From Physicochemical Classification to Multidimensional Insights: A Comprehensive Review of Uremic Toxin Research
Abstract
1. Introduction
1.1. Background of Uremic Toxins
1.2. Research Significance and Purpose
2. Classification of Uremic Toxins
2.1. Traditional Classification Based on Physicochemical Properties [5]
2.1.1. Small-Molecule Toxins
2.1.2. Middle-Molecule Toxins
2.1.3. Protein-Bound Toxins
2.2. Evolution of Classification Systems
2.2.1. The 2003 EUTox Classification [5]
2.2.2. The 2021 Consensus Classification [9]
2.2.3. The 2023 New Classification Dimensions [11]
3. Toxicity Assessment of Uremic Toxins
3.1. Evaluation Indicators [5]
3.1.1. CU/CN Ratio
3.1.2. CMAX/CU Ratio
3.2. Toxicity Manifestations and Mechanisms [6,13]
3.2.1. Impact on the Cardiovascular System
3.2.2. Influence on the Immune System
3.2.3. Effects on the Nervous System
4. Clearance Technologies for Uremic Toxins [5,16]
4.1. Traditional Dialysis Methods
4.1.1. Low-Flux Hemodialysis (LFHD)
4.1.2. High-Flux Hemodialysis (HFHD)
4.2. Advanced Clearance Technologies
4.2.1. High-Cutoff Membrane Dialysis
4.2.2. Medium-Cutoff Membrane Dialysis
4.2.3. Hemoadsorption Technology
5. Integration of Toxin Classification, Toxicity and Clearance Technologies
5.1. The Correlation Between Classification and Clearance Strategies [7]
5.2. The Guiding Role of Toxicity Assessment in Treatment [5]
6. Research Gaps and Future Perspectives
6.1. Existing Problems in Current Research
6.2. Prospects for Future Research
7. Conclusions
7.1. Summary of Key Points
7.2. Significance for Clinical Practice and Future Research
Author Contributions
Funding
Conflicts of Interest
References
- GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2017, 395, 709–733. [Google Scholar]
- Caggiano, G.; Amodio, L.; Stasi, A.; Colabufo, N.A.; Colangiulo, S.; Pesce, F.; Gesualdo, L. Gut-Derived Uremic Toxins in CKD: An Improved Approach for the Evaluation of Serum Indoxyl Sulfate in Clinical Practice. Int. J. Mol. Sci. 2023, 24, 5142. [Google Scholar] [CrossRef]
- Claro, L.M.; Moreno-Amaral, A.N.; Gadotti, A.C.; Dolenga, C.J.; Nakao, L.S.; Azevedo, M.L.V.; De Noronha, L.; Olandoski, M.; De Moraes, T.P.; Stinghen, A.E.M.; et al. The Impact of Uremic Toxicity Induced Inflammatory Response on the Cardiovascular Burden in Chronic Kidney Disease. Toxins 2018, 10, 384. [Google Scholar] [CrossRef] [PubMed]
- Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic kidney disease. Lancet 2017, 389, 1238–1252. [Google Scholar] [CrossRef]
- Vanholder, R.; De Smet, R.; Glorieux, G.; Argilés, A.; Baurmeister, U.; Brunet, P.; Clark, W.; Cohen, G.; De Deyn, P.P.; Deppisch, R.; et al. Review on Uremic Toxins: Classification, Concentration, and Interindividual Variability. Kidney Int. 2003, 63, 1934–1943. [Google Scholar] [CrossRef]
- Duranton, F.; Cohen, G.; De Smet, R.; Rodriguez, M.; Jankowski, J.; Vanholder, R.; Argiles, A.; European Uremic Toxin Work Group. Normal and pathologic concentrations of uremic toxins. J. Am. Soc. Nephrol. 2012, 23, 1258–1270. [Google Scholar] [CrossRef]
- Evenepoel, P.; Meijers, B.K.; Bammens, B.R.; Verbeke, K. Uremic toxins originating from colonic microbial metabolism. Kidney Int. 2009, 76, S12–S19. [Google Scholar] [CrossRef]
- Gryp, T.; Vanholder, R.; Vaneechoutte, M.; Glorieux, G. p-Cresyl sulfate. Toxins 2020, 12, 52. [Google Scholar] [CrossRef]
- Mair, R.D.; Sirich, T.L.; Meyer, T.W. Uremic toxin clearance and cardiovascular toxicities. Toxins 2020, 12, 226. [Google Scholar] [CrossRef]
- Rosner, M.H.; Reis, T.; Husain-Syed, F.; Vanholder, R.; Hutchison, C.; Stenvinkel, P.; Blankestijn, P.J.; Cozzolino, M.; Juillard, L.; Kashani, K.; et al. Classification of Uremic Toxins and Their Role in Kidney Failure. Clin. J. Am. Soc. Nephrol. 2021, 16, 1918–1928. [Google Scholar] [CrossRef]
- Vanholder, R.C.; Glorieux, G.L.; De Smet, R.V. Uremic toxins: Removal with different therapies. Hemodial. Int. 2003, 7, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Kashani, K.; Cozzolino, M.G.; Massy, Z.A.; Blankestijn, P.J.; Stenvinkel, P.; Rosner, M.H.; Ronco, C. Proposal for a new classification of solutes of interest in uremia and hemodialysis. Blood Purif. 2023, 52, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Zoccali, C.; Mallamaci, F.; Tripepi, G. Inflammation and atherosclerosis in end-stage renal disease. Blood Purif. 2003, 21, 29–36. [Google Scholar] [CrossRef]
