The Therapeutic Potential of Antimicrobial Peptides Isolated from the Skin Secretions of Anurans of the Genus Boana in the Face of the Global Antimicrobial Resistance Crisis
Abstract
:1. Introduction
2. Antimicrobial Resistance
3. AMPs from Anurans as Therapeutic Alternatives for the Antibiotic Crisis
3.1. Barrel-Stave Model
3.2. Toroidal Pore Model
3.3. Carpet-like Model
3.4. Shai-Huang-Matsuzaki Model
4. The Therapeutic Potential of AMPs from Anurans of the Genus Boana
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
AD | Alzheimer’s disease |
AMPs | Antimicrobial peptides |
AMR | Antimicrobial resistance |
cDNA | Complementary deoxyribonucleic acid |
HC50 | Hemolytic concentration 50 |
HPLC | High-performance liquid chromatography |
MIC | Minimum inhibitory concentration |
MS | Mass spectrometry |
WHO | World Health Organization |
References
- Antony, A.; Purayil, A.K.; Olakkaran, S.; Dhannura, S.; Shekh, S.; Gowd, K.H.; Gurushankara, H.P. Antimicrobial and antitumor properties of anuran peptide Temporin-SHf induce apoptosis in A549 lung cancer cells. Amino Acids 2024, 56, 12. [Google Scholar] [CrossRef] [PubMed]
- Abraham, E.P.; Chain, E. An enzyme from bacteria able to destroy penicillin. Rev. Infect. Dis. 1988, 10, 677–678. [Google Scholar] [CrossRef]
- Decker, A.P.; Mechesso, A.F.; Wang, G. Expanding the landscape of amino acid-rich antimicrobial peptides: Definition, deployment in nature, implications for peptide design and therapeutic potential. Int. J. Mol. Sci. 2022, 23, 12874. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, A.E.; Fuzo, C.A.; Aguilar, S.; Rivera-Correa, M.; Marani, M.M.; Lopes, N.P. The significance of hypervariability and conserved motifs in antimicrobial peptides from tree frogs. J. Nat. Prod. 2023, 86, 1761–1769. [Google Scholar] [CrossRef] [PubMed]
- Laxminarayan, R.; Sridhar, D.; Blaser, M.; Wang, M.; Woolhouse, M. Achieving global targets for antimicrobial resistance. Science 2016, 353, 874–875. [Google Scholar] [CrossRef]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Vestergaard, M.; Frees, D.; Ingmer, H. Antibiotic resistance and the MRSA problem. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- de la Fuente-Nunez, C.; Cesaro, A.; Hancock, R.E.W. Antibiotic failure: Beyond antimicrobial resistance. Drug Resist. Updat. 2023, 71, 101012. [Google Scholar] [CrossRef]
- Liu, G.Y.; Yu, D.; Fan, M.M.; Zhang, X.; Jin, Z.Y.; Tang, C.; Liu, X.F. Antimicrobial resistance crisis: Could artificial intelligence be the solution? Mil. Med. Res. 2024, 11, 7. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 2018, 8, 4. [Google Scholar] [CrossRef]
- Luo, Y.; Song, Y. Mechanism of antimicrobial peptides: Antimicrobial, anti-inflammatory and antibiofilm activities. Int. J. Mol. Sci. 2021, 22, 11401. [Google Scholar] [CrossRef]
- Duarte-Mata, D.I.; Salinas-Carmona, M.C. Antimicrobial peptides’ immune modulation role in intracellular bacterial infection. Front. Immunol. 2023, 14, 1119574. [Google Scholar] [CrossRef]
- Magana, M.; Pushpanathan, M.; Santos, A.L.; Leanse, L.; Fernandez, M.; Ioannidis, A.; Giulianotti, M.A.; Apidianakis, Y.; Bradfute, S.; Ferguson, A.L.; et al. The value of antimicrobial peptides in the age of resistance. Lancet Infect. Dis. 2020, 20, e216–e230. [Google Scholar] [CrossRef] [PubMed]
