Bioaccumulation, Distribution and Biotransformation of Cylindrospermopsin in Potato (Solanum tuberosum) After Exposure by Surface or Sprinkler Irrigation
Abstract
1. Introduction
2. Results
2.1. Bioaccumulation of CYN in Plant Tissues
2.2. Biotransformation of CYN in the Plant Tissues
2.3. Effects of CYN on Tubers of Solanum Tuberosum Mineral Content
3. Discussion
3.1. Bioaccumulation of CYN in Potato Plants
3.2. CYN Uptake and Biotransformation in Plant Tissues
3.3. Changes in Mineral Content of Tubers After CYN Exposure
4. Conclusions
5. Materials and Methods
5.1. Cyanobacterial Culture
5.2. Cylindrospermopsin Extraction and Quantification from Crude Extract
5.3. Plant Material and Exposure to Cylindrospermopsin
5.4. Cylindrospermopsin Extraction and Purification from Vegetal Matrix
5.5. Cylindrospermopsin Metabolites Identification in Plant Tissues by UHPLC-MS/MS
5.6. Determination of Mineral Content in Potatoes
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ca | Calcium |
CYN | Cylindrospermopsin |
Cu | Copper |
DCM | Dichloromethane |
DNA | Deoxyribonucleic Acid |
Fe | Iron |
ICP-OES | Inductively Coupled Plasma Optical Emission Spectroscopy |
K | Potassium |
LC-MS | Liquid Chromatography–Mass Spectrometry |
Mg | Magnesium |
Mn | Manganese |
MRM | Multiple Reaction Monitoring |
MCs | Microcystins |
MC-LR | Microcystin-LR |
MeOH | Methanol |
Na | Sodium |
NOD | Nodularine |
P | Phosphorus |
RNA | Ribonucleic Acid |
TFA | Trifluoroacetic Acid |
UHPLC-MS/MS | Ultra-High Performance Liquid Chromatography-MS/MS |
WHO | World Health Organization |
Zn | Zinc |
References
- Adamski, M.; Wołowski, K.; Kaminski, A.; Hindáková, A. Cyanotoxin cylindrospermopsin producers and the catalytic decomposition process: A review. Harmful Algae 2020, 98, 101894. [Google Scholar] [CrossRef] [PubMed]
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.H.; Visser, P.M. Cyanobacterial Blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Codd, G.A.; Meriluoto, J.; Metcalf, J.S. Introduction: Cyanobacteria, Cyanotoxins, Their Human Impact, and Risk Management. In Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis; Meriluoto, J., Spoof, L., Codd, G.A., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Chichova, M.; Tasinov, O.; Shkodrova, M.; Mishonova, M.; Sazdova, I.; Ilieva, B.; Doncheva-Stoimenova, D.; Kiselova-Kaneva, Y.; Raikova, N.; Uzunov, B.; et al. New Data on Cylindrospermopsin Toxicity. Toxins 2021, 13, 41. [Google Scholar] [CrossRef] [PubMed]
- Vilar, M.; Ferrão-Filho, A. (Eco)Toxicology of Cyanobacteria and Cyanotoxins: From Environmental Dynamics to Adverse Effects. Toxics 2022, 10, 648. [Google Scholar] [CrossRef]
- He, Z.; Chen, Y.; Huo, D.; Gao, J.; Xu, Y.; Yang, R.; Yang, Y.; Yu, G. Combined methods elucidate the multi-organ toxicity of cylindrospermopsin (CYN) on Daphnia magna. Environ. Pollut. 2023, 324, 121250. [Google Scholar] [CrossRef]
- Zhang, Y.; Duy, S.V.; Munoz, G.; Sauvé, S. Phytotoxic effects of microcystins, anatoxin-a and cylindrospermopsin to aquatic plants: A meta-analysis. Sci. Total Environ. 2022, 810, 152104. [Google Scholar] [CrossRef]
- Pichardo, S.; Cameán, A.M.; Jos, A. In Vitro Toxicological Assessment of Cylindrospermopsin: A Review. Toxins 2017, 9, 402. [Google Scholar] [CrossRef]
- World Health Organization. Cyanobacterial Toxins: Cylindrospermopsins. Background Document for Development of WHO Guidelines for Drinking-Water Quality and Guidelines for Safe Recreational Water Environments. 2020. Available online: https://iris.who.int/bitstream/handle/10665/338063/WHO-HEP-ECH-WSH-2020.4-eng.pdf (accessed on 17 December 2023).
