Next Article in Journal
Response Surface Methodology Optimization of Time-Resolved Fluorescence Immunoassay for Rapid Detection of AflatoxinB1 in Yellow Rice Wine
Previous Article in Journal
Correction: Di Paola et al. Impact of Mycotoxin Contaminations on Aquatic Organisms: Toxic Effect of Aflatoxin B1 and Fumonisin B1 Mixture. Toxins 2022, 14, 518
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Toxin Profiling of Amanita citrina and A. sinocitrina: First Report of Buiotenine Detection

1
State Key Laboratory of Trauma and Chemical Poisoning, National Institute of Occupational Health and Poison Control, Chinese Centre for Disease Control and Prevention, No. 29, Nanwei Road, Xicheng District, Beijing 100050, China
2
School of Public Health, Ningxia Key Laboratory of Environmental Factors and Chronic Diseases Control, Ningxia Medical University, No. 1160, Shengli South Road, Xingqing District, Yinchuan 750004, China
3
Zichuan District National Forest Farm, Zibo 255100, China
4
Center for Disease Control and Prevention of Yiyang, Yiyang 413000, China
5
Physical and Chemical Department, Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan 750004, China
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Toxins 2025, 17(5), 247; https://doi.org/10.3390/toxins17050247
Submission received: 13 April 2025 / Revised: 6 May 2025 / Accepted: 8 May 2025 / Published: 16 May 2025
(This article belongs to the Special Issue Advances in Poisonous Mushrooms and Their Toxins)

Abstract

:
Amanita species are widely distributed worldwide. Many of these species are poisonous and can cause health problems, resulting in morbidity and mortality. The toxins responsible for poisoning are amatoxins, aminohexadienoic acid, ibotenic acid, muscimol and muscarines, which damage the liver, kidney, central nervous system and parasympathetic nervous system. In recent years, several toxins have been discovered from different poisonous mushrooms. In this study, multiwalled carbon nanotube purification and ultrahigh-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) was used for the sensitive detection and targeted quantitative screening of 12 mushroom toxins (muscarine, two isoxazole derivatives, three tryptamine alkaloids, three amatoxins and three phallotoxins) from Amanita citrina, A. citrina var. grisea and A. sinocitrina. This study found that buiotenine, one of the tryptamine alkaloids, was detected in A. citrina and A. sinocitrina with an average content of 2.90 and 1.19–6.70 g/kg (n = 3) in the dried mushrooms, respectively. None of the 12 common toxins were discovered in A. citrina var. grisea. These results provide reference data for future research on the role of toxins in the evolution of Amanita mushrooms. Future studies should explore the biosynthetic pathways and ecological roles of these toxins in Amanita species.
Key Contribution: Based on morphological and molecular biology methods, Amanita citrina, A. citrina var. grisea and A. sinocitrina were successfully identified from China. The mushroom toxins contained in A. citrina, A. citrina var. grisea and A. sinocitrina were analyzed using ultrahigh-performance liquid chromatography–triple quadrupole linear ion trap mass spectrometry (UPLC–MS/MS). Buiotenine was detected as one of the tryptamines in A. citrina and A. sinocitrina.