- Erdem Büyükkiraz, M.; Kesmen, Z. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds. J. Appl. Microbiol. 2022, 132, 1573–1596. [Google Scholar] [CrossRef]
- Li, X.; Zuo, S.; Wang, B.; Zhang, K.; Wang, Y. Antimicrobial mechanisms and clinical application prospects of antimicrobial peptides. Molecules 2022, 27, 2675. [Google Scholar] [CrossRef] [PubMed]
- Xuan, J.; Feng, W.; Wang, J.; Wang, R.; Zhang, B.; Bo, L.; Chen, Z.S.; Yang, H.; Sun, L. Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resist. Updat. 2023, 68, 100954. [Google Scholar] [CrossRef]
- Chen, C.; Shi, J.; Wang, D.; Kong, P.; Wang, Z.; Liu, Y. Antimicrobial peptides as promising antibiotic adjuvants to combat drug-resistant pathogens. Crit. Rev. Microbiol. 2024, 50, 267–284. [Google Scholar] [CrossRef]
- Patocka, J.; Nepovimova, E.; Klimova, B.; Wu, Q.; Kuca, K. Antimicrobial peptides: Amphibian host defense peptides. Curr. Med. Chem. 2019, 26, 5924–5946. [Google Scholar] [CrossRef]
- Zhang, Q.-Y.; Yan, Z.-B.; Meng, Y.-M.; Hong, X.-Y.; Shao, G.; Ma, J.-J.; Cheng, X.-R.; Liu, J.; Kang, J.; Fu, C.-Y. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil. Med. Res. 2023, 10, 48. [Google Scholar] [CrossRef]
- Pantic, J.M.; Jovanovic, I.P.; Radosavljevic, G.D.; Arsenijevic, N.N.; Conlon, J.M.; Lukic, M.L. The potential of frog skin-derived peptides for development into therapeutically valuable immunomodulatory agents. Molecules 2017, 22, 2071. [Google Scholar] [CrossRef]
- Oelkrug, C.; Hartke, M.; Schubert, A. Mode of action of anticancer peptides (ACPs) from amphibian origin. Anticancer Res. 2015, 35, 635–643. [Google Scholar]
- Guimarães, A.B.; Costa, F.J.; Pires, O.R.; Fontes, W.; Castro, M.S. The amazing world of peptide engineering: The example of antimicrobial peptides from frogs and their analogues. Protein Pept. Lett. 2016, 23, 722–737. [Google Scholar] [CrossRef]
- Libério, M.S.; Joanitti, G.A.; Azevedo, R.B.; Cilli, E.M.; Zanotta, L.C.; Nascimento, A.C.; Sousa, M.V.; Pires Júnior, O.R.; Fontes, W.; Castro, M.S. Anti-proliferative and cytotoxic activity of pentadactylin isolated from Leptodactylus labyrinthicus on melanoma cells. Amino Acids 2011, 40, 51–59. [Google Scholar] [CrossRef]
- Conlon, J.M.; Mechkarska, M.; Abdel-Wahab, Y.H.; Flatt, P.R. Peptides from frog skin with potential for development into agents for Type 2 diabetes therapy. Peptides 2018, 100, 275–281. [Google Scholar] [CrossRef] [PubMed]
- de Amaral, M.; Ienes-Lima, J. Anurans against SARS-CoV-2: A review of the potential antiviral action of anurans cutaneous peptides. Virus Res. 2022, 315, 198769. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, J.F.C.; Boaretto, A.G.; Santana, D.J.; Silva, D.B. Skin secretions of Leptodactylidae (Anura) and their potential applications. J. Venom. Anim. Toxins Incl. Trop. Dis. 2024, 30, e20230042. [Google Scholar] [CrossRef] [PubMed]
- Conlon, J.M.; Mechkarska, M.; Pantic, J.M.; Lukic, M.L.; Coquet, L.; Leprince, J.; Nielsen, P.F.; Rinaldi, A.C. An immunomodulatory peptide related to frenatin 2 from skin secretions of the Tyrrhenian painted frog Discoglossus sardus (Alytidae). Peptides 2013, 40, 65–71. [Google Scholar] [CrossRef]
- Scorciapino, M.A.; Manzo, G.; Rinaldi, A.C.; Sanna, R.; Casu, M.; Pantic, J.M.; Lukic, M.L.; Conlon, J.M. Conformational analysis of the frog skin peptide, plasticin-L1, and its effects on production of proinflammatory cytokines by macrophages. Biochemistry 2013, 52, 7231–7241. [Google Scholar] [CrossRef]