- Terao, K.; Ohmori, S.; Igarashi, K.; Ohtani, I.; Watanabe, M.F.; Harada, K.I.; Ito, E.; Watanabe, M. Electron Microscopic Studies on Experimental Poisoning in Mice Induced by Cylindrospermopsin Isolated from Blue-Green Alga Umezakia natans. Toxicon 1994, 32, 833–843. [Google Scholar] [CrossRef]
- Froscio, S.M.; Humpage, A.R.; Burcham, P.C.; Falconer, I.R. Cylindrospermopsin-Induced Protein Synthesis Inhibition and Its Dissociation from Acute Toxicity in Mouse Hepatocytes. Environ. Toxicol. 2003, 18, 243–251. [Google Scholar] [CrossRef]
- Scarlett, K.R.; Kim, S.; Lovin, L.M.; Chatterjee, S.; Scott, J.T.; Brooks, B.W. Global Scanning of Cylindrospermopsin: Critical Review and Analysis of Aquatic Occurrence, Bioaccumulation, Toxicity and Health Hazards. Sci. Total Environ. 2020, 738, 139807. [Google Scholar] [CrossRef]
- Poniedziałek, B.; Rzymski, P.; Wiktorowicz, K. First report of cylindrospermopsin effect on human peripheral blood lymphocytes proliferation in vitro. Cent. Eur. J. Immunol. 2012, 37, 314–317. [Google Scholar] [CrossRef]
- Humpage, A.R.; Fontaine, F.; Froscio, S.; Burcham, P.; Falconer, I.R. Cylindrospermopsin Genotoxicity and Cytotoxicity: Role of Cytochrome P-450 and Oxidative Stress. J. Toxicol. Environ. Health A 2005, 68, 739–753. [Google Scholar] [CrossRef] [PubMed]
- Corbel, S.; Mougin, C.; Bouaïcha, N. Cyanobacterial Toxins: Modes of Actions, Fate in Aquatic and Soil Ecosystems, Phytotoxicity and Bioaccumulation in Agricultural Crops. Chemosphere 2014, 96, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Wörmer, L.; Cirés, S.; Carrasco, D.; Quesada, A. Cylindrospermopsin Is Not Degraded by Co-Occurring Natural Bacterial Communities during a 40-Day Study. Harmful Algae 2008, 7, 206–213. [Google Scholar] [CrossRef]
- Gutiérrez-Praena, D.; Campos, A.; Azevedo, J.; Neves, J.; Freitas, M.; Guzmán-Guillén, R.; Cameán, A.; Renaut, J.; Vasconcelos, V. Exposure of Lycopersicon esculentum to Microcystin-LR: Effects in the Leaf Proteome and Toxin Translocation from Water to Leaves and Fruits. Toxins 2014, 6, 1837–1854. [Google Scholar] [CrossRef]
- Machado, J.; Campos, A.; Vasconcelos, V.; Freitas, M. Effects of Microcystin-LR and Cylindrospermopsin on Plant-Soil Systems: A Review of Their Relevance for Agricultural Plant Quality and Public Health. Environ. Res. 2017, 153, 191–204. [Google Scholar] [CrossRef]
- Weralupitiya, C.; Wanigatunge, R.P.; Gunawardana, D.; Vithanage, M.; Magana-Arachchi, D. Cyanotoxins Uptake and Accumulation in Crops: Phytotoxicity and Implications on Human Health. Toxicon 2022, 211, 21–35. [Google Scholar] [CrossRef]
- Prieto, A.I.; Campos, A.; Cameán, A.M.; Vasconcelos, V. Effects on Growth and Oxidative Stress Status of Rice Plants (Oryza sativa) Exposed to Two Extracts of Toxin-Producing Cyanobacteria (Aphanizomenon ovalisporum and Microcystis aeruginosa). Ecotoxicol. Environ. Saf. 2011, 74, 1973–1980. [Google Scholar] [CrossRef] [PubMed]
- M-Hamvas, M.; Máthé, C.; Vasas, G.; Jámbrik, K.; Papp, M.; Beyer, D.; Mészáros, I.; Borbély, G. Cylindrospermopsin and Microcystin-LR Alter the Growth, Development and Peroxidase Enzyme Activity of White Mustard (Sinapis alba L.) Seedlings, a Comparative Analysis. Acta Biol. Hung. 2010, 61, 35–48. [Google Scholar] [CrossRef]
- Garda, T.; Riba, M.; Vasas, G.; Beyer, D.; M-Hamvas, M.; Hajdu, G.; Tándor, I.; Máthé, C. Cytotoxic Effects of Cylindrospermopsin in Mitotic and Non-Mitotic Vicia faba Cells. Chemosphere 2015, 120, 145–153. [Google Scholar] [CrossRef]
- Llana-Ruiz-Cabello, M.; Jos, A.; Cameán, A.M.; Oliveira, F.; Barreiro, A.; Machado, J.; Azevedo, J.; Pinto, E.; Almeida, A.; Campos, A.; et al. Analysis of the Use of Cylindrospermopsin and/or Microcystin-Contaminated Water in the Growth, Mineral Content, and Contamination of Spinacia oleracea and Lactuca sativa. Toxins 2019, 11, 624. [Google Scholar] [CrossRef]
- McElhiney, J.; Lawton, L.A.; Leifert, C. Investigations into the inhibitory effects of microcystins on plant growth and the toxicity of plant tissues following exposure. Toxicon 2001, 39, 1411–1420. [Google Scholar] [CrossRef]
- Freitas, M.; Azevedo, J.; Pinto, E.; Neves, J.; Campos, A.; Vasconcelos, V. Effects of Microcystin-LR, Cylindrospermopsin and a Microcystin-LR/Cylindrospermopsin Mixture on Growth, Oxidative Stress and Mineral Content in Lettuce Plants (Lactuca sativa L.). Ecotoxicol. Environ. Saf. 2015, 116, 59–67. [Google Scholar] [CrossRef]
