.; Saras, E.; Haenni, M.; Madec, J.Y. High prevalence of ESBLs in retail chicken meat despite reduced use of antimicrobials in chicken production, France. Int. J. Food Microbiol. 2017, 257, 271–275. [Google Scholar] [CrossRef]
- Hadyeh, E.; Azmi, K.; Seir, R.A.; Abdellatief, I.; Abdeen, Z. Molecular Characterization of Methicillin Resistant Staphylococcus aureus in West Bank-Palestine. Front. Public Health 2019, 7, 130. [Google Scholar] [CrossRef] [PubMed]
- Babić, M.; Pajić, M.; Nikolić, A.; Teodorović, V.; Mirilović, M.; Milojević, L.; Velebit, B. Expression of toxic shock syndrome toxin-1 gene of Staphylococcus aureus in milk: Proof of concept. Mljekarstvo Časopis Za Unaprjeđenje Proizv. Prerade Mlijeka 2018, 68, 12–20. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Furuno, K.; Komori, K.; Abe, T.; Sato, T.; Ogihara, S.; Aoki, K.; Ishii, Y.; Tateda, K. Evolutionary dynamics of the novel ST22-PT methicillin-resistant Staphylococcus aureus clone co-harbouring Panton-Valentine leucocidin and duplicated toxic shock syndrome toxin 1 genes. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2024, 30, 779–786. [Google Scholar] [CrossRef]
- Slingerland, B.C.G.C.; Vos, M.C.; Bras, W.; Kornelisse, R.F.; De Coninck, D.; van Belkum, A.; Reiss, I.K.M.; Goessens, W.H.F.; Klaassen, C.H.W.; Verkaik, N.J. Whole-genome sequencing to explore nosocomial transmission and virulence in neonatal methicillin-susceptible Staphylococcus aureus bacteremia. Antimicrob. Resist. Infect. Control 2020, 9, 39. [Google Scholar] [CrossRef]
- Thomas, A.; Chothe, S.; Byukusenge, M.; Mathews, T.; Pierre, T.; Kariyawasam, S.; Luley, E.; Kuchipudi, S.; Jayarao, B. Prevalence and distribution of multilocus sequence types of Staphylococcus aureus isolated from bulk tank milk and cows with mastitis in Pennsylvania. PLoS ONE 2021, 16, e0248528. [Google Scholar] [CrossRef]
- Taki, Y.; Watanabe, S.; Sato’o, Y.; Tan, X.-E.; Ono, H.K.; Kiga, K.; Aiba, Y.; Sasahara, T.; Azam, A.H.; Thitiananpakorn, K.; et al. The Association Between Onset of Staphylococcal Non-menstrual Toxic Shock Syndrome with Inducibility of Toxic Shock Syndrome Toxin-1 Production. Front. Microbiol. 2022, 13, 765317. [Google Scholar] [CrossRef]
- Hodille, E.; Badiou, C.; Bouveyron, C.; Bes, M.; Tristan, A.; Vandenesch, F.; Lina, G.; Dumitrescu, O. Clindamycin suppresses virulence expression in inducible clindamycin-resistant Staphylococcus aureus strains. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 38. [Google Scholar] [CrossRef]
- Messingham, K.N.; Cahill, M.P.; Kilgore, S.H.; Munjal, A.; Schlievert, P.M.; Fairley, J.A. TSST-1+Staphylococcus aureus in Bullous Pemphigoid. J. Investig. Dermatol. 2022, 142, 1032–1039.e6. [Google Scholar] [CrossRef]
- Nadiya, S.; Kolla, H.B.; Reddy, P.N. Optimization and evaluation of a multiplex PCR assay for detection of Staphylococcus aureus and its major virulence genes for assessing food safety. Braz. J. Microbiol. 2023, 54, 311–321. [Google Scholar] [CrossRef]
- Jarneborn, A.; Mohammad, M.; Engdahl, C.; Hu, Z.; Na, M.; Ali, A.; Jin, T. Tofacitinib treatment aggravates Staphylococcus aureus septic arthritis, but attenuates sepsis and enterotoxin induced shock in mice. Sci. Rep. 2020, 10, 10891. [Google Scholar] [CrossRef]
- Salerno, T.; Siqueira, A.K.; Pinto, J.P.d.A.N.; Cunha, M.d.L.R.d.S.d.; Silvestre, P.K.; Condas, L.A.Z.; Lara, G.H.B.; Pereira, J.G.; Silva, A.V.d.; Listoni, F.J.P.; et al. Safety issues of raw milk: Evaluation of bacteriological and physicochemical characteristics of human milk from a bank in a teaching hospital, focusing on Staphylococcus species. Rev. Inst. Med. Trop. São Paulo 2021, 63, e54. [Google Scholar] [CrossRef] [PubMed]
- Deguchi, Y.; Horiuchi, Y.; Shojima, K.; Iwahashi, N.; Ikejima, M.; Ino, K.; Furukawa, K. Postpartum Methicillin-Resistant Staphylococcus aureus Toxic Shock Syndrome Caused by a Perineal Infection. Case Rep. Obstet. Gynecol. 2018, 2018, 2670179. [Google Scholar] [CrossRef] [PubMed]
- Goda, K.; Kenzaka, T.; Hoshijima, M.; Yachie, A.; Akita, H. Toxic shock syndrome with a cytokine storm caused by Staphylococcus simulans: A case report. BMC Infect. Dis. 2021, 21, 19. [Google Scholar] [CrossRef] [PubMed]
- Neumann, C.; Kaiser, R.; Bauer, J. Menstrual Cup-Associated Toxic Shock Syndrome. Eur. J. Case Rep. Intern. Med. 2020, 7, 001825. [Google Scholar]
- Jiang, Y.; Rex, D.A.B.; Schuster, D.; Neely, B.A.; Rosano, G.L.; Volkmar, N.; Momenzadeh, A.; Peters-Clarke, T.M.; Egbert, S.B.; Kreimer, S.; et al. Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry. ACS Meas. Sci. Au 2024, 4, 338–417. [Google Scholar] [CrossRef]
- Courçon, M.; Badiou, C.; Louwagie, M.; Etievant, S.; Jaquinod, M.; Lina, G.; Brun, V. Targeted Proteomics Analysis of Staphylococcal Superantigenic Toxins in Menstrual Fluid from Women with Menstrual Toxic Shock Syndrome (mTSS). Toxins 2022, 14, 886. [Google Scholar] [CrossRef]
- Sharma, P.; Wang, N.; Chervin, A.S.; Quinn, C.L.; Stone, J.D.; Kranz, D.M. A Multiplex Assay for Detection of Staphylococcal and Streptococcal Exotoxins. PLoS ONE 2015, 10, e0135986. [Google Scholar] [CrossRef]
- Wiklander, O.P.B.; Bostancioglu, R.B.; Welsh, J.A.; Zickler, A.M.; Murke, F.; Corso, G.; Felldin, U.; Hagey, D.W.; Evertsson, B.; Liang, X.-M.; et al. Systematic Methodological Evaluation of a Multiplex Bead-Based Flow Cytometry Assay for Detection of Extracellular Vesicle Surface Signatures. Front. Immunol. 2018, 9, 1326. [Google Scholar] [CrossRef]