- Attoub, S.; Mechkarska, M.; Sonnevend, A.; Radosavljevic, G.; Jovanovic, I.; Lukic, M.L.; Conlon, J.M. Esculentin-2CHa: A host-defense peptide with differential cytotoxicity against bacteria, erythrocytes and tumor cells. Peptides 2013, 39, 95–102. [Google Scholar] [CrossRef] [PubMed]
- McLean, D.T.; McCrudden, M.T.; Linden, G.J.; Irwin, C.R.; Conlon, J.M.; Lundy, F.T. Antimicrobial and immunomodulatory properties of PGLa-AM1, CPF-AM1, and magainin-AM1: Potent activity against oral pathogens. Regul. Pept. 2014, 194–195, 63–68. [Google Scholar] [CrossRef]
- Conlon, J.M.; Mechkarska, M.; Radosavljevic, G.; Attoub, S.; King, J.D.; Lukic, M.L.; McClean, S. A family of antimicrobial and immunomodulatory peptides related to the frenatins from skin secretions of the Orinoco lime frog Sphaenorhynchus lacteus (Hylidae). Peptides 2014, 56, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Mangoni, M.L.; McDermott, A.M.; Zasloff, M. Antimicrobial peptides and wound healing: Biological and therapeutic considerations. Exp. Dermatol. 2016, 25, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Duan, H.; Li, M.; Xu, W.; Wei, L. Characterization and mechanism of action of amphibian-derived wound-healing-promoting peptides. Front. Cell Dev. Biol. 2023, 11, 1219427. [Google Scholar] [CrossRef]
- Ma, L.; Xie, X.; Liu, H.; Huang, Y.; Wu, H.; Jiang, M.; Xu, P.; Ye, X.; Zhou, C. Potent antibacterial activity of MSI-1 derived from the magainin 2 peptide against drug-resistant bacteria. Theranostics 2020, 10, 1373–1390. [Google Scholar] [CrossRef]
- Fan, X.L.; Yu, S.S.; Zhao, J.L.; Li, Y.; Zhan, D.J.; Xu, F.; Lin, Z.H.; Chen, J. Brevinin-2PN, an antimicrobial peptide identified from dark-spotted frog (Pelophylax nigromaculatus), exhibits wound-healing activity. Dev. Comp. Immunol. 2022, 137, 104519. [Google Scholar] [CrossRef]
- D’Andrea, L.D.; Romanelli, A. Temporins: Multifunctional peptides from frog skin. Int. J. Mol. Sci. 2023, 24, 5426. [Google Scholar] [CrossRef]
- Han, Z.; Wang, Y.; Wang, W.; Cheng, M.; Yang, H.; Liu, Y. Design, synthesis and activity evaluation of reduction-responsive anticancer peptide temporin-1CEa drug conjugates. Bioorg. Chem. 2025, 154, 108103. [Google Scholar] [CrossRef]
- Azevedo Calderon, L.; Silva, A.; Ciancaglini, P.; Stábeli, R. Antimicrobial peptides from Phyllomedusa frogs: From biomolecular diversity to potential nanotechnologic medical applications. Amino Acids 2011, 40, 29–49. [Google Scholar] [CrossRef] [PubMed]
- Rollins-Smith, L.A.; Le Sage, E.H. Heat stress and amphibian immunity in a time of climate change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2023, 378, 20220132. [Google Scholar] [CrossRef]
- Becker, C.G.; Greenspan, S.E.; Martins, R.A.; Lyra, M.L.; Prist, P.; Metzger, J.P.; São Pedro, V.; Haddad, C.F.B.; Le Sage, E.H.; Woodhams, D.C.; et al. Habitat split as a driver of disease in amphibians. Biol. Rev. Camb. Philos. Soc. 2023, 98, 727–746. [Google Scholar] [CrossRef] [PubMed]
- Santana, C.J.C.; Magalhães, A.C.M.; Prías-Márquez, C.A.; Falico, D.A.; Dos Santos Júnior, A.C.M.; Lima, B.D.; Ricart, C.A.O.; de Pilger, D.R.B.; Bonotto, R.M.; Moraes, C.B.; et al. Biological properties of a novel multifunctional host defense peptide from the skin secretion of the Chaco tree frog, Boana raniceps. Biomolecules 2020, 10, 790. [Google Scholar] [CrossRef]