- Guzmán-Guillén, R.; Campos, A.; Machado, J.; Freitas, M.; Azevedo, J.; Pinto, E.; Almeida, A.; Cameán, A.M.; Vasconcelos, V. Effects of Chrysosporum (Aphanizomenon) ovalisporum Extracts Containing Cylindrospermopsin on Growth, Photosynthetic Capacity, and Mineral Content of Carrots (Daucus carota). Ecotoxicology 2017, 26, 22–31. [Google Scholar] [CrossRef]
- Kittler, K.; Schreiner, M.; Krumbein, A.; Manzei, S.; Koch, M.; Rohn, S.; Maul, R. Uptake of the Cyanobacterial Toxin Cylindrospermopsin in Brassica Vegetables. Food Chem. 2012, 133, 875–879. [Google Scholar] [CrossRef]
- Cordeiro-Araújo, M.K.; Chia, M.A.; Bittencourt-Oliveira, M. Potential Human Health Risk Assessment of Cylindrospermopsin Accumulation and Depuration in Lettuce and Arugula. Harmful Algae 2017, 68, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Abeysiriwardena, N.M.; Gascoigne, S.J.L.; Anandappa, A. Algal Bloom Expansion Increases Cyanotoxin Risk in Food. Yale J. Biol. Med. 2018, 91, 129–142. [Google Scholar] [PubMed]
- Kinnear, S. Cylindrospermopsin: A Decade of Progress on Bioaccumulation Research. Mar. Drugs 2010, 8, 542–564. [Google Scholar] [CrossRef]
- Romero-Oliva, C.S.; Contardo-Jara, V.; Block, T.; Pflugmacher, S. Accumulation of Microcystin Congeners in Different Aquatic Plants and Crops—A Case Study from Lake Amatitlán, Guatemala. Ecotoxicol. Environ. Saf. 2014, 102, 121–128. [Google Scholar] [CrossRef]
- Van Hassel, W.H.R.; Tardy, E.; Cottyn, B.; Andjelkovic, M.; Decombel, A.; Van Wichelen, J.; Masquelier, J.; Rajkovic, A. Irrigation-dependent accumulation of microcystin in different crops under mid-scale greenhouse conditions. J. Agric. Food Res. 2025, 20, 101753. [Google Scholar] [CrossRef]
- Devaux, A.; Kromann, P.; Ortiz, O. Potatoes for Sustainable Global Food Security. Potato Res. 2014, 57, 185–199. [Google Scholar] [CrossRef]
- FAOSTAT. Food Balances. 2013. Available online: http://www.fao.org/faostat/en/#data/FBS (accessed on 17 January 2025).
- Devaux, A.; Goffart, J.-P.; Kromann, P.; Andrade-Piedra, J.; Polar, V.; Hareau, G. The Potato of the Future: Opportunities and Challenges in Sustainable Agri-Food Systems. Potato Res. 2021, 64, 681–720. [Google Scholar] [CrossRef] [PubMed]
- Ghislain, M.; Andrade, D.; Rodríguez, F.; Hijmans, R.J.; Spooner, D.M. Genetic Analysis of the Cultivated Potato Solanum tuberosum L. Phureja Group Using RAPDs and Nuclear SSRs. Theor. Appl. Genet. 2006, 113, 1515–1527. [Google Scholar] [CrossRef] [PubMed]
- Ñústez, C.E. Papas Diploides: Un Legado Ancestral para la Agricultura en Colombia. Universidad Nacional de Colombia. 2018. Available online: http://www.papaunc.com/blog/papas-diploides-un-legado-ancestral-para-la-agricultura-en-colombia (accessed on 14 January 2025).
- Priya, B.N.V.; Saiprasad, G.V.S. “Potato”—Powerhouse for many nutrients. Potato Res. 2022, 66, 563–580. [Google Scholar] [CrossRef]
- Abdallah, M.F.; Van Hassel, W.H.R.; Andjelkovic, M.; Wilmotte, A.; Rajkovic, A. Cyanotoxins and Food Contamination in Developing Countries: Review of Their Types, Toxicity, Analysis, Occurrence and Mitigation Strategies. Toxins 2021, 13, 786. [Google Scholar] [CrossRef]
- Diez-Quijada, L.; Guzmán-Guillén, R.; Prieto, A.; Llana-Ruiz-Cabello, M.; Campos, A.; Vasconcelos, V.; Jos, A.; Cameán, A. New Method for Simultaneous Determination of Microcystins and Cylindrospermopsin in Vegetable Matrices by SPE-UPLC-MS/MS. Toxins 2018, 10, 406. [Google Scholar] [CrossRef]
- Peña, C.; Restrepo-Sánchez, L.-P.; Kushalappa, A.; Rodríguez-Molano, L.-E.; Mosquera, T.; Narváez-Cuenca, C.-E. Nutritional Contents of Advanced Breeding Clones of Solanum tuberosum Group Phureja. LWT-Food Sci. Technol. 2015, 62, 76–82. [Google Scholar] [CrossRef]
- Burgos, G.; Amoros, W.; Morote, M.; Stangoulis, J.; Bonierbale, M. Iron and Zinc Concentration of Native Andean Potato Cultivars from a Human Nutrition Perspective. J. Sci. Food Agric. 2007, 87, 668–675. [Google Scholar] [CrossRef]
- André, C.M.; Ghislain, M.; Bertin, P.; Oufir, M.; Herrera, M.R.; Hoffmann, L.; Hausman, J.-F.; Larondelle, Y.; Evers, D. Andean Potato Cultivars (Solanum tuberosum L.) as a Source of Antioxidant and Mineral Micronutrients. J. Agric. Food Chem. 2007, 55, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Orellana, E.; Bastos, M.C.; Cuadrado, W.; Zárate, R.; Sarapura, V.; Yallico, L.; Tabra, F.; Bao, D. Heavy Metals in Native Potato and Health Risk Assessment in Highland Andean Zones of Junín, Peru. J. Environ. Prot. 2020, 11, 921–937. [Google Scholar] [CrossRef]