- Tallent, S.M.; DeGrasse, J.A.; Wang, N.; Mattis, D.M.; Kranz, D.M. Novel Platform for the Detection of Staphylococcus aureus Enterotoxin B in Foods. Appl. Environ. Microbiol. 2013, 79, 1422–1427. [Google Scholar] [CrossRef]
- Younes, J.A.; Reid, G.; van der Mei, H.C.; Busscher, H.J. Lactobacilli require physical contact to reduce staphylococcal TSST-1 secretion and vaginal epithelial inflammatory response. Pathog. Dis. 2016, 74, ftw029. [Google Scholar] [CrossRef]
- Kulhankova, K.; Kinney, K.J.; Stach, J.M.; Gourronc, F.A.; Grumbach, I.M.; Klingelhutz, A.J.; Salgado-Pabón, W. The Superantigen Toxic Shock Syndrome Toxin 1 Alters Human Aortic Endothelial Cell Function. Infect. Immun. 2018, 86, e00848-17. [Google Scholar] [CrossRef] [PubMed]
- Van Belkum, A.; Welker, M.; Pincus, D.; Charrier, J.P.; Girard, V. Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass. Spectrometry in Clinical Microbiology: What Are the Current Issues? Ann. Lab. Med. 2017, 37, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-F.; Hou, X.; Xiao, M.; Zhang, L.; Cheng, J.-W.; Zhou, M.-L.; Huang, J.-J.; Zhang, J.-J.; Xu, Y.-C.; Hsueh, P.-R. Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) Analysis for the Identification of Pathogenic Microorganisms: A Review. Microorganisms 2021, 9, 1536. [Google Scholar] [CrossRef]
- Bourassa, L.; Butler-Wu, S.M. Chapter 2—MALDI-TOF Mass Spectrometry for Microorganism Identification. In Methods in Microbiology [Internet]; Sails, A., Tang, Y.W., Eds.; Current and Emerging Technologies for the Diagnosis of Microbial Infections; Academic Press: Cambridge, MA, USA, 2015; Volume 42, pp. 37–85. Available online: https://www.sciencedirect.com/science/article/pii/S0580951715000161 (accessed on 7 June 2025).
- Eshaghi, A.; Bommersbach, C.; Zittermann, S.; Burnham, C.A.; Patel, R.; Schuetz, A.N.; Patel, S.N.; Kus, J.V. Phenotypic and Genomic Profiling of Staphylococcus argenteus in Canada and the United States and Recommendations for Clinical Result Reporting. J. Clin. Microbiol. 2021, 59, e02470-20. [Google Scholar] [CrossRef]
- Kametani, Y.; Ohshima, S.; Miyamoto, A.; Shigenari, A.; Takasu, M.; Imaeda, N.; Matsubara, T.; Tanaka, M.; Shiina, T.; Kamiguchi, H.; et al. Production of a Locus- and Allele-Specific Monoclonal Antibody for the Characterization of SLA-1*0401 mRNA and Protein Expression Levels in MHC-Defined Microminipigs. PLoS ONE 2016, 11, e0164995. [Google Scholar] [CrossRef]
- Zhou, W.; Jin, Y.; Zhou, Y.; Wang, Y.; Xiong, L.; Luo, Q.; Xiao, Y. Comparative Genomic Analysis Provides Insights into the Evolution and Genetic Diversity of Community-Genotype Sequence Type 72 Staphylococcus aureus Isolates. mSystems 2021, 6, e0098621. [Google Scholar] [CrossRef]
- Bryant, A.E.; Gomi, S.; Katahira, E.; Huang, D.B.; Stevens, D.L. The effects of iclaprim on exotoxin production in methicillin-resistant and vancomycin-intermediate Staphylococcus aureus. J. Med. Microbiol. 2019, 68, 456–466. [Google Scholar] [CrossRef]
- Narita, K.; Hu, D.L.; Asano, K.; Nakane, A. Vaccination with non-toxic mutant toxic shock syndrome toxin-1 induces IL-17-dependent protection against Staphylococcus aureus infection. Pathog. Dis. 2015, 73, ftv023. [Google Scholar] [CrossRef]
- Bîrluțiu, V.; Criștiu, O.; Baicu, M.; Bîrluțiu, R.M. The Management of Staphylococcal Toxic Shock Syndrome. A Case Report. J. Crit. Care Med. Univ. Med. Farm. Targu-Mures 2016, 2, 85–88. [Google Scholar] [CrossRef]
- Schelin, J.; Cohn, M.T.; Frisk, B.; Frees, D. A Functional ClpXP Protease is Required for Induction of the Accessory Toxin Genes, tst, sed, and sec. Toxins 2020, 12, 553. [Google Scholar] [CrossRef]
- Guaca-González, Y.M.; Flórez-Restrepo, G.F.; Moncayo-Ortíz, J.I.; Santacruz-Ibarra, J.; Álvarez-Aldana, A. Detección y expresión de superantígenos y de resistencia antimicrobiana en aislamientos obtenidos de mujeres portadoras de Staphylococcus aureus que cuidan y alimentan niños. Biomed. Rev. Inst. Nac. Salud. 2018, 38, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Esteves, M.A.C.; Carvalho, M.F.; Viana, A.S.; Martini, C.L.; Longo, L.G.A.; Silva, D.N.S.; Ferreira, A.L.P.; Ferreira-Carvalho, B.T.; Planet, P.J.; Figueiredo, A.M.S. Decoding the evolutionary history of ST30 Staphylococcus aureus: Insights into a potentially silent MSSA bloodstream pathogen. Front. Microbiol. 2025, 16, 1522747. [Google Scholar] [CrossRef]
- Laham, N.A.; Mediavilla, J.R.; Chen, L.; Abdelateef, N.; Elamreen, F.A.; Ginocchio, C.C.; Pierard, D.; Becker, K.; Kreiswirth, B.N. MRSA Clonal Complex 22 Strains Harboring Toxic Shock Syndrome Toxin (TSST-1) Are Endemic in the Primary Hospital in Gaza, Palestine. PLoS ONE 2015, 10, e0120008. [Google Scholar] [CrossRef] [PubMed]
- Katahira, E.J.; Davidson, S.M.; Stevens, D.L.; Bolz, D.D. Subinhibitory concentrations of tedizolid potently inhibit extracellular toxin production by methicillin-sensitive and methicillin-resistant Staphylococcus aureus. J. Med. Microbiol. 2019, 68, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Alkharsah, K.R.; Rehman, S.; Alkhamis, F.; Alnimr, A.; Diab, A.; Al-Ali, A.K. Comparative and molecular analysis of MRSA isolates from infection sites and carrier colonization sites. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 7. [Google Scholar] [CrossRef]
- Sica, V.P.; Friberg, M.A.; Teufel, A.G.; Streicher-Scott, J.L.; Hu, P.; Sauer, U.G.; Krivos, K.L.; Price, J.M.; Baker, T.R.; Abbinante-Nissen, J.M.; et al. Safety assessment scheme for menstrual cups and application for the evaluation of a menstrual cup comprised of medical grade silicone. EBioMedicine 2022, 86, 104339. [Google Scholar] [CrossRef]