- Barbosa, G.G.; Santana, C.J.C.; Silva, T.L.; Santana, B.C.G.; Paiva, P.M.G.; de Freitas, G.G.; Brand, G.D.; Júnior, O.R.P.; Castro, M.S.; Napoleão, T.H. A new temporin with antibacterial activity and cytotoxicity from the skin secretion of Lithobates palmipes (Spix, 1824) (Amphibia: Ranidae) from Brazilian Atlantic Forest. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2025, 275, 111041. [Google Scholar] [CrossRef] [PubMed]
- Freitas, G.G.; Barbosa, J.M.; Santana, C.J.C.; Magalhães, A.C.M.; Macedo, K.W.R.; Souza, J.O.; Castro, J.S.; Vasconcelos, I.A.; Souza, A.A.; Freitas, S.M.; et al. Purification and biological properties of Raniseptins-3 and -6, two antimicrobial peptides from Boana raniceps (Cope, 1862) skin secretion. Biomolecules 2023, 13, 576. [Google Scholar] [CrossRef]
- Santana, C.J.C.; Magalhães, A.C.M.; Dos Santos Júnior, A.C.M.; Ricart, C.A.O.; Lima, B.D.; Álvares, A.D.C.M.; Freitas, S.M.; Pires Júnior, O.R.; Fontes, W.; Castro, M.S. Figainin 1, a novel amphibian skin peptide with antimicrobial and antiproliferative properties. Antibiotics 2020, 9, 625. [Google Scholar] [CrossRef] [PubMed]
- Triana-Vidal, L.E.; Castro, M.S.; Pires Júnior, O.R.; Álvares, A.C.M.; de Freitas, S.M.; Fontes, W.; Vargas, J.A.G.; Zúñiga-Baos, J.A.; Correia Batista, I.F.; Grellier, P.; et al. Dendropsophin 1, a novel antimicrobial peptide from the skin secretion of the endemic Colombian frog Dendropsophus columbianus. Nat. Prod. Res. 2018, 32, 1383–1389. [Google Scholar] [CrossRef]
- Aguilar, S.; Moreira, D.; Pereira Lourenço, A.L.; Wilke, N.; Crosio, M.A.; Vasconcelos, A.; Barbosa, E.A.; Bispo, E.C.I.; Saldanha-Araujo, F.; Ramada, M.H.S.; et al. Enhancing antimicrobial peptides from frog skin: A rational approach. Biomolecules 2025, 15, 449. [Google Scholar] [CrossRef]
- Ageitos, L.; Boaro, A.; Cesaro, A.; Torres, M.D.T.; Broset, E.; de la Fuente-Nunez, C. Frog-derived synthetic peptides display anti-infective activity against Gram-negative pathogens. Trends Biotechnol. 2025, S0167-7799(25)00044-7. [Google Scholar] [CrossRef]
- Bhattacharjya, S.; Straus, S.K. Design, engineering and discovery of novel α-helical and β-boomerang antimicrobial peptides against drug resistant bacteria. Int. J. Mol. Sci. 2020, 21, 5773. [Google Scholar] [CrossRef]
- Casciaro, B.; Cappiello, F.; Cacciafesta, M.; Mangoni, M.L. Promising approaches to optimize the biological properties of the antimicrobial peptide esculentin-1a(1-21)NH2: Amino acids substitution and conjugation to nanoparticles. Front. Chem. 2017, 5, 26. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xu, X.; Xu, C.; Zhou, W.; Zhang, K.; Yu, H.; Zhang, Y.; Zheng, Y.; Rees, H.H.; Lai, R.; et al. Anti-infection peptidomics of amphibian skin. Mol. Cell. Proteomics 2007, 6, 882–894. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Chen, Y.; Shu, A.; Jiang, Y.; Chen, X.; Ma, C.; Zhou, M.; Wang, T.; Chen, T.; Shaw, C.; et al. A novel antimicrobial peptide, Dermaseptin-SS1, with anti-proliferative activity, isolated from the skin secretion of Phyllomedusa tarsius. Molecules 2023, 28, 6558. [Google Scholar] [CrossRef] [PubMed]
- Moretta, A.; Scieuzo, C.; Petrone, A.M.; Salvia, R.; Manniello, M.D.; Franco, A.; Lucchetti, D.; Vassallo, A.; Vogel, H.; Sgambato, A.; et al. Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Front. Cell Infect. Microbiol. 2021, 11, 668632. [Google Scholar] [CrossRef]