- Bedoya-Perales, N.S.; Maus, D.; Neimaier, A.; Escobedo-Pacheco, E.; Pumi, G. Assessment of the Variation of Heavy Metals and Pesticide Residues in Native and Modern Potato (Solanum tuberosum L.) Cultivars Grown at Different Altitudes in a Typical Mining Region in Peru. Toxicol. Rep. 2023, 11, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Dramicanin, A.; Andric, F.; Mutic, J.; Stankovic, V.; Momirovic, N.; Milojkovic-Opsenica, D. Content and Distribution of Major and Trace Elements as a Tool to Assess the Genotypes, Harvesting Time, and Cultivation Systems of Potato. Food Chem. 2021, 354, 129507. [Google Scholar] [CrossRef] [PubMed]
- Srek, P.; Hejcman, M.; Kunzová, E. Multivariate analysis of relationship between potato (Solanum tuberosum L.) yield, amount of applied elements, their concentrations in tubers and uptake in a long-term fertilizer experiment. Field Crops Res. 2010, 118, 183–193. [Google Scholar] [CrossRef]
- Silva, P.; Vasconcelos, V. Allelopathic effect of Cylindrospermopsis raciborskii extracts on the germination and growth of several plant species. Chem. Ecol. 2010, 26, 263–271. [Google Scholar] [CrossRef]
- Shahid, M.; Dumat, C.; Khalid, S.; Schreck, E.; Xiong, T.; Niazi, N.K. Foliar Heavy Metal Uptake, Toxicity, and Detoxification in Plants: A Comparison of Foliar and Root Metal Uptake. J. Hazard. Mater. 2016, 325, 36–58. [Google Scholar] [CrossRef]
- Selim, T.; Elkefafy, S.M.; Berndtsson, R.; Elkiki, M.; El-kharbotly, A.A. Can Potato Crop on Sandy Soil Be Safely Irrigated with Heavy Metal Polluted Water? Water 2022, 14, 1226. [Google Scholar] [CrossRef]
- Satchivi, N.M.; Stoller, E.W.; Wax, L.M.; Briskin, D.P. A Nonlinear Dynamic Simulation Model for Xenobiotic Transport and Whole Plant Allocation Following Foliar Application I. Conceptual Foundation for Model Development. Pestic. Biochem. Phys. 2000, 68, 67–84. [Google Scholar] [CrossRef]
- Bukovac, M.J.; Norris, R.F. Foliar Penetration of Plant Growth Substances with Special Reference to Binding by Cuticular Surfaces of Pear Leaves. Agrochimica 1968, 12, 217. [Google Scholar]
- Pereira, A.L.; Azevedo, J.; Vasconcelos, V. Assessment of Uptake and Phytotoxicity of Cyanobacterial Extracts Containing Microcystins or Cylindrospermopsin on Parsley (Petroselinum crispum L.) and Coriander (Coriandrum sativum L.). Environ. Sci. Pollut. Res. 2017, 24, 1999–2009. [Google Scholar] [CrossRef]
- Zhang, Y.; Whalen, J.K.; Sauvé, S. Phytotoxicity and bioconcentration of microcystins in agricultural plants: Meta-analysis and risk assessment. Environ. Pollut. 2021, 272, 115966. [Google Scholar] [CrossRef]
- Zhang, Y.; Duy, S.V.; Whalen, J.J.; Munoz, G.; Sauve, S. Risk quick sketch: Soil captured most anatoxin-a and microcystin-RR rather than cylindrospermopsin and microcystin-LA/-LY. Stoten 2024, 951, 175418. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Song, L.; Gan, N.; Li, L. Sorption, Degradation and Mobility of Microcystins in Chinese Agriculture Soils: Risk Assessment for Groundwater Protection. Environ. Pollut. 2006, 144, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.; Critchley, M.; Hutson, J.; Fallowfield, H. The Adsorption of Cyanobacterial Hepatotoxins from Water onto Soil during Batch Experiments. Water Res. 2001, 35, 1461–1468. [Google Scholar] [CrossRef]
- Cao, Q.; Steinman, A.D.; Yao, L.; Xie, L. Effects of Light, Microorganisms, Farming Chemicals, and Water Content on the Degradation of Microcystin-LR in Agricultural Soils. Ecotoxicol. Environ. Saf. 2018, 156, 141–147. [Google Scholar] [CrossRef]
- Wu, H.; Zhou, J.; Zhang, S.; Gao, Y.; Wang, C.; Cong, H.; Feng, S. Contributions of the bacterial communities to the microcystin degradation and nutrient transformations during aerobic composting of algal sludge. J. Environ. Manag. 2024, 370, 122559. [Google Scholar] [CrossRef]
- Bouaïcha, N.; Corbel, S. Chapter 6. Cyanobacterial Toxins Emerging Contaminants in Soils: A Review of Sources, Fate and Impacts on Ecosystems, Plants and Animal and Human Health. In Soil Contamination—Current Consequences and Further Solutions; Larramendy, M.L., Soloneski, S., Eds.; InTech: London, UK, 2016. [Google Scholar] [CrossRef]
- Rzymski, P.; Poniedziałek, B. The Surprising World of Cyanobacteria: Cylindrospermopsin Has a Soil Face. J. Phycol. 2015, 51, 1037–1039. [Google Scholar] [CrossRef] [PubMed]
- Sahu, G.; Thingujam, U.; Mohanty, S.; Dash, B.; Bhuyan, B. Cyanotoxin Pollution in Water Bodies and Soils Imposes Potential Risks to the Surrounding Flora. In Emerging Contaminants; Kumari, A., Rajput, V.D., Mandzhieva, S.S., Minkina, T., Hullebusch, E., Eds.; Woodhead Publishing: Sawston, UK, 2024; pp. 383–405. [Google Scholar] [CrossRef]