Graphical Abstract

1. Introduction

Amanita Pers. species are economically and ecologically important, with >700 accepted species worldwide [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40]. Based on recent comprehensive phylogenetic studies, Amanita is divided into three subgenera (Amanita, Amanitina and Lepidella) and eleven sections [16,24,39,41]. Interestingly, the species edibility is more or less similar in the different sections [18,19,24,42].
Many Amanita species are famous edible species. For example, Amanita caesarea (Scop.) Pers. from Amanita sect. Caesareae is a common delicious wild mushroom in Europe [20,43,44]. Most species of Amanita sect. Caesareae and some species of sect. Roanokenses and sect. Amanita in China are edible and are widely collected and consumed, such as A. caojizong Zhu L. Yang; Yang-Yang Cui & Qing Cai; A. caesareoides Lj. N. Vassiljeva; A. hemibapha (Berk. & Broome) Sacc.; A. rubromarginata Har. Takah.; A. kitamagotake N. Endo & A. Yamada; A. ochracea (Zhu L. Yang) Yang-Yang Cui, Qing Cai & Zhu L. Yang; A. princeps Corner & Bas; A. pseudoprinceps Yang-Yang Cui, Qing Cai & Zhu L. Yang; A. rubroflava Yang-Yang Cui, Qing Cai & Zhu L. Yang; A. subhemibapha Zhu L. Yang, Yang-Yang Cui & Qing Cai and A. sinensis Zhu L. Yang [18,19,24,45].
In contrast, many Amanita species are poisonous or even deadly, resulting in acute liver and renal failure and psychoneurological disorders [18,19,24,42,46,47,48,49,50,51,52,53,54,55,56,57,58]. The most notorious lethal Amanita are from Amanita sect. Phalloideae, with >70 species producing cyclic peptide toxins, responsible for >70% of all mushroom poisoning fatalities [42,49,50,51,52,53,54,55,56,57,58,59]. Cyclic peptide toxins are classified into three major groups: amatoxins, hallotoxins and virotoxins, with 39 toxins reported [59,60,61,62,63,64,65,66,67,68,69]. The most famous lethal Amanita species in Europe and North America include A. phalloides (Vaill. ex Fr.) Link, A. verna Bull. ex Lam., A. virosa Bertill., A. ocreata Peck, A. bisporigera G.F. Atk., A. suballiacea (Murrill) Murrill and A. tenuifolia (Murrill) Murrill [60,64,70,71,72]. In China, 12 deadly Amanita have been reported, and the most common species in mushroom poisoning outbreaks include A. exitialis Zhu L. Yang & T. H. Li, A. fuliginea Hongo, A. rimosa P. Zhang & Zhu L. Yang, A. subjunquillea S. Imai, A. pallidorosea P. Zhang & Zhu L. Yang, A. subpallidorosea Hai J. Li, A. fuligineoides P. Zhang & Zhu L. Yang and A. subfuliginea Q. Cai, Zhu L. Yang & Y.-Y. Cui [42,52,73,74,75,76].
Thirteen species of mushroom, including A. abrupta Peck, A. boudieri Barla, A. echinocephala (Vittad.) Quél., A. gracilior Bas & Honrubia, A. gymnopus Corner & Bas, A. kotohiraensis Nagas. & Mitani, A. nauseosa (Wakef.) D.A. Reid, A. neoovoidea Hongo, A. oberwinklerana Zhu L. Yang & Yoshim. Doi, A. ovoidea (Bull.) Link, A. proxima Dumée, A. pseudoporphyria Hongo and A. smithiana Bas, produce aminohexadienoic acid (mainly 2-amino-4,5-hexadienoic acid) and cause acute renal failure [54,55,56,57,58,77,78,79,80,81,82,83,84,85]. In China, A. oberwinklerana, A. pseudoporphyria, A. neoovoidea and A. gymnopus are the most common species responsible for mushroom poisoning incidents [42,52,54,55,56,57,58,83,86].
Most species in Amanita sect. Amanita contain neuropsychiatric toxins, including isoxazole derivatives and muscarine [18,19,38,42,52,87]. More than 100 species of sect. Amanita have been reported worldwide ([http://www.amanitaceae.org] on 1 February 2025), and 28 taxa have been recognized in China [18,19,24,38,40]. In Europe and North America, A. muscaria (L.) Lam. and A. pantherina (DC.) Krombh. are the two most common species responsible for poisoning incidents. A. aprica J. Lindgr. & Tulloss, A. gemmata (Fr.) Bertill., A. regalis (Fr.) Michael and A. ibotengutake T. Oda et al. are also poisonous [87,88,89,90,91,92]. In China, >10 species, including A. subglobosa Zhu L. Yang; A. sychnopyramis f. subannulata Hongo; A. concentrica T. Oda, C. Tanaka & Tsuda; A. melleiceps Hongo; A. parvipantherina Zhu L. Yang, M. Weiss & Oberw.; A. pseudosychnopyramis Y.Y. Cui, Q. Cai & Zhu L. Yang; A. rufoferruginea Hongo; A. siamensis Sanmee, Zhu L. Yang, P. Lumyong & Lumyong; A. ibotengutake; A. melleialba Zhu L. Yang, Q. Cai & Y.Y. Cui; A. orientigemmata Zhu L. Yang & Yoshim. Doi; A. pseudopantherina Zhu L. Yang ex Y.Y. Cui, Q. Cai & Zhu L. Yang and A. griseopantherina Y.Y. Cui, Q. Cai & Zhu L. Yang, were discovered in mushroom poisoning incidents [42,52,54,55,56,57,58].
Some species of Amanita sect. Validae also exhibit neurotoxicity. A. citrina Pers. does not contain isoxazole derivatives and muscarine but produces buiotenine at a concentration of 1.6–7.5 mg/g dry weight [59,93,94,95]. Amanita porphyria Alb. & Schwein.: Fr. has been reported to contain 5-hydroxytryptophan [94].
Amanita citrina var. grisea (Hongo) Hongo was first described in Japan and was later reported in China [24,96,97,98]. In 2001, A. sinocitrina, a new species morphologically similar to A. citrina, was described in China [99]. Whether these two taxa also have similar toxins is a fascinating question. While A. citrina has been reported to contain buiotenine, the chemical profiles of var. grisea and A. sinocitrina remain unknown. To determine this, we conducted a study using ultrahigh-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) for toxin profiling and ITS sequencing for phylogenetic analysis, comparing the chemical and genetic diversity among the three species. Our findings showed that buiotenine, one of the tryptamine alkaloids, was detected in A. citrina and A. sinocitrina, and none of the 12 common toxins were discovered in A. citrina var. grisea. The detailed description of species identification and toxin analysis is shown in this study below.