- Seetswane, E.; Loeto, D.; Muzila, M.; Tshekiso, K.; Gomba, A.; Baruti, K.; Jongman, M. Phenotypic and genotypic profiling reveals a high prevalence of methicillin-resistant Staphylococcus aureus isolated from hospitals, houseflies and adjacent informal food retailers in Botswana. Microbiology 2022, 168, 001213. [Google Scholar] [CrossRef]
- Abbasi Montazeri, E.; Khosravi, A.D.; Khazaei, S.; Sabbagh, A. Prevalence of methicillin resistance and superantigenic toxins in Staphylococcus aureus strains isolated from patients with cancer. BMC Microbiol. 2021, 21, 262. [Google Scholar] [CrossRef]
- Kadariya, J.; Smith, T.C.; Thapaliya, D. Staphylococcus aureus and Staphylococcal Food-Borne Disease: An Ongoing Challenge in Public Health. BioMed Res. Int. 2014, 2014, 827965. [Google Scholar] [CrossRef]
- Noli Truant, S.; Redolfi, D.M.; Sarratea, M.B.; Malchiodi, E.L.; Fernández, M.M. Superantigens, a Paradox of the Immune Response. Toxins 2022, 14, 800. [Google Scholar] [CrossRef]
- Zhu, Z.; Hu, Z.; Li, S.; Fang, R.; Ono, H.K.; Hu, D.L. Molecular Characteristics and Pathogenicity of Staphylococcus aureus Exotoxins. Int. J. Mol. Sci. 2024, 25, 395. [Google Scholar] [CrossRef] [PubMed]
- Filippova, E.V.; Shuvalova, L.; Flores, K.; Dubrovska, I.; Bishop, B.; Ngo, H.; Yeats, C.; Anderson, W.F. RCSB PDB—4OHJ: Crystal Structure of Toxic Shock Syndrome Toxin-1 (TSST-1) from Staphylococcus aureus. Available online: https://www.rcsb.org/structure/4OHJ (accessed on 26 April 2025).
- Ortega, E.; Abriouel, H.; Lucas, R.; Gálvez, A. Multiple Roles of Staphylococcus aureus Enterotoxins: Pathogenicity, Superantigenic Activity, and Correlation to Antibiotic Resistance. Toxins 2010, 2, 2117–2131. [Google Scholar] [CrossRef] [PubMed]
- Gampfer, J.M.; Samstag, A.; Waclavicek, M.; Wolf, H.M.; Eibl, M.M.; Gulle, H. Epitope mapping of neutralizing TSST-1 specific antibodies induced by immunization with toxin or toxoids. Vaccine 2002, 20, 3675–3684. [Google Scholar] [CrossRef]
- Girma, A. Staphylococcus aureus: Current perspectives on molecular pathogenesis and virulence. Cell Surf. 2025, 13, 100137. [Google Scholar] [CrossRef]
- Stach, C.S.; Vu, B.G.; Merriman, J.A.; Herrera, A.; Cahill, M.P.; Schlievert, P.M.; Salgado-Pabón, W. Novel Tissue Level Effects of the Staphylococcus aureus Enterotoxin Gene Cluster Are Essential for Infective Endocarditis. PLoS ONE 2016, 11, e0154762. [Google Scholar] [CrossRef]
- Popugailo, A.; Rotfogel, Z.; Supper, E.; Hillman, D.; Kaempfer, R. Staphylococcal and Streptococcal Superantigens Trigger B7/CD28 Costimulatory Receptor Engagement to Hyperinduce Inflammatory Cytokines. Front. Immunol. 2019, 10, 942. [Google Scholar] [CrossRef]
- Shepherd, F.R.; Davies, K.; Miners, K.L.; Llewellyn-Lacey, S.; Kollnberger, S.; Redman, J.E.; Grant, M.M.; Ladell, K.; Price, D.A.; McLaren, J.E. The superantigens SpeC and TSST-1 specifically activate TRBV12-3/12-4+ memory T cells. Commun. Biol. 2023, 6, 78. [Google Scholar] [CrossRef]
- Spaulding, A.R.; Salgado-Pabón, W.; Kohler, P.L.; Horswill, A.R.; Leung, D.Y.M.; Schlievert, P.M. Staphylococcal and Streptococcal Superantigen Exotoxins. Clin. Microbiol. Rev. 2013, 26, 422–447. [Google Scholar] [CrossRef]
- Krakauer, T.; Stiles, B.G. The staphylococcal enterotoxin (SE) family. Virulence 2013, 4, 759–773. [Google Scholar] [CrossRef]
- Kimber, I.; Nookala, S.; Davis, C.C.; Gerberick, G.F.; Tucker, H.; Foertsch, L.M.; Dearman, R.J.; Parsonnet, J.; Goering, R.V.; Modern, P.; et al. Toxic Shock Syndrome: Characterization of Human Immune Responses to TSST-1 and Evidence for Sensitivity Thresholds. Toxicol. Sci. 2013, 134, 49–63. [Google Scholar] [CrossRef]
- Narita, K.; Hu, D.L.; Asano, K.; Nakane, A. Interleukin-10 (IL-10) Produced by Mutant Toxic Shock Syndrome Toxin 1 Vaccine-Induced Memory T Cells Downregulates IL-17 Production and Abrogates the Protective Effect against Staphylococcus aureus Infection. Infect. Immun. 2019, 87, e00494-19. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.; Zhou, L.; Tian, W.; Liu, X.; Yang, L.; Yang, X.; Zhang, Y.; Wei, S.; Wang, D.W.; Wei, J. Deep insight into cytokine storm: From pathogenesis to treatment. Signal Transduct. Target. Ther. 2025, 10, 112. [Google Scholar] [CrossRef] [PubMed]
- Stich, N.; Waclavicek, M.; Model, N.; Eibl, M.M. Staphylococcal Superantigen (TSST-1) Mutant Analysis Reveals that T Cell Activation Is Required for Biological Effects in the Rabbit Including the Cytokine Storm. Toxins 2010, 2, 2272–2288. [Google Scholar] [CrossRef] [PubMed]
- Dolmatova, E.V.; Wang, K.; Mandavilli, R.; Griendling, K.K. The effects of sepsis on endothelium and clinical implications. Cardiovasc. Res. 2020, 117, 60–73. [Google Scholar] [CrossRef]
- Campbell, A.J.; Mowlaboccus, S.; Coombs, G.W.; Daley, D.A.; Al Yazidi, L.S.; Phuong, L.K.; Leung, C.; Best, E.J.; Webb, R.H.; Voss, L.; et al. Whole genome sequencing and molecular epidemiology of paediatric Staphylococcus aureus bacteraemia. J. Glob. Antimicrob. Resist. 2022, 29, 197–206. [Google Scholar] [CrossRef]
- Mourabit, N.; Arakrak, A.; Bakkali, M.; Zian, Z.; Bakkach, J.; Laglaoui, A. Nasal carriage of Staphylococcus aureus in farm animals and breeders in north of Morocco. BMC Infect. Dis. 2020, 20, 602. [Google Scholar] [CrossRef]
- Levi, M.; De Jonge, E.; Van Der Poll, T. New treatment strategies for disseminated intravascular coagulation based on current understanding of the pathophysiology. Ann. Med. 2004, 36, 41–49. [Google Scholar] [CrossRef]