- Corbel, S.; Mougin, C.; Nélieu, S.; Delarue, G.; Bouaïcha, N. Evaluation of the Transfer and the Accumulation of Microcystins in Tomato (Solanum lycopersicum Cultivar MicroTom) Tissues Using a Cyanobacterial Extract Containing Microcystins and the Radiolabeled Microcystin-LR (14C-MC-LR). Sci. Total Environ. 2016, 541, 1052–1058. [Google Scholar] [CrossRef]
- Hinojosa, M.G.; Cascajosa-Lira, A.; Prieto, A.I.; Gutiérrez-Praena, D.; Vasconcelos, V.; Jos, A.; Cameán, A.M. Cytotoxic Effects and Oxidative Stress Produced by a Cyanobacterial Cylindrospermopsin Producer Extract versus a Cylindrospermopsin Non-Producing Extract on the Neuroblastoma SH-SY5Y Cell Line. Toxins 2023, 15, 320. [Google Scholar] [CrossRef]
- Banker, R.; Carmeli, S.; Werman, M.; Teltsch, B.; Porat, R.; Sukenik, A. Uracil Moiety is Required for Toxicity of the Cyanobacterial Hepatotoxin Cylindrospermopsin. J. Toxicol. Environ. Health A 2001, 62, 281–288. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Biofortification of Crops with Seven Mineral Elements Often Lacking in Human Diets–Iron, Zinc, Copper, Calcium, Magnesium, Selenium and Iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef]
- Saha, A.; Zakir, H.M.; Quadir, Q.F.; Sarker, N.; Biswas, P.; Mallick, S. Human Health Risks of Trace Metals through the Dietary Intake of Potato Tubers and Exposures of Potato Cultivating Soils: A Case Study of Mymensingh District, Bangladesh. J. Trace Elem. Miner. 2024, 8, 100122. [Google Scholar] [CrossRef]
- Busse, J.S.; Palta, J.P. Investigating the In Vivo Calcium Transport Path to Developing Potato Tuber Using 45Ca: A New Concept in Potato Tuber Calcium Nutrition. Physiol. Plant. 2006, 128, 313–323. [Google Scholar] [CrossRef]
- Subramanian, N.K.; White, P.J.; Broadley, M.R.; Ramsay, G. The Three-Dimensional Distribution of Minerals in Potato Tubers. Ann. Bot. 2011, 107, 681–691. [Google Scholar] [CrossRef]
- Sandhu, A.K.; Sharma, A.K.; Kaur, N.; Sidhu, S.K.; Singh, R.; Zotarelli, L.; Morgan, K.; Christensen, C.; Sharma, L.K. Evaluate the Phosphorus Application Response in Potatoes under High Phosphorus Soil Test in Florida. Farming Syst. 2024, 2, 100067. [Google Scholar] [CrossRef]
- Lahrouni, M.; Oufdou, K.; El Khalloufi, F.; Baz, M.; Lafuente, A.; Dary, M.; Pajuelo, E.; Oudra, B. Physiological and biochemical defense reactions of Vicia faba L.-Rhizobium symbiosis face to chronic exposure to cyanobacterial bloom extract containing microcystins. Environ. Sci. Pollut. Res. Int. 2013, 20, 5405–5415. [Google Scholar] [CrossRef]
- McGregor, G.B.; Sendall, B.C.; Niiyama, Y.; Tuji, A.; Willis, A. Chrysosporum ovalisporum is synonymous with the true-branching cyanobacterium Umezakia natans (Nostocales/Aphanizomenonaceae). J. Phychol. 2023, 59, 326–341. [Google Scholar] [CrossRef] [PubMed]
- Kotai, J. Instructions for Preparation of Modified Nutrient Solution Z8 for Algae; Norwegian Institute for Water Research: Oslo, Norway, 1972; Volume 11, p. 5. [Google Scholar]
- Guzmán-Guillén, R.; Prieto, A.I.; González, A.G.; Soria-Díaz, M.E.; Cameán, A.M. Cylindrospermopsin Determination in Water by LC–MS/MS: Optimization and Validation of the Method and Application to Real Samples. Environ. Toxicol. Chem. 2012, 31, 2233–2238. [Google Scholar] [CrossRef]
- Spooner, M.; Núñez, J.; Trujillo, G.; Herrera, M.; Guzmán, F.; Ghislain, M. Extensive Simple Sequence Repeat Genotyping of Potato Landraces Supports a Major Reevaluation of Their Gene Pool Structure and Classification. Proc. Natl. Acad. Sci. USA 2007, 104, 19398–19403. [Google Scholar] [CrossRef]
- Ñústez-López, C.; Rodríguez-Molano, L. Papa Criolla (Solanum tuberosum Grupo Phureja): Manual de Recomendaciones Técnicas para su Cultivo en el Departamento de Cundinamarca. Bogotá DC: Corredor Tecnológico Agroindustrial CTA-2. 2020. Available online: https://repositorio.unal.edu.co/handle/unal/86779 (accessed on 14 January 2025).
- Legarda, L.; García, R. Manual de Riego Agrícola; Editorial Universitaria-UNED, Biblioteca Banco de la República: Pasto, Colombia, 2002; 181p. [Google Scholar]
- Guerrero, E.; Potosí, C.; Melgarejo, L.; Hoyos, L. Capítulo 7. Manejo agronomico de Gulupa (Passiflora edulis Sims) en el marco de las Buenas Prácticas Agrícolas (BPA). In Ecofisiología del Cultivo de la Gulupa (Passiflora edulis Sims); Melgarejo, L., Ed.; Universidad Nacional de Colombia–Ministerio de Agricultura y Desarrollo Rural–OCATI: Bogotá, Colombia, 2012; pp. 123–144. Available online: https://repositorio.unal.edu.co/bitstream/handle/unal/11145/09_Cap07.pdf?sequence=8&isAllowed=y (accessed on 14 January 2025).