2. Results

2.1. Mushroom Identification

Based on morphological and phylogenetic analyses, all 18 specimens were successfully identified, including 1 specimen of Amanita citrina, 1 specimen of A. citrina var. grisea and 16 specimens of A. sinocitrina (Table 1; Figure 1 and Figure 2).

2.2. Methodology Examination and Toxin Detection Results

UPLC–MS/MS targeted screening results showed that buiotenine was detected in A. citrina and A. sinocitrina. None of the other 11 toxins, including muscarine, psilocybin, psilocin, ibotenic acid, muscimol, α-amanitin, β-amanitin, γ-amanitin, phallacidin, phallisacin and phalloidin, were detected (Figure 3). In addition, none of the toxins were detected in A. citrina var. grisea. In quantitative analysis, the limits of detection (S/N = 3) and limits of quantification (S/N = 10) of buiotenine in the matrix blank sample were 0.1 and 0.2 mg/kg, respectively. Buiotenine showed good linearity (R2 > 0.9960), the three levels of recoveries (10, 20 and 100 mg/kg) of buiotenine in spiked L. edodes samples were 92.3–96.5% and the relative standard deviations were 3.7–5.6%. This method has certain advantages in the extraction and purification of mushroom toxins. Statistical comparisons were made using one-way analysis of variance. UPLC–MS/MS analyses showed that the average contents of buiotenine were 2.90 ± 0.27 g/kg in A. citrina and ranged from 1.19 ± 0.02 to 6.70 ± 1.36 g/kg in A. sinocitrina (n = 3), respectively, in the Guizhou, Yunnan, Hubei and Hunan regions in China (Table 1).

3. Discussion

Buiotenine, a tryptamine alkaloid, was first described in the 1920s [100,101,102,103] and discovered in different living organisms, such as in the skin secretions of many toads (such as of the Bufo species) [104], plants of the Leguminosae family and fungi [59,103,104,105,106,107]. Buiotenine is present as a part of a complex skin secretion in almost 200 species of the genus Bufo worldwide; this secretion acts as a defense mechanism against predators and has antibacterial and antiviral properties [108]. Since the 1960s, there have been reports of smoking dried toad skin secretions, and since the 1980s, reports of “toad licking” have been increasing [109].
Structurally, buiotenine is very similar to psilocin (the active form of psilocybin), but differs in having a hydroxyl group on the C5 of the indole ring instead of C4 [59,103,107]. The possible hallucinogenic effects noted in the literature are still controversial; due to buiotenine not crossing the blood–brain barrier, it may lack hallucinogenic effects [107,110]. However, buiotenine is a promising candidate for treating rabies [107,111].
More than 100 species in Amanita sect. Validae have been discovered worldwide, and approximately 25 of these species were reported in China [18,19,24,39,40,100]. Previous studies showed that Amanita citrina produces buiotenine [59,93,94,95]. The present study confirmed that one closely related species, A. sinocitrina, also produces buiotenine. Meanwhile, no tryptamine alkaloids were detected in the variety A. citrina var. grisea. Amanita porphyria, a similar species from sect. Validae which is closely related to A. citrina [39,40,98] (Figure 2), does not contain buiotenine but contains 5-hydroxytryptophan [94]. Among these >100 species, how many species are poisonous needs to be studied in the future.

4. Conclusions

This study demonstrated that A. citrina and A. sinocitrina contain buiotenine. To the best of our knowledge, this is the first study to report on buiotenine discovered from A. sinocitrina. Additional research is urgently required to determine the prevalence of buiotenine across various species. Future work should explore the biosynthetic pathways and potential pharmacological activities of buiotenine in other Amanita species.

5. Materials and Methods

5.1. Chemicals and Reagents

A series of certified reference standards, including muscarine, psilocybin, psilocin, buiotenine, ibotenic acid, muscimol, α-amanitin, β-amanitin, γ-amanitin, phalloidin, phallacidin and phallisacin, were acquired from Alta Scientific Co., Ltd. (Tianjin, China) in methanol solution and weresubsequently preserved at −20 °C in a freezer. The QuEChERS-PP purification column, incorporating multiwalled carbon nanotubes as the stationary phase, was supplied by Huaren Health Co., Ltd. (Zhengzhou, China). HPLC-grade solvents and reagents—acetonitrile, methanol, ammonium acetate and formic acid—were sourced from Merck Ltd. (Darmstadt, Germany). For all experimental procedures, ultrapure water (resistivity = 18.2 MΩ/cm, TOC < 3 ppb) was generated using a Milli-Q purification system (Millipore, Billerica, MA, USA).

5.2. Materials

Specimens were collected from Guizhou, Yunnan, Hunan and Hubei Provinces, China (Table 1). All fresh mushrooms were dried at 45 °C, and were then stored in the herbarium in the National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control (NIOHP, China CDC). Toxin analysis was performed using 10 mg aliquots of the lyophilized fungal fruiting bodies.