- Moran, M.C.; Brewer, M.G.; Schlievert, P.M.; Beck, L.A.S. aureus virulence factors decrease epithelial barrier function and increase susceptibility to viral infection. Microbiol. Spectr. 2023, 11, e0168423. [Google Scholar] [CrossRef]
- Ahmad-Mansour, N.; Loubet, P.; Pouget, C.; Dunyach-Remy, C.; Sotto, A.; Lavigne, J.-P.; Molle, V. Staphylococcus aureus Toxins: An Update on Their Pathogenic Properties and Potential Treatments. Toxins 2021, 13, 677. [Google Scholar] [CrossRef]
- Shoaib, M.; Aqib, A.I.; Muzammil, I.; Majeed, N.; Bhutta, Z.A.; Kulyar, M.F.-A.; Fatima, M.; Zaheer, C.-N.F.; Muneer, A.; Murtaza, M.; et al. MRSA compendium of epidemiology, transmission, pathophysiology, treatment, and prevention within one health framework. Front. Microbiol. 2023, 13, 1067284. [Google Scholar] [CrossRef]
- Kim, D.; Hong, J.S.; Yoon, E.-J.; Lee, H.; Kim, Y.A.; Shin, K.S.; Shin, J.H.; Uh, Y.; Shin, J.H.; Park, Y.S.; et al. Toxic Shock Syndrome Toxin 1-Producing Methicillin-Resistant Staphylococcus aureus of Clonal Complex 5, the New York/Japan Epidemic Clone, Causing a High Early-Mortality Rate in Patients with Bloodstream Infections. Antimicrob. Agents Chemother. 2019, 63, e01362-19. [Google Scholar] [CrossRef] [PubMed]
- Patel, T.; Quow, K.; Cardones, A.R. Management of Infectious Emergencies for the Inpatient Dermatologist. Curr. Dermatol. Rep. 2021, 10, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Kane, T.L.; Carothers, K.E.; Lee, S.W. Virulence Factor Targeting of the Bacterial Pathogen Staphylococcus aureus for Vaccine and Therapeutics. Curr. Drug Targets 2018, 19, 111–127. [Google Scholar] [CrossRef]
- Cheung, G.Y.C.; Bae, J.S.; Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569. [Google Scholar] [CrossRef]
- Jarczak, D.; Nierhaus, A. Cytokine Storm—Definition, Causes, and Implications. Int. J. Mol. Sci. 2022, 23, 11740. [Google Scholar] [CrossRef]
- Billon, A.; Gustin, M.P.; Tristan, A.; Bénet, T.; Berthiller, J.; Gustave, C.A.; Vanhems, P.; Lina, G. Association of characteristics of tampon use with menstrual toxic shock syndrome in France. eClinicalMedicine 2020, 21, 100308. [Google Scholar] [CrossRef]
- Andrews, M.M.; Parent, E.M.; Barry, M.; Parsonnet, J. Recurrent Nonmenstrual Toxic Shock Syndrome: Clinical Manifestations, Diagnosis, and Treatment. Clin. Infect. Dis. 2001, 32, 1470–1479. [Google Scholar] [CrossRef]
- Komuro, H.; Kato, T.; Okada, S.; Nakatani, K.; Matsumoto, R.; Nishida, K.; Iida, H.; Iida, M.; Tsujimoto, S.; Suganuma, T. Toxic shock syndrome caused by suture abscess with methicillin-resistant Staphylococcus aureus (MRSA) with late onset after Caesarean section. IDCases 2017, 10, 12–14. [Google Scholar] [CrossRef]
- Zarei Koosha, R.; Mahmoodzadeh Hosseini, H.; Mehdizadeh Aghdam, E.; Ghorbani Tajandareh, S.; Imani Fooladi, A.A. Distribution of tsst-1 and mecA Genes in Staphylococcus aureus Isolated From Clinical Specimens. Jundishapur J. Microbiol. 2016, 9, e29057. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, L.; He, C.; Li, S.; Yang, H.; Xu, X.; Hu, F.; Cui, Z.; Liu, Q. Chronic Staphylococcus aureus Superantigen Toxic Shock Syndrome Toxin-1 Exposure Accelerates the Progression of Atherosclerosis in Rabbits. Acta Cardiol. Sin. 2020, 36, 24–32. [Google Scholar] [CrossRef]
- Zhao, H.; Xu, S.; Yang, H.; He, C.; Xu, X.; Hu, F.; Shu, W.; Gong, F.; Zhang, C.; Liu, Q. Molecular Typing and Variations in Amount of tst Gene Expression of TSST-1-Producing Clinical Staphylococcus aureus Isolates. Front. Microbiol. 2019, 10, 1388. [Google Scholar] [CrossRef] [PubMed]
- Jenul, C.; Horswill, A.R. Regulation of Staphylococcus aureus Virulence. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef] [PubMed]
- Butrico, C.E.; Cassat, J.E. Quorum Sensing and Toxin Production in Staphylococcus aureus Osteomyelitis: Pathogenesis and Paradox. Toxins 2020, 12, 516. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.; Neoh Hmin Nathan, S. Targeting Staphylococcus aureus Toxins: A Potential form of Anti-Virulence Therapy. Toxins 2016, 8, 72. [Google Scholar] [CrossRef]
- Nagao, M.; Okamoto, A.; Yamada, K.; Hasegawa, T.; Hasegawa, Y.; Ohta, M. Variations in amount of TSST-1 produced by clinical methicillin resistant Staphylococcus aureus (MRSA) isolates and allelic variation in accessory gene regulator (agr) locus. BMC Microbiol. 2009, 9, 52. [Google Scholar] [CrossRef]
- Huber, C.; Stamm, I.; Ziebuhr, W.; Marincola, G.; Bischoff, M.; Strommenger, B.; Jaschkowitz, G.; Marciniak, T.; Cuny, C.; Witte, W.; et al. Silence as a way of niche adaptation: mecC-MRSA with variations in the accessory gene regulator (agr) functionality express kaleidoscopic phenotypes. Sci. Rep. 2020, 10, 14787. [Google Scholar] [CrossRef]
- Podkowik, M.; Perault, A.I.; Putzel, G.; Pountain, A.; Kim, J.; DuMont, A.L.; Zwack, E.E.; Ulrich, R.J.; Karagounis, T.K.; Zhou, C.; et al. Quorum-sensing agr system of Staphylococcus aureus primes gene expression for protection from lethal oxidative stress. eLife 2024, 12, RP89098. [Google Scholar] [CrossRef]
- Tan, L.; Huang, Y.; Shang, W.; Yang, Y.; Peng, H.; Hu, Z.; Wang, Y.; Rao, Y.; Hu, Q.; Rao, X.; et al. Accessory Gene Regulator (agr) Allelic Variants in Cognate Staphylococcus aureus Strain Display Similar Phenotypes. Front. Microbiol. 2022, 13, 700894. [Google Scholar] [CrossRef]