- Rodríguez, L.; Ñústez, C.; Estrada, N. Criolla Latina, Criolla Paisa y Criolla Colombia, nuevos cultivares de papa criolla para el departamento de Antioquia (Colombia). Universidad Nacional de Colombia, Facultad de Agronomía, Centro Editorial. Agron. Colomb. 2009, 27, 289–303. Available online: https://www.redalyc.org/pdf/1803/180316242002.pdf (accessed on 14 January 2025).
- Vargas Prieto, A.; Fajardo Rodríguez, C.L.; Romero Rodríguez, Y.E.; Nieves Forero, K.Y. La asociatividad para articular cadenas productivas en Colombia: El caso de los pequeños productores de papa criolla en Subachoque, Cundinamarca. Coop. Desarro. 2019, 27, 1–34. [Google Scholar] [CrossRef]
- Tarantino, T.B.; Barbosa, I.S.; Lima, D.C.; Pereira, M.G.; Teixeira, L.S.G.; Korn, M.G.A. Microwave-Assisted Digestion Using Diluted Nitric Acid for Multi-element Determination in Rice by ICP OES and ICP-MS. Food Anal. Methods 2017, 10, 1007–1015. [Google Scholar] [CrossRef]
Irrigation Type | Measured CYN Concentration (µg CYN/g d.w.) Following Irrigation |
---|---|
Control group | ND |
Cluster I-Leaf | |
Surface irrigation | ND |
Sprinkler irrigation | 0.13 ± 0.05 |
Cluster II-Stem | |
Surface irrigation | ND |
Sprinkler irrigation | 0.09 ± 0.04 |
Cluster III-Tuber | |
Surface irrigation | ND |
Sprinkler irrigation | ND |
Cluster IV-Root | |
Surface irrigation | ND |
Sprinkler irrigation | ND |
Modifications | Composition Change | Error (ppm) | Molecular Weight | RT [min] | Area Max (Splinkler Irrigation) | Area Max (Surface Irrigation) |
---|---|---|---|---|---|---|
Cluster I—leaves | ||||||
Dehydration | -(H4O4S) | 1.45 | 315.13360 | 3.141 | 3.77 × 107 | 9.80 × 107 |
Oxidation | -(H2O2S) | 1.55 | 349.13916 | 2.662 | 5.13 × 107 | |
Oxidation, Glycine Conjugation | -(S)+(C2 HN) | −0.55 | 406.15986 | 2.806 | 3.99 × 107 | |
Dehydration, Desaturation, Palmitoyl Conjugation | +(C16H26) | 1.45 | 633.32054 | 4.616 | 2.80 × 107 | 2.64 × 107 |
Hydration, Nitro Reduction, Sulfation | +(H4O2S) | −2.65 | 483.10809 | 0.839 | 3.30 × 107 | 3.30 × 107 |
Nitro Reduction, Sulfation | +(H4O2S) | −2.65 | 483.10809 | 0.839 | 3.30 × 107 | 3.30 × 107 |
Dehydration, Thiourea to Urea, Glycine Conjugation | -(S)+(C2HNO) | −2.98 | 438.14861 | 4.336 | 2.99 × 107 | |
Reduction, Glucoside Conjugation | -(S)+(C6H10O2) | −1.88 | 497.21124 | 4.671 | 2.14 × 107 | |
Dehydration, Desaturation, Stearyl Conjugation | +(C18H30) | 1.56 | 661.35195 | 5.013 | 7.13 × 106 | 2.47 × 107 |
Dehydration | -(H4O4S) | 1.62 | 315.13365 | 2.622 | 1.21 × 107 | 2.28 × 107 |
Nitro Reduction, Reduction, Taurine Conjugation | +(C2H9NS) | 1.49 | 494.16248 | 2.540 | 1.53 × 107 | 1.72 × 107 |
Nitro Reduction, Thiourea to Urea, Ornitine Conjugation | -(S)+(C5H12N2) | 2.07 | 483.24515 | 6.866 | 8.94 × 106 | 2.12 × 107 |
Hydration, Reduction | -(O2S)+(H2) | 0.35 | 353.17004 | 3.787 | 2.12 × 107 | 2.58 × 106 |
Thiourea to Urea | -(S)+(O) | −2.12 | 399.13817 | 2.643 | 2.00 × 107 | |
Dehydration, Thiourea to Urea, Methylation | -(S)+(C) | −0.23 | 395.14401 | 0.922 | 2.08 × 107 | 1.91 × 107 |
Reduction, Acetylation | -(O2S)+(C2H2) | −1.79 | 377.16924 | 5.206 | 2.01 × 107 | |
Reduction | -(O3S) | 0.53 | 335.15953 | 1.319 | 2.00 × 107 | |
Oxidative Deamination to Ketone, Thiourea to Urea, Arginine Conjugation | -(S)+(C6H9N3O3) | 1.59 | 554.20937 | 3.435 | 1.86 × 107 | |
Cysteine Conjugation | -(O)+(C3H5N) | 0.14 | 454.16352 | 2.160 | 1.55 × 107 | |
Oxidation, Glucuronide Conjugation | -(S)+(C6H6O4) | −1.02 | 525.17017 | 1.427 | 1.60 × 107 | |
Dehydration, Desaturation, Palmitoyl Conjugation | +(C16H26) | 1.63 | 633.32065 | 4.587 | 1.71 × 107 | |