5.3. Species Identification

Morphological identification was mainly performed as per the methods established in previous studies [18,19,24]. Internal transcribed spacer (ITS) was selected for phylogenetic analysis, and maximum parsimony (MP) analyses were applied to the ITS dataset [24,39,100].

5.4. Sample Preparation for Toxin Detection

A dried mushroom specimen (10 mg) was homogenized with 2 mL of a methanol–water mixture (70:30, v/v) in a 15 mL centrifuge tube using vortex agitation. The resulting suspension was subjected to ultrasonic extraction for 60 min, followed by centrifugation (15,000 rpm, 4 °C, 5 min). The clarified supernatant was then passed through a QuECHERS-PP column to eliminate matrix interferences. Subsequently, 10 μL of the purified extract was diluted with a methanol–water solution (5:95, v/v) to a total volume of 1 mL. Prior to UPLC–MS/MS analysis, the prepared solution was centrifuged at 21,000 rpm for 2 min to ensure clarity [101].
For the qualitative screening of mushroom toxins, 20 µL of mushroom extract was pipetted into a vial and diluted to 1 mL with an initial mobile phase (10% B: acetonitrile). The targeted screening of 12 mushroom toxins was performed under an optimal UPLC–MS/MS detection. The toxins detected in the samples were quantitatively analyzed.
In the quantitative analysis, Lentinula edodes were used as the matrix blank mushroom and spiked samples. The matrix blank mushroom and spiked samples were extracted using the same sample preparation method described above, followed by UPLC–MS/MS analysis. Serial concentrations of positive toxins were added to a matrix blank mushroom sample solution to establish the calibration curves for UPLC–MS/MS analysis.

5.5. LC–MS/MS Conditions

UPLC–MS/MS was carried out with a Waters ACQUITY I-Class UPLC system coupled with a Waters Xevo TQ-S MS/MS system (Waters, Milford, MA, USA). The mass spectrometry acquisition parameters of mushroom toxins and the specific parameters of UPLC were chosen according to our previous work [101]. Buiotenine and psilocin were isomers ([M + H]+ = 205.1) with the same mass spectrum parameters. The mass spectrum parameters of the 12 mushroom toxins are in Table 2.
Briefly, the conditions were as follows: the chromatographic separation was carried out using an Atlantis T3 analytical column (2.1 × 100 mm, 3 μm; Waters, USA) and the mobile phase consisted of two components: (A) an aqueous solution of ammonium acetate (10 mmol/L) and (B) acetonitrile, delivered at a constant flow rate of 0.3 mL/min. For mass spectrometric detection, an electrospray ionization (ESI) source was operated in positive-ion mode (ESI+). Data acquisition was conducted via multiple reaction monitoring (MRM). The ionization parameters were optimized as follows: the source temperature was maintained at 550 °C and the spray voltage was set to 5500 V.

Author Contributions

All authors contributed to the study conception and design. Conceptualization, H.-J.L.; Data curation, Y.-Z.Z., Y.Y. and K.-P.Z.; Formal analysis, Y.-Z.Z., Y.Y. and K.-P.Z.; Funding acquisition, H.-J.L. and F.X.; Investigation, Y.-Z.Z., Y.Y., K.-P.Z., J.-Q.L. and Z.-F.L.; Methodology, F.X.; Project administration, J.-Q.L. and J.-J.Z.; Resources, J.-J.Z.; Software, J.-Q.L., J.-J.Z. and Z.-F.L.; Writing—original draft, Y.-Z.Z. and Y.Y.; Writing—review and editing, H.-J.L. and F.X. All authors have read and agreed to the published version of the manuscript.

Funding

This study was supported by the Independent Research Fund of State Key Laboratory of Trauma and Chemical Poisoning (2025SKLCDC-02); the National Natural Science Foundation of China (32270021); the Science and Technology Support Program of Yinchuan, Ningxia (No. 2024SF001); and the Key Research and Development Program of Ningxia (No. 2024BEH04071).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The original contributions presented in this study are included in the article. Further inquiries can be directed to the corresponding authors.