- Zhao, A.; Bodine, S.P.; Xie, Q.; Wang, B.; Ram, G.; Novick, R.P.; Muir, T.W. Reconstitution of the S. aureus agr quorum sensing pathway reveals a direct role for the integral membrane protease MroQ in pheromone biosynthesis. Proc. Natl. Acad. Sci. USA 2022, 119, e2202661119. [Google Scholar] [CrossRef]
- Liu, Q.; Yeo, W.S.; Bae, T. The SaeRS Two-Component System of Staphylococcus aureus. Genes 2016, 7, 81. [Google Scholar] [CrossRef]
- Wang, H.; Hou, X.; Shen, J.; Wang, W.; Ye, Y.; Yu, J.; Xue, T. Alternative sigma factor B reduces biofilm formation and stress response in milk-derived Staphylococcus aureus. LWT 2022, 162, 113515. [Google Scholar] [CrossRef]
- Yeak, K.Y.C.; Tempelaars, M.; Wu, J.L.; Westerveld, W.; Reder, A.; Michalik, S.; Dhople, V.M.; Völker, U.; Pané-Farré, J.; Wells-Bennik, M.H.J.; et al. SigB modulates expression of novel SigB regulon members via Bc1009 in non-stressed and heat-stressed cells revealing its alternative roles in Bacillus cereus. BMC Microbiol. 2023, 23, 37. [Google Scholar] [CrossRef]
- Andrey, D.O.; Renzoni, A.; Monod, A.; Lew, D.P.; Cheung, A.L.; Kelley, W.L. Control of the Staphylococcus aureus Toxic Shock tst Promoter by the Global Regulator SarA. J. Bacteriol. 2010, 192, 6077–6085. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.H.; Kim, Y.S.; Hwang, S.D. Regulation of Toxic Shock Syndrome Toxin-1 Gene in Staphylococcus aureus. Mol. Cells 1997, 7, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Medved’ová, A.; Havlíková, A.; Valík, Ľ. Staphylococcus aureus Enterotoxin Production in Relation to Environmental Factors. In The Rise of Virulence and Antibiotic Resistance in Staphylococcus aureus; IntechOpen: London, UK, 2017; Available online: https://www.intechopen.com/chapters/53494 (accessed on 7 June 2025).
- Maduta, C.S.; McCormick, J.K.; Dufresne, K. Vaginal community state types (CSTs) alter environmental cues and production of the Staphylococcus aureus toxic shock syndrome toxin-1 (TSST-1). J. Bacteriol. 2024, 206, e0044723. [Google Scholar] [CrossRef]
- Chakraborty, N.; Srinivasan, S.; Yang, R.; Miller, S.-A.; Gautam, A.; Detwiler, L.J.; Carney, B.C.; Alkhalil, A.; Moffatt, L.T.; Jett, M.; et al. Comparison of Transcriptional Signatures of Three Staphylococcal Superantigenic Toxins in Human Melanocytes. Biomedicines 2022, 10, 1402. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, J.; He, Y.; Lv, Z.; Liang, Z.; Chen, J.; Li, P.; Liu, J.; Yang, H.; Tao, A.; et al. Exploring the Role of Staphylococcus aureus in Inflammatory Diseases. Toxins 2022, 14, 464. [Google Scholar] [CrossRef]
- Mlynarczyk-Bonikowska, B.; Kowalewski, C.; Krolak-Ulinska, A.; Marusza, W. Molecular Mechanisms of Drug Resistance in Staphylococcus aureus. Int. J. Mol. Sci. 2022, 23, 8088. [Google Scholar] [CrossRef]
- Dehbashi, S.; Tahmasebi, H.; Zeyni, B.; Arabestani, M.R. Regulation of virulence and β-lactamase gene expression in Staphylococcus aureus isolates: Cooperation of two-component systems in bloodstream superbugs. BMC Microbiol. 2021, 21, 192. [Google Scholar] [CrossRef]
- Sina, H.; Ahoyo, T.A.; Moussaoui, W.; Keller, D.; Bankolé, H.S.; Barogui, Y.; Stienstra, Y.; Kotchoni, S.O.; Prévost, G.; Baba-Moussa, L. Variability of antibiotic susceptibility and toxin production of Staphylococcus aureus strains isolated from skin, soft tissue, and bone related infections. BMC Microbiol. 2013, 13, 188. [Google Scholar] [CrossRef]
- Tuon, F.F.; Suss, P.H.; Telles, J.P.; Dantas, L.R.; Borges, N.H.; Ribeiro, V.S.T. Antimicrobial Treatment of Staphylococcus aureus Biofilms. Antibiotics 2023, 12, 87. [Google Scholar] [CrossRef] [PubMed]
- Uddin, T.M.; Chakraborty, A.J.; Khusro, A.; Zidan, B.R.M.; Mitra, S.; Emran, T.B.; Dhama, K.; Ripon, M.K.H.; Gajdács, M.; Sahibzada, M.U.K.; et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J. Infect. Public Health 2021, 14, 1750–1766. [Google Scholar] [CrossRef] [PubMed]
- Antonanzas, F.; Lozano, C.; Torres, C. Economic Features of Antibiotic Resistance: The Case of Methicillin-Resistant Staphylococcus aureus. PharmacoEconomics 2015, 33, 285–325. [Google Scholar] [CrossRef]
- Costabile, G.; Baldassi, D.; Müller, C.; Groß, B.; Ungaro, F.; Schubert, S.; Firestine, S.M.; Merkel, O.M. Antibiotic-loaded nanoparticles for the treatment of intracellular methicillin-resistant Staphylococcus Aureus infections: In vitro and in vivo efficacy of a novel antibiotic. J. Control. Release 2024, 374, 454–465. [Google Scholar] [CrossRef]
- Lade, H.; Kim, J.S. Bacterial Targets of Antibiotics in Methicillin-Resistant Staphylococcus aureus. Antibiotics 2021, 10, 398. [Google Scholar] [CrossRef]
- Ade, T.I.; Odewale, G.; Daji, M.; Ohirhian, J.; Ojedele, R.O. Association of TSST-1 gene with phenotypic antibiotic resistance among clinical Staphylococcus aureus isolates in a tertiary healthcare center. Microbes Infect. Dis. 2023, 4, 450–458. [Google Scholar]
- Nowrouzian, F.L.; Stadler, L.S.; Östblom, A.; Lindberg, E.; Lina, G.; Adlerberth, I.; Wold, A.E. Staphylococcus aureus sequence type (ST) 45, ST30, and ST15 in the gut microbiota of healthy infants—Persistence and population counts in relation to ST and virulence gene carriage. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 267–276. [Google Scholar] [CrossRef]
- Shettigar, K.; Murali, T.S. Virulence factors and clonal diversity of Staphylococcus aureus in colonization and wound infection with emphasis on diabetic foot infection. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 2235–2246. [Google Scholar] [CrossRef]