- Vanholder, R.; Pletinck, A.; Schepers, E.; Glorieux, G. Biochemical and Clinical Impact of Organic Uremic Retention Solutes: A Comprehensive Update. Toxins 2018, 10, 33. [Google Scholar] [CrossRef]
- Anders, H.J.; Andersen, K.; Stecher, B. The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int. 2013, 83, 1010–1016. [Google Scholar] [CrossRef]
- Locatelli, F.; Martin-Malo, A.; Hannedouche, T.; Loureiro, A.; Papadimitriou, M.; Wizemann, V.; Jacobson, S.H.; Czekalski, S.; Ronco, C.; Vanholder, R. Effect of membrane permeability on survival of hemodialysis patients. J. Am. Soc. Nephrol. 2009, 20, 645–654. [Google Scholar] [CrossRef]
- Bridoux, F.; Chevret, S.; Fermand, J.P. High-cutoff hemodialysis for myeloma cast nephropathy: Further investigation is needed. Lancet Haematol. 2019, 6, e347. [Google Scholar] [CrossRef]
- Ronco, C.; Bellomo, R. Hemoperfusion: Technical aspects and state of the art. Crit. Care 2019, 23, 135. [Google Scholar] [CrossRef]
- Eloot, S.; Van Biesen, W.; Vanholder, R. Adequacy of dialysis: A critical analysis. Kidney Int. 2012, 82, 260–266. [Google Scholar]
- Ou, Z.; Li, X.; Zhang, H.; Li, H.; Lun, L. The effect of hemoadsorption on protein-bound toxin clearance and quality of life in patients on maintenance hemodialysis. Chin. J. Blood Purif. 2018, 17, 229–233. [Google Scholar] [CrossRef]
- Ou, Z.; Lun, L.; Li, X.; Li, J.; Dou, G. Long-term clinical study on the effect of hemodialysis combined with hemoadsorption on the removal of protein-bound toxins in maintenance hemodialysis patients. Mil. Med. Res. 2017, 41, 611–614. [Google Scholar]
- Deng, D.; Li, X.; Li, H.; Gao, Z.; Dou, G.; Lun, L. Comparison of the effects of different blood purification methods on the removal of serum protein—Bound uremic toxins in maintenance hemodialysis patients. Chin. J. Blood Purif. 2014, 13, 639–642. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Lun, L. Removal efficacy of protein-bound uraemic toxins by different blood purification strategies. Chin. J. Nephrol. Dial. Transplant. 2016, 25, 425–430. [Google Scholar]
- Zhang, J.; Yuan, Y.; An, X.; Ouyang, C.; Ren, H.; Yang, G.; Yu, X.; Lv, X.; Zhang, B.; Wang, N.; et al. Comparison of combined blood purification techniques in treatment of dialysis patients with uraemic pruritus. Int. J. Clin. Exp. Med. 2016, 9, 8563–8568. [Google Scholar]
- Puspitasari, M.; Hidayat, A.R.P.; Wijaya, W.; Wardhani, Y.; Sattwika, P.D.; Jonny, J.; Puspitawati, I. Effectiveness of Combined Hemodialysis-Hemadsorption Therapy in Improving Uremic Toxin Clearance, Inflammatory Markers, and Symptoms in Maintenance Hemodialysis Patients. Blood Purif. 2024, 53, 732–742. [Google Scholar] [CrossRef]
- Meyer, T.W.; Hostetter, T.H. Uremic solutes from colon microbes. Kidney Int. 2012, 81, 949–954. [Google Scholar] [CrossRef]
- Ramezani, A.; Raj, D.S. The gut microbiome, kidney disease, and targeted interventions. J. Am. Soc. Nephrol. 2014, 25, 657–670. [Google Scholar] [CrossRef]
- Levin, A.; Stevens, P.E.; Bilous, R.W.; Coresh, J.; De Francisco, A.L.M.; De Jong, P.E.; Griffith, K.E.; Hemmelgarn, B.R.; Iseki, K.; Lamb, E.J. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013, 3, 1–150. [Google Scholar]
Category | Examples | Clearance Efficiency | Clinical Impact |
---|---|---|---|
Small-molecule toxins (<500 Da, 45 types) | Urea, creatinine, uric acid | High (LFHD) | Metabolic derangements |
Middle-molecule toxins (≥500 Da, 22 types) | β2-MG, IL-6, PTH | Moderate (HFHD/HDF) | Bone disease, inflammation |
Protein-bound toxins (25 types) | IS, PCS, AGEs | Low (conventional dialysis) | CVD, endothelial dysfunction |
Items | 2003 EUTox | 2021 Consensus |
---|---|---|