Acknowledgments

Special thanks are due to Ya-Juan Zhou (Guizhou CDC) and Jin-Jun Liang (Hunan CDC) for help in field collection.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Gray, S.F. A Natural Arrangement of British Plants; Baldwin, Cradock and Joy: London, UK, 1821. [Google Scholar]
  2. Roze, M.E. Essai d’une nouvelle classification des Agaricinées. Bull. Soc. Bot. Fr. 1876, 23, 45–54. [Google Scholar] [CrossRef]
  3. Earle, F.S. The genera of the North American gill fungi. Bull. N. Y. Bot. Gard. 1909, 5, 373–451. [Google Scholar]
  4. Murrill, W.A. The amanitas of eastern North America. Mycologia 1913, 5, 72–86. [Google Scholar] [CrossRef]
  5. Beeli, M. Contribution à l’étude de la flore mycologique du Congo. Fungi Goossensiani VIII Genre Amanita Fr. Bull. Soc. R. Bot. Belg. 1931, 63, 100–109. [Google Scholar]
  6. Veselý, R. Revisio critica Amanitarum europaearum. Ann. Mycol. 1933, 31, 13–24. [Google Scholar]
  7. Gilbert, E.J. Amanitaceae. Bresadola J. Icon. Mycol. 1940, 27, 1–200. [Google Scholar]
  8. Gilbert, E.J. Amanitaceae. Bresadola J. Icon. Mycol. 1941, 27, 201–427. [Google Scholar]
  9. Konrad, P.; Maublanc, A. Les Agaricales: Classification, Revision des Espèces, Iconographie, Comestibilité; Paul Lechevalier: Paris, France, 1948. [Google Scholar]
  10. Corner, E.J.H.; Bas, C. The genus Amanita in Singapore and Malaya. Persoonia 1962, 2, 241–304. [Google Scholar]
  11. Moser, M. Die Röhrlinge und Blätterpilze (Agaricales). In Kleine Kryptogamenflora, Band II b/2. Basidiomyceten II. Teil. 3; Gams, H.H., Ed.; Gustav Fischer Verlag: Stuttgart, Germany; New York, NY, USA, 1967. [Google Scholar]
  12. Jenkins, D.T. A study of Amanita types. I. Taxa described by CH Peck. Mycotaxon 1978, 7, 23–44. [Google Scholar]
  13. Jenkins, D.T. A study of Amanita types. III. Taxa described by W. A. Murrill. Mycotaxon 1979, 10, 175–200. [Google Scholar]
  14. Jenkins, D.T. A study of Amanita types. IV. Taxa described by GF. Atkinson. Mycotaxon 1982, 14, 237–246. [Google Scholar]
  15. Hongo, T. The amanitas of Japan. Acta. Phytotax. Geobot. 1982, 33, 116–126. [Google Scholar]
  16. Kumar, A.; Bhatt, R.; Lakhanpal, T.N. The Amanitaceae of India; Bishen Singh Mahendra Pal Singh: Dehra Dun, India, 1990. [Google Scholar]
  17. Yang, Z.L. Die Amanita-Arten von Südwestchina. Bibl. Mycol. 1997, 170, 1–240. [Google Scholar]
  18. Yang, Z.L. Flora Fungorum Sinicorum; Amanitaceae; Science Press: Beijing, China, 2005; Volume 27. [Google Scholar]
  19. Yang, Z.L. Atlas of the Chinese Species of Amanitaceae; Science Press: Beijing, China, 2015. [Google Scholar]
  20. Galli, R. Le Amanite; Edinatura: Milano, Italy, 2001. [Google Scholar]
  21. Guzmán, G.; Ramírez-Guillén, F. The Amanita caesarea-complex. Biblio. Mycol. 2001, 187, 1–66. [Google Scholar]
  22. Neville, P.; Poumarat, S. Amaniteae: Amanita, Limacella & Torrendia; Edizioni Candusso: Alassio, Italy, 2004. [Google Scholar]
  23. Tulloss, R.E. Amanita-distribution in the Americas, with comparison to eastern and southern Asia and notes on spore character variation with latitude and ecology. Mycotaxon 2005, 93, 189–232. [Google Scholar]
  24. Cui, Y.Y.; Cai, Q.; Tang, L.P.; Liu, J.W.; Yang, Z.L. The family Amanitaceae: Molecular phylogeny, higher-rank taxonomy and the species in China. Fungal Divers. 2018, 91, 5–230. [Google Scholar] [CrossRef]
  25. Cui, Y.Y.; Cai, Q.; Yang, Z.L. Amanita chuformis, a new Amanita species with a marginate basal bulb. Mycoscience 2021, 62, 29–35. [Google Scholar] [CrossRef]