- Busche, T.; Hillion, M.; Van Loi, V.; Berg, D.; Walther, B.; Semmler, T.; Strommenger, B.; Witte, W.; Cuny, C.; Mellmann, A.; et al. Comparative Secretome Analyses of Human and Zoonotic Staphylococcus aureus Isolates CC8, CC22, and CC398*. Mol. Cell. Proteom. 2018, 17, 2412–2433. [Google Scholar] [CrossRef]
- Sansevere, E.A.; Robinson, D.A. Staphylococci on ICE: Overlooked agents of horizontal gene transfer. Mob. Genet. Elem. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Goswami, C.; Fox, S.; Holden, M.; Leanord, A.; Evans, T.J. Genomic Analysis of Global Staphylococcus argenteus Strains Reveals Distinct Lineages with Differing Virulence and Antibiotic Resistance Gene Content. Front. Microbiol. 2021, 12, 795173. [Google Scholar] [CrossRef] [PubMed]
- Locke, T.E.; Keeley, A.J.; Laundy, N.; Keil, C.; Hamilton, J.; Pandor, A.; I de Silva, T.; Darton, T.C. Prevalence and risk factors for Staphylococcus aureus colonisation among healthy individuals in low- and middle-income countries: A systematic review and meta-analysis. J. Infect. 2025, 90, 106462. [Google Scholar] [CrossRef] [PubMed]
- Bijoy, M.d.M.K.; Dudayev, Z.; Mahim, U.F.; Ahmed, E.; Ashraf, M.d.N.; Rimi, S.S.; Islam, M.d.S.; Zinnah, M.A.; Islam, M.d.S. Emergence of multidrug-resistant and virulent Staphylococcus aureus in domestic cats in Bangladesh: Possible risks of zoonoses. Microbe 2025, 7, 100313. [Google Scholar] [CrossRef]
- Titouche, Y.; Akkou, M.; Houali, K.; Auvray, F.; Hennekinne, J.A. Role of milk and milk products in the spread of methicillin-resistant Staphylococcus aureus in the dairy production chain. J. Food Sci. 2022, 87, 3699–3723. [Google Scholar] [CrossRef]
- Samuel, P.; Kumar, Y.S.; Suthakar, B.J.; Karawita, J.; Sunil Kumar, D.; Vedha, V.; Shah, H.; Thakkar, K. Methicillin-Resistant Staphylococcus aureus Colonization in Intensive Care and Burn Units: A Narrative Review. Cureus 2023, 15, e47139. [Google Scholar] [CrossRef]
- Sandu, A.M.; Chifiriuc, M.C.; Vrancianu, C.O.; Cristian, R.-E.; Alistar, C.F.; Constantin, M.; Paun, M.; Alistar, A.; Popa, L.G.; Popa, M.I.; et al. Healthcare-Associated Infections: The Role of Microbial and Environmental Factors in Infection Control—A Narrative Review. Infect. Dis. Ther. 2025, 14, 933–971. [Google Scholar] [CrossRef]
- Haag, A.F.; Fitzgerald, J.R.; Penadés, J.R. Staphylococcus aureus in Animals. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Rossi, B.F.; Bonsaglia, E.C.R.; Castilho, I.G.; Dantas, S.T.A.; Salina, A.; Langoni, H.; Pantoja, J.C.F.; Budri, P.E.; Fitzgerald-Hughes, D.; Júnior, A.F.; et al. Genotyping of long term persistent Staphylococcus aureus in bovine subclinical mastitis. Microb. Pathog. 2019, 132, 45–50. [Google Scholar] [CrossRef]
- Campos, B.; Pickering, A.C.; Rocha, L.S.; Aguilar, A.P.; Fabres-Klein, M.H.; Mendes, T.A.d.O.; Fitzgerald, J.R.; Ribon, A.d.O.B. Diversity and pathogenesis of Staphylococcus aureus from bovine mastitis: Current understanding and future perspectives. BMC Vet. Res. 2022, 18, 115. [Google Scholar] [CrossRef]
- Tong, X.; Barkema, H.W.; Nobrega, D.B.; Xu, C.; Han, B.; Zhang, C.; Yang, J.; Li, X.; Gao, J. Virulence of Bacteria Causing Mastitis in Dairy Cows: A Literature Review. Microorganisms 2025, 13, 167. [Google Scholar] [CrossRef]
- Ben Said, M.; Abbassi, M.S.; Gómez, P.; Ruiz-Ripa, L.; Sghaier, S.; Ibrahim, C.; Torres, C.; Hassen, A. Staphylococcus aureus isolated from wastewater treatment plants in Tunisia: Occurrence of human and animal associated lineages. J. Water Health 2017, 15, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Wang, Q.; Zhang, Y.; Chen, Y.; Wang, H.; Ding, H. Prevalence, antimicrobial resistance, and staphylococcal toxin genes of blaTEM-1a -producing Staphylococcus aureus isolated from animals in Chongqing, China. Vet. Med. Sci. 2023, 9, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Demirci, M.; Celepler, Y.; Dincer, S.; Yildirim, I.; Çiğrikci, H.U.; Kalyenci, N.; Namal, N.; Tokman, H.B.; Mamal, E.; Aksaray, S.; et al. Should we leave the paper currency? A microbiological examination. Rev. Esp. Quimioter. Publ. Of. Soc. Esp. Quimioter. 2020, 33, 94–102. [Google Scholar] [CrossRef]
- Alruwaili, R.F.; Alsadaan, N.; Alruwaili, A.N.; Alrumayh, A.G. Unveiling the Symbiosis of Environmental Sustainability and Infection Control in Health Care Settings: A Systematic Review. Sustainability 2023, 15, 15728. [Google Scholar] [CrossRef]
- Garcia, R.; Barnes, S.; Boukidjian, R.; Goss, L.K.; Spencer, M.; Septimus, E.J.; Wright, M.-O.; Munro, S.; Reese, S.M.; Fakih, M.G.; et al. Recommendations for change in infection prevention programs and practice. Am. J. Infect. Control 2022, 50, 1281–1295. [Google Scholar] [CrossRef]
- Querido, M.M.; Aguiar, L.; Neves, P.; Pereira, C.C.; Teixeira, J.P. Self-disinfecting surfaces and infection control. Colloids Surf. B Biointerfaces 2019, 178, 8–21. [Google Scholar] [CrossRef]
- Elbehiry, A.; Abalkhail, A.; Marzouk, E.; Elmanssury, A.E.; Almuzaini, A.M.; Alfheeaid, H.; Alshahrani, M.T.; Huraysh, N.; Ibrahem, M.; Alzaben, F.; et al. An Overview of the Public Health Challenges in Diagnosing and Controlling Human Foodborne Pathogens. Vaccines 2023, 11, 725. [Google Scholar] [CrossRef]
- Manafe, M.; Gordon, R.E.; Ncube, L.J. Food hygiene and food safety practices of households in a township north of Tshwane, Gauteng. Health SA Gesondheid 2023, 28, 2346. [Google Scholar] [CrossRef]
- Ross, A.; Shoff, H.W. Toxic Shock Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK459345/ (accessed on 7 June 2025).