- Chen, N.; Jiang, C. Antimicrobial peptides: Structure, mechanism, and modification. Eur. J. Med. Chem. 2023, 255, 115377. [Google Scholar] [CrossRef]
- Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250. [Google Scholar] [CrossRef]
- Matsuzaki, K. Membrane permeabilization mechanisms. Adv. Exp. Med. Biol. 2019, 1117, 9–16. [Google Scholar] [CrossRef]
- Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial peptides: An emerging category of therapeutic agents. Front. Cell Infect. Microbiol. 2016, 6, 194. [Google Scholar] [CrossRef]
- Teixeira, V.; Feio, M.J.; Bastos, M. Role of lipids in the interaction of antimicrobial peptides with membranes. Prog. Lipid Res. 2012, 51, 149–177. [Google Scholar] [CrossRef]
- Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 2002, 415, 389–395. [Google Scholar] [CrossRef]
- Giuliani, A.; Pirri, G.; Bozzi, A.; Di Giulio, A.; Aschi, M.; Rinaldi, A.C. Antimicrobial peptides: Natural templates for synthetic membrane-active compounds. Cell Mol. Life Sci. 2008, 65, 2450–2460. [Google Scholar] [CrossRef] [PubMed]
- Bartels, E.J.H.; Dekker, D.; Amiche, M. Dermaseptins, multifunctional antimicrobial peptides: A review of their pharmacology, effectivity, mechanism of action, and possible future directions. Front. Pharmacol. 2019, 10, 1421. [Google Scholar] [CrossRef]
- Zohrab, F.; Askarian, S.; Jalili, A.; Kazemi Oskuee, R. Biological properties, current applications and potential therapeutic applications of brevinin peptide superfamily. Int. J. Pept. Res. Ther. 2019, 25, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Dubois, A. The nomenclatural status of Hysaplesia, Hylaplesia, Dendrobates, and related nomina (Amphibia, Anura), with general comments on zoological nomenclature and its governance, as well as on taxonomic databases and websites. Bionomina 2017, 11, 1–48. [Google Scholar] [CrossRef]
- Faivovich, J.; Haddad, C.; Garcia, P.; Frost, D.; Campbell, J.; Wheeler, W.C. Systematic review of the frog family Hylidae, with special reference to Hylinae: Phylogenetic analysis and taxonomic revision. Bull. Am. Mus. Nat. Hist. 2005, 294, 1–240. [Google Scholar] [CrossRef]
- Haddad, C.F.B.; Toledo, L.F.; Prado, C.P.A.; Loebmann, D.; Gasparini, J.L.; Sazima, I. Guia dos Anfíbios da Mata Atlântica: Diversidade e Biologia; Editora Anolis Books: São Paulo, Brazil, 2013. [Google Scholar]
- Dias, T.M.; Prado, C.P.A.; Bastos, R.P. Reproductive ecology and territorial behavior of Boana goiana (Anura: Hylidae), a gladiator frog from the Brazilian Cerrado. Zoologia 2021, 38, e53004. [Google Scholar] [CrossRef]
- Prates, M.V.; Sforça, M.L.; Regis, W.C.; Leite, J.R.; Silva, L.P.; Pertinhez, T.A.; Araújo, A.L.; Azevedo, R.B.; Spisni, A.; Bloch, C., Jr. The NMR-derived solution structure of a new cationic antimicrobial peptide from the skin secretion of the anuran Hyla punctata. J. Biol. Chem. 2004, 279, 13018–13026. [Google Scholar] [CrossRef]
- Junior, E.F.C.; Guimarães, C.F.R.C.; Franco, L.L.; Alves, R.J.; Kato, K.C.; Martins, H.R.; de Souza Filho, J.D.; Bemquerer, M.P.; Munhoz, V.H.O.; Resende, J.M.; et al. Glycotriazole-peptides derived from the peptide HSP1: Synergistic effect of triazole and saccharide rings on the antifungal activity. Amino Acids 2017, 49, 1389–1400. [Google Scholar] [CrossRef]