Hydration, Glucoside Conjugation | -(S)+(C6H10O3) | −1.70 | 513.20622 | 4.295 | 1.46 × 107 | 3.17 × 106 |
Hydration, Taurine Conjugation | +(C2H9NO4S) | 1.07 | 558.14199 | 2.180 | 1.33 × 107 | 1.57 × 107 |
Hydration, Methylation | -(O2S)+(CH2) | 0.56 | 365.17012 | 2.364 | 1.27 × 107 | |
Desaturation | -(H4O3S) | −0.04 | 331.12804 | 3.104 | 1.32 × 107 | |
Hydration, Nitro Reduction | -(O4S)+(H2) | −1.14 | 321.17972 | 4.999 | 1.36 × 107 | |
Nitro Reduction, Nitro Reduction, Thiourea to Urea | -(O3S)+(H4) | −0.81 | 339.19038 | 6.899 | 8.80 × 106 | 1.34 × 107 |
Oxidative Deamination to Alcohol, Thiourea to Urea, Palmitoyl Conjugation | -(NS)+(C16H29O3) | −2.17 | 638.35131 | 4.379 | 2.94 × 106 | 1.27 × 107 |
Methylation | -(O3S) +(C) | 0.81 | 347.15963 | 3.909 | 1.12 × 107 | |
Nitro Reduction, Thiourea to Urea, Acetylation | -(S)+(C2H4) | −0.13 | 411.17534 | 3.920 | 1.17 × 107 | 6.90 × 106 |
Dehydration, Reduction, Thiourea to Urea | -(S) | −1.03 | 383.14370 | 4.159 | 9.90 × 106 | |
Dehydration, Dehydration, Thiourea to Urea | -(H4OS) | 0.56 | 363.11809 | 1.115 | 1.11 × 107 | |
Oxidation, Thiourea to Urea, Glycine Conjugation | -(S)+(C2H3NO3) | 1255.72 | 472.74829 | 4.520 | 1.14 × 107 | 7.83 × 106 |
Thiourea to Urea, Glycine Conjugation | -(S)+(C2H3NO3) | 1255.72 | 472.74829 | 4.520 | 1.14 × 107 | 7.83 × 106 |
Desaturation, Oxidation | -(H4O2S) | −0.04 | 347.12296 | 0.749 | 3.94 × 106 | 1.02 × 107 |
Oxidative Deamination to Ketone | -(H5NO2S) | −0.1 | 332.11204 | 3.832 | 1.03 × 107 | |
Cluster II—stem | ||||||
Nitro Reduction, Arginine Conjugation | -(O4S)+(C6H12N4) | −3.11 | 459.26921 | 4.296 | 1.33 × 108 | |
Dehydration, Reduction, Thiourea to Urea | -(S) | 0.07 | 383.14413 | 4.473 | 6.20 × 107 | 2.16 × 107 |
Hydration, Nitro Reduction, Sulfation | +(H4O2S) | −2.45 | 483.10818 | 0.896 | 5.27 × 107 | |
Nitro Reduction, Sulfation | +(H4O2S) | −2.45 | 483.10818 | 0.896 | 5.27 × 107 | |
Reduction, Thiourea to Urea, Glycine Conjugation | -(S)+(C2H5NO2) | −2.56 | 458.17495 | 4.289 | 2.18 × 107 | 2.65 × 106 |
Reduction, Acetylation | -(O2S)+(C2H2) | −1.35 | 377.16941 | 5.214 | 2.80 × 107 | |
Desaturation, Nitro Reduction, Stearyl Conjugation | -(O)+(C18H34) | −1.86 | 649.38609 | 5.038 | 2.69 × 107 | |
Dehydration, Nitro Reduction, Palmitoyl Conjugation | -(O2)+(C16H30) | −1.75 | 605.36003 | 4.968 | 1.80 × 107 | |
Nitro Reduction, Thiourea to Urea, Acetylation | -(S)+(C2H4) | 0.05 | 411.17542 | 3.941 | 1.59 × 107 | |
Oxidation, Thiourea to Urea, Glycine Conjugation | -(S)+(C2H3NO3) | −2.48 | 472.15422 | 4.532 | 1.24 × 107 | 4.74 × 106 |
Thiourea to Urea, Glycine Conjugation | -(S)+(C2H3NO3) | −2.48 | 472.15422 | 4.532 | 1.24 × 107 | 4.74 × 106 |
Hydration, Reduction | -(O2S)+(H2) | 0.98 | 353.17026 | 3.803 | 1.18 × 107 | |
Hydration, Glycine Conjugation | -(OS)+(C2H3N) | −2.91 | 408.17454 | 4.651 | 1.15 × 107 | |
Cluster III—tuber | ||||||
Desaturation, Nitro Reduction, Stearyl Conjugation | -(O)+(C18H34) | −0.87 | 649.38674 | 5.020 | 3.55 × 107 | |
Dehydration, Nitro Reduction, Thiourea to Urea | -(O2S) | 0.33 | 351.15438 | 4.529 | 3.50 × 107 | 3.20 × 106 |
Hydration | -(O2S) | 0.33 | 351.15438 | 4.529 | 3.50 × 107 | 3.20 × 106 |
Hydration, Methylation | -(O2S)+(CH2) | 0.06 | 365.16994 | 4.892 | 3.38 × 107 | 2.09 × 106 |
Dehydration, Nitro Reduction, Palmitoyl Conjugation | -(O2)+(C16H30) | −0.79 | 605.36061 | 4.950 | 3.23 × 107 | |
Dehydration, Nitro Reduction, Thiourea to Urea | -(O2S) | 1.61 | 351.15483 | 3.776 | 2.73 × 107 | |
Hydration | -(O2S) | 1.61 | 351.15483 | 3.776 | 2.73 × 107 | |
Oxidative Deamination to Ketone | -(H5NO2S) | 1.82 | 332.11268 | 3.798 | 1.98 × 107 | 7.61 × 106 |
Oxidative Deamination to Alcohol | -(H3NO2S) | 1.60 | 334.12825 | 3.776 | 1.69 × 107 |