- Sawodny, S.; Käsbohrer, A.; Bröker, L.; Firth, C.; Marschik, T. Intervention strategies for methicillin-resistant Staphylococcus aureus control in pig farming: A comprehensive review. Porc. Health Manag. 2025, 11, 17. [Google Scholar] [CrossRef]
- Schlievert, P.M.; Cahill, M.P.; Hostager, B.S.; Brosnahan, A.J.; Klingelhutz, A.J.; Gourronc, F.A.; Bishop, G.A.; Leung, D.Y.M. Staphylococcal Superantigens Stimulate Epithelial Cells through CD40 to Produce Chemokines. mBio 2019, 10, e00214-19. [Google Scholar] [CrossRef]
- Dodémont, M.; Argudín, M.A.; Willekens, J.; Vanderhelst, E.; Pierard, D.; Miendje Deyi, V.Y.; Hanssens, L.; Franckx, H.; Schelstraete, P.; Leroux-Roels, I.; et al. Emergence of livestock-associated MRSA isolated from cystic fibrosis patients: Result of a Belgian national survey. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2019, 18, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, A.; Ebara, Y.; Nomura, S.; Yamada, Y. Chronological changes in strawberry tongue in toxic shock syndrome toxin-1–mediated Exanthematous Disease. J. Gen. Fam. Med. 2020, 21, 280–281. [Google Scholar] [CrossRef] [PubMed]
- Grispoldi, L.; Karama, M.; Armani, A.; Hadjicharalambous, C.; Cenci-Goga, B.T. Staphylococcus aureus enterotoxin in food of animal origin and staphylococcal food poisoning risk assessment from farm to table. Ital. J. Anim. Sci. 2021, 20, 677–690. [Google Scholar] [CrossRef]
- Roy, M.C.; Chowdhury, T.; Hossain, M.T.; Hasan, M.d.M.; Zahran, E.; Rahman, M.d.M.; Zinnah, K.M.A.; Rahman, M.d.M.; Hossain, F.M.A. Zoonotic linkage and environmental contamination of Methicillin-resistant Staphylococcus aureus (MRSA) in dairy farms: A one health perspective. One Health 2024, 18, 100680. [Google Scholar] [CrossRef]
- Hochwalt, A.E.; Abbinante-Nissen, J.M.; Bohman, L.C.; Hattersley, A.M.; Hu, P.; Streicher-Scott, J.L.; Teufel, A.G.; Woeller, K.E. The safety assessment of tampons: Illustration of a comprehensive approach for four different products. Front. Reprod. Health 2023, 5, 1167868. [Google Scholar] [CrossRef]
- Touati, A.; Ibrahim, N.A.; Idres, T. Disarming Staphylococcus aureus: Review of Strategies Combating This Resilient Pathogen by Targeting Its Virulence. Pathogens 2025, 14, 386. [Google Scholar] [CrossRef]
- Eibach, D.; Nagel, M.; Hogan, B.; Azuure, C.; Krumkamp, R.; Dekker, D.; Gajdiss, M.; Brunke, M.; Sarpong, N.; Owusu-Dabo, E.; et al. Nasal Carriage of Staphylococcus aureus among Children in the Ashanti Region of Ghana. PLoS ONE 2017, 12, e0170320. [Google Scholar] [CrossRef]
- Bashabsheh, R.H.F.; AL-Fawares, O.; Natsheh, I.; Bdeir, R.; Al-Khreshieh, R.O.; Bashabsheh, H.H.F. Staphylococcus aureus epidemiology, pathophysiology, clinical manifestations and application of nano-therapeutics as a promising approach to combat methicillin resistant Staphylococcus aureus. Pathog. Glob. Health 2025, 118, 209–231. [Google Scholar] [CrossRef]
- Abril, A.G.; Villa, T.G.; Barros-Velázquez, J.; Cañas, B.; Sánchez-Pérez, A.; Calo-Mata, P.; Carrera, M. Staphylococcus aureus Exotoxins and Their Detection in the Dairy Industry and Mastitis. Toxins 2020, 12, 537. [Google Scholar] [CrossRef]
- Kang, J.; Dietz, M.J.; Hughes, K.; Xing, M.; Li, B. Silver nanoparticles present high intracellular and extracellular killing against Staphylococcus aureus. J. Antimicrob. Chemother. 2019, 74, 1578–1585. [Google Scholar] [CrossRef]
- Lappan, R.; Chown, S.L.; French, M.; Perlaza-Jiménez, L.; Macesic, N.; Davis, M.; Brown, R.; Cheng, A.; Clasen, T.; Conlan, L.; et al. Towards integrated cross-sectoral surveillance of pathogens and antimicrobial resistance: Needs, approaches, and considerations for linking surveillance to action. Environ. Int. 2024, 192, 109046. [Google Scholar] [CrossRef]
- Gajewska, J.; Chajęcka-Wierzchowska, W.; Zadernowska, A. Genomic characterisation of the pathogenicity of Staphylococcus aureus isolates recovered from the cheese chain production. Int. Dairy J. 2023, 147, 105774. [Google Scholar] [CrossRef]
Country | TSST-1 Prevalence (%) | Population Studied | Reference |
---|---|---|---|
Afghanistan | 68.4 | Non-medical university students (nasal) | [7] |
Algeria | 18.5 | Clinical/environmental samples | [27] |
Algeria | 19.8 | Isolates from humans, farm animals, pets, wildlife, and the environment | [28] |
Benin | 7.14 | Hospital environment isolates | [29] |
Brazil | 0 | Artisanal coalho cheese | [30] |
Brazil | 2.6 | Raw milk, cheese, and cheese handlers in artisanal production | [31] |
Brazil | 52.08 | Dairy products (Minas Frescal cheese) | [32] |
Central Russia | 1.6 | Cows with subclinical mastitis | [33] |
China | 3.2 | Bovine mastitis cases | [34] |
China | 3.8 | CA-MRSA clinical infections | [35] |
China | 18 | MRSA isolates (CC5 clone) from hospital patients in Suzhou | [36] |
Egypt | 18 | Food samples (beef luncheon and corn flakes) | [37] |
Egypt | 21 | Bacteremic and infective endocarditis patients | [38] |
Ethiopia | 13.37 | Clinical specimens (wound, blood, etc.) | [39] |
Ethiopia | 51 | Dairy products and milk samples | [40] |
Hong Kong | 9.52 | Swine (pig tongues) | [41] |
Iran | 15.2 | Patients with skin lesions | [20] |
Iran | 20.6 | MS patients (nasal) | [42] |
Italy | 5.9 | S. aureus from small ruminants (milk) | [43] |
Japan | 0.4 | Healthcare facility patients | [44] |
Japan | 33.6 (2010), 21.6 (2018) | MRSA isolates from outpatient skin/pus samples | [45] |
Kenya | 23.3 | Inpatients in referral hospital | [46] |
Myanmar | 3.5 | Healthy food handlers | [4] |
Nigeria | 44.7 | Livestock samples | [47] |
Nigeria | 3.3 (Nasal); 6.7(Clinical) | Nasal carriers and clinical patients (blood, wound, and sputum) | [48] |