- Magalhães, B.S.; Melo, J.A.; Leite, J.R.; Silva, L.P.; Prates, M.V.; Vinecky, F.; Barbosa, E.A.; Verly, R.M.; Mehta, A.; Nicoli, J.R.; et al. Post-secretory events alter the peptide content of the skin secretion of Hypsiboas raniceps. Biochem. Biophys. Res. Commun. 2008, 377, 1057–1061. [Google Scholar] [CrossRef]
- Popov, C.S.F.C.; Magalhães, B.S.; Goodfellow, B.J.; Bocca, A.L.; Pereira, D.M.; Andrade, P.B.; Valentão, P.; Pereira, P.J.B.; Rodrigues, J.E.; de Holanda Veloso, P.H.; et al. Host-defense peptides AC12, DK16 and RC11 with immunomodulatory activity isolated from Hypsiboas raniceps skin secretion. Peptides 2019, 113, 11–21. [Google Scholar] [CrossRef]
- Castro, M.S.; Ferreira, T.C.; Cilli, E.M.; Crusca, E., Jr.; Mendes-Giannini, M.J.; Sebben, A.; Ricart, C.A.; Sousa, M.V.; Fontes, W. Hylin a1, the first cytolytic peptide isolated from the arboreal South American frog Hypsiboas albopunctatus (“spotted treefrog”). Peptides 2009, 30, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Zhang, Y.; Shan, Y.; Wang, J.; Liu, F.; Liu, H.; Xing, G.; Lei, J.; Zhou, J. A pH-dependent antibacterial peptide release nano-system blocks tumor growth in vivo without toxicity. Sci. Rep. 2017, 7, 11242. [Google Scholar] [CrossRef]
- Chianese, A.; Zannella, C.; Foglia, F.; Nastri, B.M.; Monti, A.; Doti, N.; Franci, G.; De Filippis, A.; Galdiero, M. Hylin-a1: A host defense peptide with antibacterial potential against Staphylococcus aureus multi-resistant strains. Pharmaceuticals 2023, 16, 509. [Google Scholar] [CrossRef] [PubMed]
- Chianese, A.; Iovane, V.; Zannella, C.; Capasso, C.; Nastri, B.M.; Monti, A.; Doti, N.; Montagnaro, S.; Pagnini, U.; Iovane, G.; et al. Synthetic frog-derived-like peptides: A new weapon against emerging and potential zoonotic viruses. Viruses 2023, 15, 1804. [Google Scholar] [CrossRef]
- Chianese, A.; Zannella, C.; Monti, A.; Doti, N.; Sanna, G.; Manzin, A.; De Filippis, A.; Galdiero, M. Hylin-a1: A pan-inhibitor against emerging and re-emerging respiratory viruses. Int. J. Mol. Sci. 2023, 24, 13888. [Google Scholar] [CrossRef]
- Chianese, A.; Giugliano, R.; Palma, F.; Nastri, B.M.; Monti, A.; Doti, N.; Zannella, C.; Galdiero, M.; De Filippis, A. The antiherpetic and anti-inflammatory activity of the frog-derived peptide Hylin-a1. J. Appl. Microbiol. 2024, 135, lxae165. [Google Scholar] [CrossRef] [PubMed]
- Siano, A.; Húmpola, M.V.; de Oliveira, E.; Albericio, F.; Simonetta, A.C.; Lajmanovich, R.; Tonarelli, G.G. Antimicrobial peptides from skin secretions of Hypsiboas pulchellus (Anura: Hylidae). J. Nat. Prod. 2014, 77, 831–841. [Google Scholar] [CrossRef]
- Nacif-Marçal, L.; Pereira, G.R.; Abranches, M.V.; Costa, N.C.; Cardoso, S.A.; Honda, E.R.; de Paula, S.O.; Feio, R.N.; Oliveira, L.L. Identification and characterization of an antimicrobial peptide of Hypsiboas semilineatus (Spix, 1824) (Amphibia, Hylidae). Toxicon 2015, 99, 16–22. [Google Scholar] [CrossRef]
- Monteiro, J.M.C.; Oliveira, M.D.; Dias, R.S.; Nacif-Marçal, L.; Feio, R.N.; Ferreira, S.O.; Oliveira, L.L.; Silva, C.C.; Paula, S.O. The antimicrobial peptide HS-1 inhibits dengue virus infection. Virology 2018, 514, 79–87. [Google Scholar] [CrossRef]
- Liscano, Y.; Medina, L.; Oñate-Garzón, J.; Gúzman, F.; Pickholz, M.; Delgado, J.P. In silico selection and evaluation of Pugnins with antibacterial and anticancer activity using skin transcriptome of Treefrog (Boana pugnax). Pharmaceutics 2021, 13, 578. [Google Scholar] [CrossRef]