Chemical identification and quantitative analysis | It is stated that toxins must be chemically identified and accurately quantified in biological fluids. However, the terms “biological fluids” and “chemical identification” are overly broad and nonspecific. | It is stated that toxins need to be identifiable and quantifiable in plasma, serum, or blood, with the analysis objects specified. |
Measurement of total toxin levels and plasma concentrations | It is stated that the total amount and plasma concentration of toxins in uremic patients should be higher than those in non-uremic patients. However, it is not clarified whether the total amount of toxins can be accurately measured. | It is recommended to compare the levels in plasma, serum, or blood with those of individuals with normal renal function, and it is pointed out that toxin levels in patients with chronic kidney disease (CKD) should be higher than those in individuals with normal renal function. |
Relationship between toxin concentrations and clinical symptoms | It is believed that high concentrations of toxins are associated with specific uremic symptoms and/or functional impairments, and improvements should occur when concentrations decrease. | It is proposed that a reduction in concentration does not necessarily translate into clinical improvement. It should be determined whether biological and clinical changes are related to changes in toxin concentrations. |
Standards for toxin concentrations | It is also mentioned that these associations should align with the concentrations of toxins in the body fluids or tissues of uremic patients. | It is emphasized that the biologically active concentrations in research should be consistent with the plasma, serum, or blood concentrations of CKD patients, avoiding the use of nonspecific terms (e.g., “uremia”). |
Toxin Class | Key Toxins | Primary Pathophysiology | Clearance Strategy |
---|---|---|---|
Protein-bound | IS, PCS, AGEs | Oxidative stress, endothelial dysfunction | Adsorption, high-cutoff dialysis |
Middle-molecule | β2-MG, FGF-23, TNF-α | Chronic inflammation, bone mineral disorder | HFHD, middle-cutoff dialysis |
Small-molecule | ADMA, trimethylamine N-oxide (TMAO) | Vascular calcification, platelet dysfunction | LFHD + pharmacological intervention |
Molecular Weight | Exogenous Molecules | Endogenous Water-Soluble Molecules | ||||
---|---|---|---|---|---|---|
Gut-Derived, Protein-Bound Molecules < 80% | Gut-Derived, Protein-Bound Molecules ≥ 80% | Small Molecules (<0.5 kDa) | Small–Middle Molecules (0.5–15 kDa) | Medium–Middle Molecules (15–25 kDa) | Large–Middle Molecules (25–58 kDa) and Large Molecules (58–170 kDa) | |
Uremic toxins | ADMA, SDMA, uric acid, carbamylated compounds, urea, TMAO | Hcy, IS, pCS, CML, kynurenines | Uric acid, urea | β2-microglobulin, IL-8 | TNF, IL-18, IL-10, IL-6, kappa-FLC, myoglobin, sTNFR2, FGF-2, prolactin, complement factor D | AGEs, FGF-23, lambda-FLC, albumin |
Low-flux HD | YES | NO | YES | NO | NO | NO |
High-flux HD | YES | NO | YES | YES | NO | NO |
Online HDF HDx | YES | YES | YES | YES | YES | NO |
Hemoadsorption (HA) | YES | YES | YES | YES | YES | YES |
Toxin Category | HD | HA | HA+HD |
---|---|---|---|
Small Molecules | +++ | + | +++ |
Middle Molecules | ++ | ++ | +++ |
Protein-bound Toxins | + | +++ | +++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cozzolino, M.; Magagnoli, L.; Ciceri, P. From Physicochemical Classification to Multidimensional Insights: A Comprehensive Review of Uremic Toxin Research. Toxins 2025, 17, 295. https://doi.org/10.3390/toxins17060295
Cozzolino M, Magagnoli L, Ciceri P. From Physicochemical Classification to Multidimensional Insights: A Comprehensive Review of Uremic Toxin Research. Toxins. 2025; 17(6):295. https://doi.org/10.3390/toxins17060295
Chicago/Turabian StyleCozzolino, Mario, Lorenza Magagnoli, and Paola Ciceri. 2025. "From Physicochemical Classification to Multidimensional Insights: A Comprehensive Review of Uremic Toxin Research" Toxins 17, no. 6: 295. https://doi.org/10.3390/toxins17060295
APA StyleCozzolino, M., Magagnoli, L., & Ciceri, P. (2025). From Physicochemical Classification to Multidimensional Insights: A Comprehensive Review of Uremic Toxin Research. Toxins, 17(6), 295. https://doi.org/10.3390/toxins17060295