Poland | 5 | Free-living carnivorous mammals | [49] |
Poland | 3.5 | Poultry (broiler chickens and turkeys) | [50] |
Poland | 8 | Atopic dermatitis patients | [51] |
Portugal | 4.8 | Raw milk isolates | [9] |
Russia | 58 | HA-MRSA isolates (healthcare settings) | [52] |
South Korea | 13.3 | Bovine mastitis milk samples | [53] |
Uganda | 0 | Women in labor | [54] |
United Kingdom | 41 | nmTSS cases (skin/soft tissue infections) | [55] |
USA | 4 | Tampons colonized by S. aureus | [56] |
USA | 5 | Vaginal colonization (tampon users) | [1] |
Region | Population | Morbidity | Mortality | Source |
---|---|---|---|---|
Quebec | 630 TSS patients vs. 11,309 controls | Higher rehospitalization (men: 642.8 vs. 237.1 per 10,000); renal, hepatic, cardiovascular, neurological, and autoimmune risks increased. | Not directly reported | [81] |
UK | 88 children with TSS | Streptococcal TSS: 40% cardiovascular dysfunction and 25% renal failure | Overall: 5.7%; Streptococcal: 14.3%; Staphylococcal: 2.6% | [72] |
USA | Patients <21 y, insured via Medicaid or commercial plans | ICU admission: 55–66% | Medicaid: 0%; Commercial: 0.5% | [88] |
The Netherlands | Nationwide US adult and child cohorts | 30.8% chronic outcomes: renal (10.2%), cardiovascular (8.3%), and autoimmune (3.9%) | 2% to 38% depending on the case type | [84] |
67-year-old male case (necrotizing fasciitis) | Multi-organ failure and rapid deterioration | Fatal outcome | [89] | |
USA | US surveillance 1979–1996 | Not specified | Menstrual: 5–15%; Non-menstrual: 30–50% | [86] |
Japan | National cohort of STSS cases | 28% acute renal failure | STSS responsible for >60% of TSS deaths | [90] |
Method | Type | Principle | Accuracy | Advantages | Inconveniences | References |
---|---|---|---|---|---|---|
PCR (tst gene) | Molecular | Amplifies the tst gene using specific primers. | Sensitivity: >90%. Specificity: High. Detection limit: ~102 CFU/g. | Rapid, specific, and high throughput. | Requires DNA extraction; risk of false negatives if primers mismatch. | [20,27,91,92,102,123,124] |
Multiplex PCR | Molecular | Simultaneously amplifies tst with other toxin genes (e.g., sea and seb). | Sensitivity: 95–100%. Specificity: High. | Efficient for multi-toxin screening. | Complex primer design; risk of cross-reactivity. | [50,96] |
Real-time PCR | Molecular | Quantifies tst mRNA using fluorescent probes. | Sensitivity: ~1–10 copies/µL. | Quantitative, rapid, and minimal post-processing. | Expensive equipment; requires probe optimization. | [31,55,93,125] |
qRT-PCR | Molecular | Quantifies tst mRNA expression using reverse transcription. | Sensitivity: ~10 mRNA copies. | Links gene expression to toxin production | Requires RNA extraction; risk of RNA degradation | [31,119,121] |
ELISA | Immunological | Uses anti-TSST-1 antibodies to detect the toxin in samples. | Sensitivity: 0.6–20 ng/mL. Specificity: High. | High-throughput, quantitative, and user-friendly. | Cross-reactivity with related toxins; requires purified standards. | [24,87,98,126] |
Western blotting | Immunological | Detects the TSST-1 protein using specific antibodies and SDS-PAGE. | Sensitivity: 1–10 ng. Specificity: Very high. | Confirms protein identity; semi-quantitative. | Time-consuming; requires skilled personnel. | [28,51,74,112,127,128] |
Mass Spectrometry | Proteomic | Identifies TSST-1 via peptide mass fingerprinting. | Sensitivity: <1 ng/mL. Specificity: Very high. | Detects post-translational modifications; no antibodies needed. | Expensive; requires advanced equipment and expertise. | [3,21,41] |
Bioassay (T-cell activation) | Functional | Measures IL-2 release from PBMCs exposed to TSST-1. | Sensitivity: ~0.02 ng/mL (functional activity). | Confirms biological activity; useful for toxin validation. | Time-intensive; requires cell cultures; low throughput. | [72] |
Latex Agglutination | Immunological | Detects TSST-1 via antibody-coated latex particles. | Sensitivity: 1–2 ng/mL. Specificity: Moderate. | Rapid (15–20 min); no specialized equipment. | Lower sensitivity; prone to false positives in mixed samples. | [52,97,104,105] |
Whole-Genome Sequencing | Molecular | Identifies tst gene in bacterial genomes. | Sensitivity: 100% (gene presence). Specificity: High. | Comprehensive; detects mutations and genetic context. | Expensive; computationally intensive; not routine for diagnostics. | [45,53,64,71,129] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Touaitia, R.; Ibrahim, N.A.; Abdullah Almuqri, E.; Basher, N.S.; Idres, T.; Touati, A. Toxic Shock Syndrome Toxin-1 (TSST-1) in Staphylococcus aureus: Prevalence, Molecular Mechanisms, and Public Health Implications. Toxins 2025, 17, 323. https://doi.org/10.3390/toxins17070323
Touaitia R, Ibrahim NA, Abdullah Almuqri E, Basher NS, Idres T, Touati A. Toxic Shock Syndrome Toxin-1 (TSST-1) in Staphylococcus aureus: Prevalence, Molecular Mechanisms, and Public Health Implications. Toxins. 2025; 17(7):323. https://doi.org/10.3390/toxins17070323
Chicago/Turabian StyleTouaitia, Rahima, Nasir Adam Ibrahim, Eman Abdullah Almuqri, Nosiba S. Basher, Takfarinas Idres, and Abdelaziz Touati. 2025. "Toxic Shock Syndrome Toxin-1 (TSST-1) in Staphylococcus aureus: Prevalence, Molecular Mechanisms, and Public Health Implications" Toxins 17, no. 7: 323. https://doi.org/10.3390/toxins17070323
APA StyleTouaitia, R., Ibrahim, N. A., Abdullah Almuqri, E., Basher, N. S., Idres, T., & Touati, A. (2025). Toxic Shock Syndrome Toxin-1 (TSST-1) in Staphylococcus aureus: Prevalence, Molecular Mechanisms, and Public Health Implications. Toxins, 17(7), 323. https://doi.org/10.3390/toxins17070323