- Nunes, L.O.; Munhoz, V.H.O.; Sousa, A.A.; de Souza, K.R.; Santos, T.L.; Bemquerer, M.P.; Ferreira, D.E.C.; de Magalhães, M.T.Q.; Resende, J.M.; Alcântara, A.F.C.; et al. High-resolution structural profile of hylaseptin-4: Aggregation, membrane topology and pH dependence of overall membrane binding process. Biochim. Biophys. Acta Biomembr. 2021, 1863, 183581. [Google Scholar] [CrossRef] [PubMed]
- Morán-Marcillo, G.; Sánchez Hinojosa, V.; de Los Monteros-Silva, N.E.; Blasco-Zúñiga, A.; Rivera, M.; Naranjo, R.E.; Almeida, J.R.; Wang, L.; Zhou, M.; Chen, T.; et al. Picturins and Pictuseptins, two novel antimicrobial peptide families from the skin secretions of the Chachi Treefrog, Boana picturata. J. Proteom. 2022, 264, 104633. [Google Scholar] [CrossRef] [PubMed]
- Conlon, J.M.; Guilhaudis, L.; Attoub, S.; Coquet, L.; Leprince, J.; Jouenne, T.; Mechkarska, M. Purification, conformational analysis and cytotoxic activities of host-defense peptides from the Giant Gladiator Treefrog Boana boans (Hylidae: Hylinae). Antibiotics 2023, 12, 1102. [Google Scholar] [CrossRef]
- Spinelli, R.; Humpola, M.V.; Sanchís, I.; Mendez, E.d.l.A.; Siano, A.S. Biological characterization of natural peptide BcI-1003 from Boana cordobae (anura): Role in Alzheimer’s disease and microbial infections. Int. J. Pept. Res. Ther. 2023, 29, 6. [Google Scholar] [CrossRef]
- Conlon, J.M.; Sridhar, A.; Khan, D.; Cunning, T.S.; Delaney, J.J.; Taggart, M.G.; Ternan, N.G.; Leprince, J.; Coquet, L.; Jouenne, T.; et al. Multifunctional host-defense peptides isolated from skin secretions of the banana tree dwelling frog Boana platanera (Hylidae; Hylinae). Biochimie 2024, 223, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Conlon, J.M.; Mechkarska, M.; Lukic, M.L.; Flatt, P.R. Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents. Peptides 2014, 57, 67–77. [Google Scholar] [CrossRef]
Peptide | Sequence | Species | Biological Activity | Charge a | Reference |
---|---|---|---|---|---|
Hylaseptin P1 | GILDAIKAIAKAAG b | Boana punctata | Antibacterial Antifungal | +1 | [68] |
Raniseptin-1 | AWLDKLKSLGKVVGKVALGVAQNYLNPQQ | Boana raniceps | Antibacterial | +3 | [70] |
AC12 | ACFLTRLGTYVC-NH2 | Boana raniceps | Immunomodulatory | +2 | [71] |
DK16 | DKERPICSNTFRGRKC-NH2 | Boana raniceps | Immunomodulatory | +4 | [71] |
RC11 | RCFRRRGKLTC-NH2 | Boana raniceps | Antibacterial Immunomodulatory | +6 | [71] |
Figainin 1 | FIGTLIPLALGALTKLFK-NH2 | Boana raniceps | Antibacterial Anti-T. cruzi Anticancer | +3 | [46] |
Figainin 2 | FLGAILKIGHALAKTVLPMVTNAFKPKQ | Boana raniceps | Antibacterial Anti-T. cruzi Anticancer Antiviral Immunomodulatory | +4 | [43] |
Raniseptin-3 | AWLDKLKSIGKVVGKVAIGVAKNLLNPQ | Boana raniceps | Antibacterial Anticancer | +4 | [45] |
Raniseptin-6 | ALLDKLKSLGKVVGKVALGVVQNYLNPRQ | Boana raniceps | Antibacterial Anticancer | +4 | [45] |
Hylin a1 | IFGAILPLALGALKNLIK-NH2 | Boana albopunctata | Antibacterial Antifungal Antiviral Immunomodulatory | +3 | [72,74,75,76,77] |
P1-Hp-1971 | TKPTLLGLPLGAGPAAGPGKR-NH2 | Boana pulchella | Antibacterial | +4 | [78] |
P2-Hp-1935 | KLSPSLGPVSKGKLLAGQR-NH2 | Boana pulchella | Antibacterial | +5 | [78] |
P3-Hp-1891 | RLGTALPALLKTLLAGLNG-NH2 | Boana pulchella | Antibacterial | +3 | [78] |