  26. Cui, Y.Y.; Yang, Z.L.; Cai, Q. Amanita pallidoverruca, a new species of Amanita section Validae from the Hengduan Mountains, southwestern China. Phytotaxa 2022, 542, 73–82. [Google Scholar] [CrossRef]
  27. Cui, Y.Y.; Hao, Y.J.; Guo, T.; Yang, Z.L.; Cai, Q. Species diversity of Amanita section Vaginatae in Eastern China, with a description of four new species. J. Fungi 2023, 9, 862. [Google Scholar] [CrossRef]
  28. Hosen, M.I.; Mehmood, T.; Das, K.; Kudzma, L.V.; Bhatt, R.P. Amanita tullossiana, a new species, and two new records of Amanita section Lepidella from north-western Himalaya, India. MycoKeys 2018, 37, 73–92. [Google Scholar] [CrossRef]
  29. Ullah, S.; Wilson, A.W.; Tulloss, R.E.; Fiaz, M.; Mueller, G.M.; Khalid, A.N. Amanita cinis and A. olivovaginata (Basidiomycota, Amanitaceae), two new species, and the first record of A. emodotrygon, from Northwestern Pakistan. Turk. J. Bot. 2019, 43, 831–849. [Google Scholar] [CrossRef]
  30. Hanss, J.M.; Moreau, P.A. Une révision des amanites «vaginées» (Amanita sect. Vaginatae) en Europe, 1re partie: Quelques amanites argentées. Bull. Soc. Chim. Fr. 2020, 133, 67–141. [Google Scholar]
  31. Wartchow, F. Amanita xenokommosis (Agaricales, Basidiomycota), a striking new species from sand dune forest of northeastern Brazil, with a key for phenetically similar species. Plant. Biosyst. 2020, 154, 700–704. [Google Scholar] [CrossRef]
  32. Davison, E.M.; Guistiniano, D.; Bougher, N.L.; McGurk, L.E.; Watkin, E.L.J. Additions to Amanita (Amanitaceae, Agaricales) section Arenariae from south-western Australia. Aust. Syst. Bot. 2021, 34, 541–569. [Google Scholar] [CrossRef]
  33. Davison, E.M.; Guistiniano, D.; Barrett, M.D.; Syme, K. Four new species of Amanita sect. Roanokenses (Basidiomycota) from Western Australia. Nuytsia 2023, 34, 65–92. [Google Scholar] [CrossRef]
  34. Mighell, K.S.; Henkel, T.W.; Koch, R.A.; Chin, M.L.; Brann, M.A.; Aime, M.C. Amanita in the Guineo-Congolian rainforest: Epitypes and new species from the Dja Biosphere Reserve, Cameroon. Mycologia 2021, 113, 168–190. [Google Scholar] [CrossRef]
  35. Zhong, J.; Li, G.W.; Pu, J.B.; Chen, Z.H.; Zhang, P. Two new species of Amanita section Roanokenses with a radicating basal bulb. Mycol. Prog. 2021, 20, 967–979. [Google Scholar] [CrossRef]
  36. Liu, Y.S.; Kumla, J.; Suwannarach, N.; Sysouphanthong, P.; Lumyong, S. Three species of Amanita section Lepidella (Amanitaceae, Agaricales) from northern Thailand. Phytotaxa 2022, 570, 16–28. [Google Scholar] [CrossRef]
  37. Liu, Y.S.; Liu, J.K.; Kumla, J.; Suwannarach, N.; Lumyong, S. Taxonomic novelties and new records of Amanita subgenus Amanitina from Thailand. J. Fungi 2023, 9, 601. [Google Scholar] [CrossRef]
  38. Su, Y.T.; Cai, Q.; Qin, W.Q.; Cui, Y.Y.; Chen, Z.H.; Yang, Z.L. Two new species of Amanita section Amanita from Central China. Mycol. Prog. 2022, 21, 1–10. [Google Scholar] [CrossRef]
  39. Huang, T.; Su, L.J.; Zeng, N.K.; Lee, S.M.; Lee, S.S.; Thi, B.K.; Zhang, W.H.; Ma, J.; Huang, H.Y.; Jiang, S.; et al. Notes on Amanita section Validae in Hainan Island, China. Front. Microbiol. 2023, 13, 1087756. [Google Scholar] [CrossRef] [PubMed]
  40. Zhou, H.; Guo, M.J.; Zhuo, L.; Yan, H.; Sui, X.; Gao, Y.; Hou, C. Diversity and taxonomy of the genus Amanita (Amanitaceae, Agaricales) in the Yanshan Mountains, Northern China. Front. Plant. Sci. 2023, 14, 1226794. [Google Scholar] [CrossRef] [PubMed]
  41. Suwannarach, N.; Kumla, J.; Khuna, S.; Wannathes, N.; Thongklang, N.; Sysouphanthong, P.; Luangharn, T.; Wongkanoun, S.; Karunarathna, S.C.; Liu, Y.S.; et al. History of Thai mycology and resolution of taxonomy for Thai macrofungi confused with European and American names. Chiang. Mai. J. Sci. 2022, 49, 654–683. [Google Scholar] [CrossRef]