Minerals | Mineral Content (Measured in This Study) (S. tuberosum, Phureja Variety) (mg/kg d.w.) | Mineral Content (Various References) | |||
---|---|---|---|---|---|
Control | CYN Sprinkler Irrigation | CYN Surface Irrigation | [41,42,43,44,45,46] (mg/kg d.w. *) | [47] (mg/kg f.w. **) | |
Ca | 866–1233 (990 ± 210) | 594–1129 (811 ± 281) | 1831–2260 (1994 ± 232) | 250–830 | |
K | 17,745–17,987 (17,845 ± 126) | 19,457–20,731 (20,089 ± 637) | 18,938–19,315 (19,131 ± 189) | 12,540–33,870 | |
Mg | 1203–1270 (1231 ± 35) | 1001–1167 (1086 ± 83) | 1290–1338 (1319 ± 26) | 185–860 | |
Na | 180–201 (189 ± 11) | 134–229 (173 ± 50) | 290–349 (319 ± 30) | 130–150 | |
P | 4090–4436 (4311 ± 192) | 3060–3485 (3302 ± 216) | 5498–4483 (4982 ± 508) | ||
Cu | 9.65–10.61 (10.04 ± 0.51) | 7.68–8.54 (8.15 ± 0.43) | 9.90–11.27 (10.739 ± 0.735) | 4.30–31 | 0.505–2.729 |
Fe | 88.41–97.34 (91.96 ± 4.73) | 57.74–60.75 (58.95 ± 1.59) | 90.21–103.38 (95.90 ± 6.77) | 5.25–340 | |
Mn | 7.58–8.59 (8.171 ± 0.529) | 4.91–6.20 (5.71 ± 0.70) | 7.43–8.93 (8.21 ± 0.75) | 6–16.01 | 0.022–29.894 |
Zn | 55.70–61.06 (58.46 ± 2.69) | 43.30–48.38 (46.57 ± 2.83) | 55.00–59.21 (57.76 ± 2.38) | 12.6-56.51 |
Plant | Crop Conditions | Germination | Treatment | Irrigation | CYN Concentration | Application | Sample Processing |
---|---|---|---|---|---|---|---|
S. tuberosum Phureja Group var. Criolla Colombia | Greenhouse. Semi-controlled conditions, air temperature 17–20 °C, light: dark cycle of 12:12 h (natural light) and air relative humidity of 55%. | Tubers were planted in plastic bags that contained organic soil and quarzitic sand at a 3:1 ratio. | Control (n = 9) | Municipal potable water | 4 weeks, 3 times per week | Plants were harvested, stored (−80 °C), and lyophilized. | |
Surface irrigation (n = 9) | Cyanobacterial crude extract (C. ovalisporum strain LEGE X-001) | 84.65 µg/L (1st application) 33.80 µg/L (2nd aplication) 3.05 µg/L (3rd–4th applications) | |||||
Sprinkler irrigation (n = 9) |
Plasma Power | 1350 W |
---|---|
Plasma gas Coolant Flow | 14 L/min |
Auxiliary gas flow rate | 12 L/min |
Nebulizer Flow rate | 0.82 L/min |
Nebulizer | Cross flow |
Nebulizer chamber | Scott |
Pump speed | 30 rpm |
Rinse time | 45 s |
Sample uptake delay | 30 s |
Replicates | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duque, F.; Prieto, A.I.; Cascajosa-Lira, A.; Montenegro, L.C.; Campos, A.; Jos, A.; Cameán, A.M. Bioaccumulation, Distribution and Biotransformation of Cylindrospermopsin in Potato (Solanum tuberosum) After Exposure by Surface or Sprinkler Irrigation. Toxins 2025, 17, 301. https://doi.org/10.3390/toxins17060301
Duque F, Prieto AI, Cascajosa-Lira A, Montenegro LC, Campos A, Jos A, Cameán AM. Bioaccumulation, Distribution and Biotransformation of Cylindrospermopsin in Potato (Solanum tuberosum) After Exposure by Surface or Sprinkler Irrigation. Toxins. 2025; 17(6):301. https://doi.org/10.3390/toxins17060301
Chicago/Turabian StyleDuque, Fredy, Ana Isabel Prieto, Antonio Cascajosa-Lira, Luis Carlos Montenegro, Alexandre Campos, Angeles Jos, and Ana M. Cameán. 2025. "Bioaccumulation, Distribution and Biotransformation of Cylindrospermopsin in Potato (Solanum tuberosum) After Exposure by Surface or Sprinkler Irrigation" Toxins 17, no. 6: 301. https://doi.org/10.3390/toxins17060301
APA StyleDuque, F., Prieto, A. I., Cascajosa-Lira, A., Montenegro, L. C., Campos, A., Jos, A., & Cameán, A. M. (2025). Bioaccumulation, Distribution and Biotransformation of Cylindrospermopsin in Potato (Solanum tuberosum) After Exposure by Surface or Sprinkler Irrigation. Toxins, 17(6), 301. https://doi.org/10.3390/toxins17060301