Hs-1 | FLPLILPSIVTALSSFLKQG-NH2 | Boana semilineata | Antibacterial Antiviral | +2 | [79,80] |
Pugnin A | RLMRIFRILKLAR | Boana pugnax | Antibacterial Anticancer | +5 | [81] |
Pugnin B | RMMRIFWVIKLAR | Boana pugnax | Antibacterial Anticancer | +4 | [81] |
Hylaseptin-4 | GIGDILKNLAKAAGKAALHAVGESL-NH2 | Boana punctata | Antibacterial | +2 | [82] |
Picturin-1 | GVFKDALKQLGAALLDKAANALKPK | Boana picturata | Antibacterial Antifungal | +3 | [83] |
Picturin-2 | GVFKDALKQFGAALLDKAANALKPK | Boana picturata | Antibacterial Antifungal | +3 | [83] |
Picturin-3 | GVFKDALKQFGAALLDQAANALKPK | Boana picturata | Antibacterial Antifungal | +2 | [83] |
Pictuseptin-1 | GFLDTLKNIGKTVGRIALNVLT-NH2 | Boana picturata | Antibacterial Antifungal | +3 | [83] |
Pictuseptin-2 | GFLDTLKNIGKTVGGIALNVLT-NH2 | Boana picturata | Antibacterial Antifungal | +2 | [83] |
Pictuseptin-3 | GFLDTLKNIGKTVGKVALDVAKNVLT-NH2 | Boana picturata | Antibacterial Antifungal | +3 | [83] |
Figainin 2BN | FLGVALKLGKVLGKALLPLASSLLHSQ | Boana boans | Antibacterial Anticancer | +3 | [84] |
Picturin 1BN | GIFKDTLKKVVAAVLTTVADNIHPK | Boana boans | Antibacterial Anticancer | +2 | [84] |
Picturin 2BN | GLMDMLKKVGKVALTVAKSALLP | Boana boans | Antibacterial Anticancer | +3 | [84] |
BcI-1003 | GSKKTKCPR-NH2 | Boana cordobae | Antibacterial Antioxidant BChE inhibition MAO-B Inhibition | +5 | [85] |
Raniseptin PL | GVFDTVKKIGKAVGKFALGVAKNYLNS-NH2 | Boana platanera | Antibacterial Anticancer Antidiabetic | +5 | [86] |
Figainin 2PL | FLGTVLKLGKAIAKTVVPMLTNAMQPKQ-NH2 | Boana platanera | Antibacterial Anticancer | +5 | [86] |
Hylin PL | FLGLIPALAGAIGNLIK-NH2 | Boana platanera | Antidiabetic | +2 | [86] |
Peptide YL | YVPGVIESLL-NH2 | Boana platanera | Antidiabetic | 0 | [86] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, P.M.; Silva, F.F.M.d.; Santos, J.S.d.; Silva, B.d.O.; Santana, C.J.C.d.; Pires Júnior, O.R.; Fontes, W.; Castro, M.S. The Therapeutic Potential of Antimicrobial Peptides Isolated from the Skin Secretions of Anurans of the Genus Boana in the Face of the Global Antimicrobial Resistance Crisis. Toxins 2025, 17, 312. https://doi.org/10.3390/toxins17070312
Ferreira PM, Silva FFMd, Santos JSd, Silva BdO, Santana CJCd, Pires Júnior OR, Fontes W, Castro MS. The Therapeutic Potential of Antimicrobial Peptides Isolated from the Skin Secretions of Anurans of the Genus Boana in the Face of the Global Antimicrobial Resistance Crisis. Toxins. 2025; 17(7):312. https://doi.org/10.3390/toxins17070312
Chicago/Turabian StyleFerreira, Priscila Mendes, Fabiano Fagundes Moser da Silva, Joyce Silva dos Santos, Brunna de Oliveira Silva, Carlos José Correia de Santana, Osmindo Rodrigues Pires Júnior, Wagner Fontes, and Mariana S. Castro. 2025. "The Therapeutic Potential of Antimicrobial Peptides Isolated from the Skin Secretions of Anurans of the Genus Boana in the Face of the Global Antimicrobial Resistance Crisis" Toxins 17, no. 7: 312. https://doi.org/10.3390/toxins17070312
APA StyleFerreira, P. M., Silva, F. F. M. d., Santos, J. S. d., Silva, B. d. O., Santana, C. J. C. d., Pires Júnior, O. R., Fontes, W., & Castro, M. S. (2025). The Therapeutic Potential of Antimicrobial Peptides Isolated from the Skin Secretions of Anurans of the Genus Boana in the Face of the Global Antimicrobial Resistance Crisis. Toxins, 17(7), 312. https://doi.org/10.3390/toxins17070312