  42. Chen, Z.H.; Yang, Z.L.; Bau, T.; Li, T.H. Poisonous Mushroom: Recognition and Poisoning Treatment; Science Press: Beijing, China, 2016. [Google Scholar]
  43. Pegler, D.N. Useful fungi of the world: Caesar’s mushroom and the Christmas mushroom. Mycologist 2002, 16, 140–141. [Google Scholar] [CrossRef]
  44. Román, M.; Boa, E. Collection marketing and cultivation of edible fungi in Spain. Micol. Apl. Int. 2004, 16, 25–33. [Google Scholar]
  45. Yang, Z.L.; Wu, G.; Li, Y.C.; Wang, X.H.; Cai, Q. Common Edible and Poisonous Mushrooms of Southwestern China; Science Press: Beijing, China, 2021. [Google Scholar]
  46. Spoerke, D.G.; Rumack, B.H. Handbook of Mushroom Poisoning: Diagnosis and Treatment; CRC Press: London, UK, 1994. [Google Scholar]
  47. Deng, W.Q.; Li, T.H.; Xi, P.G.; Gan, L.X.; Xiao, Z.D.; Jiang, Z.D. Peptide toxin components of Amanita exitialis basidiocarps. Mycologia 2011, 103, 946–949. [Google Scholar] [CrossRef]
  48. Roberts, D.M.; Hall, M.J.; Falkland, M.M.; Strasser, S.I.; Buckley, N.A. Amanita phalloides poisoning and treatment with silibinin in the Australian Capital Territory and New South Wales. Med. J. Aust. 2013, 198, 43–47. [Google Scholar] [CrossRef]
  49. Cai, Q.; Tulloss, R.E.; Tang, L.P.; Tolgor, B.; Zhang, P.; Chen, Z.H.; Yang, Z.L. Multi-locus phylogeny of lethal amanitas: Implications for species diversity and historical biogeography. BMC Evol. Biol. 2014, 14, 143. [Google Scholar] [CrossRef]
  50. Cai, Q.; Cui, Y.Y.; Yang, Z.L. Lethal Amanita species in China. Mycologia 2016, 108, 993–1009. [Google Scholar] [CrossRef]
  51. Chen, Z.H. New advances in researches on poisonous mushrooms since 2000. Mycosystema 2014, 33, 493–516. [Google Scholar]
  52. Chen, Z.H.; Zhang, P.; Zhang, Z.G. Investigation and analysis of 102 mushroom poisoning cases in Southern China from 1994 to 2012. Fungal Divers. 2014, 64, 123–131. [Google Scholar] [CrossRef]
  53. White, J.; Weinstein, S.; Haro, L.; Bédry, R.; Schaper, A.; Rumack, B.H.; Zilker, T. Mushroom poisoning: A proposed new clinical classification. Toxicon 2019, 157, 53–65. [Google Scholar] [CrossRef] [PubMed]
  54. Li, H.J.; Zhang, H.S.; Zhang, Y.Z.; Zhang, K.P.; Zhou, J.; Yin, Y.; Jiang, S.F.; Ma, P.B.; He, Q.; Zhang, Y.T.; et al. Mushroom poisoning outbreaks—China, 2019. China CDC Wkly. 2020, 2, 19–24. [Google Scholar] [CrossRef]
  55. Li, H.J.; Zhang, H.S.; Zhang, Y.Z.; Zhang, K.P.; Zhou, J.; Yin, Y.; He, Q.; Jiang, S.F.; Ma, P.B.; Zhang, Y.T.; et al. Mushroom poisoning outbreaks—China, 2020. China CDC Wkly. 2021, 3, 41–45. [Google Scholar] [CrossRef]
  56. Li, H.J.; Zhang, H.S.; Zhang, Y.Z.; Zhang, K.P.; Zhou, J.; Yin, Y.; He, Q.; Jiang, S.F.; Ma, P.B.; Zhang, Y.T.; et al. Mushroom poisoning outbreaks—China, 2021. China CDC Wkly. 2022, 4, 35–40. [Google Scholar]
  57. Li, H.J.; Zhang, Y.Z.; Zhang, H.S.; Zhou, J.; Liang, J.Q.; Yin, Y.; He, Q.; Jiang, S.F.; Zhang, Y.T.; Yuan, Y.; et al. Mushroom poisoning outbreaks—China, 2022. China CDC Wkly. 2023, 5, 45–50. [Google Scholar] [CrossRef]
  58. Li, H.J.; Zhang, Y.Z.; Zhang, H.S.; Zhou, J.; Chen, Z.H.; Liang, J.Q.; Yin, Y.; He, Q.; Jiang, S.F.; Zhang, Y.T.; et al. Mushroom poisoning outbreaks—China, 2023. China CDC Wkly. 2024, 6, 64–68. [Google Scholar] [CrossRef]
  59. Walton, J.D. The Cyclic Peptide Toxins of Amanita and Other Poisonous Mushrooms; Springer International Publishing AG: Cham, Switzerland, 2018. [Google Scholar]
  60. Wieland, T. Peptides of Poisonous Amanita Mushrooms; Springer: New York, NY, USA, 1986. [Google Scholar]
  61. Clarke, D.B.; Lloyd, A.S.; Robb, P. Application of liquid chromatography coupled to time-of-flight mass spectrometry separation for rapid assessment of toxins in Amanita mushrooms. Anal. Methods 2012, 4, 1298–1309. [Google Scholar] [CrossRef]
  62. Pulman, J.A.; Childs, K.L.; Sgambelluri, R.M.; Walton, J.D. Expansion and diversification of the MSDIN family of cyclic peptide genes in the poisonous agarics Amanita phalloides and A. bisporigera. BMC Genom. 2016, 17, 1038. [Google Scholar] [CrossRef]
  63. Tang, S.S.; Zhou, Q.; He, Z.M.; Luo, T.; Zhang, P.; Cai, Q.; Yang, Z.L.; Chen, J.; Chen, Z.H. Cyclopeptide toxins of lethal amanitas: Compositions, distribution and phylogenetic implication. Toxicon 2016, 120, 78–88. [Google Scholar] [CrossRef]
  64. Wei, J.H.; Wu, J.F.; Chen, J.; Wu, B.; He, Z.; Zhang, P.; Li, H.J.; Sun, C.Y.; Liu, C.; Chen, Z.H.; et al. Determination of cyclopeptide toxins in Amanita subpallidorosea and Amanita virosa by high-performance liquid chromatography coupled with high-resolution mass spectrometry. Toxicon 2017, 133, 26–32. [Google Scholar] [CrossRef] [PubMed]
  65. Luo, H.; Cai, Q.; Lüli, Y.J.; Li, X.; Sinha, R.; Hallen-Adams, H.E.; Yang, Z.L. The MSDIN family in amanitin-producing mushrooms and evolution of the prolyl oligopeptidase genes. IMA Fungus 2018, 9, 225–242. [Google Scholar] [CrossRef] [PubMed]
  66. Luo, H.; Hallen-Adams, H.E.; Lüli, Y.J.; Sgambelluri, R.M.; Li, X.; Smith, M.; Yang, Z.L.; Martin, F.M. Genes and evolutionary fates of the amanitin biosynthesis pathway in poisonous mushrooms. Proc. Natl. Acad. Sci. USA 2022, 119, e2201113119. [Google Scholar] [CrossRef] [PubMed]
  67. He, Z.M.; Long, P.; Fang, F.; Li, S.; Zhang, P.; Chen, Z.H. Diversity of MSDIN family members in amanitin-producing mushrooms and the phylogeny of the MSDIN and prolyl oligopeptidase genes. BMC Genom. 2020, 21, 440. [Google Scholar] [CrossRef]
  68. Lüli, Y.; Zhou, S.W.; Li, X.; Chen, Z.H.; Yang, Z.L.; Luo, H. Differential expression of Amanitin biosynthetic genes and novel cyclic peptides in Amanita molliuscula. J. Fungi 2021, 7, 384. [Google Scholar] [CrossRef]
  69. Zhou, S.W.; Li, X.C.; Lüli, Y.J.; Li, X.; Chen, Z.H.; Yuan, P.; Li, G.H.; Yang, Z.L.; Luo, H. Novel cyclic peptides from lethal Amanita mushrooms through a genome-guided approach. J. Fungi 2021, 7, 204. [Google Scholar] [CrossRef]
  70. Enjalbert, F.; Rapior, S.; Nouguier-Soule, J.; Guillon, S.; Amouroux, N.; Cabot, C. Treatment of amatoxin poisoning: 20-year retrospective analysis. J. Toxicol-Clin. Toxic. 2002, 40, 715–757. [Google Scholar] [CrossRef]
  71. Karlson-Stiber, C.; Persson, H. Cytotoxic fungi—An overview. Toxicon 2003, 42, 339–349. [Google Scholar] [CrossRef]
  72. Yilmaz, I.; Kaya, E.; Sinirlioglu, Z.A.; Bayram, R.; Surmen, M.G.; Colakoglu, S. Clinical importance of toxin concentration in Amanita verna mushroom. Toxicon 2014, 87, 68–75. [Google Scholar] [CrossRef]
  73. Yang, Z.L.; Li, T.H. Notes on white amanita of section Phalloideae (Amanitaceae) from China. Mycotaxon 2001, 78, 439–448. [Google Scholar]
  74. Zhang, P.; Chen, Z.H.; Xiao, B.; Tolgor, B.; Bao, H.Y.; Yang, Z.L. Lethal amanitas of East Asia characterized by morphological and molecular data. Fungal Divers. 2010, 42, 119–133. [Google Scholar] [CrossRef]
  75. Li, H.J.; Xie, J.W.; Zhang, S.; Zhou, Y.J.; Ma, P.B.; Zhou, J.; Sun, C.Y. Amanita subpallidorosea, a new lethal fungus from China. Mycol. Prog. 2015, 14, 43. [Google Scholar] [CrossRef]
  76. Liang, J.Q.; Zhang, Y.Z.; Li, H.J.; Sun, C.Y. Research progress of Amanita exitialis. Chin. J. Care Med. 2023, 43, 689–695. [Google Scholar]
  77. Leray, H.; Canaud, B.; Andary, C.; Klouche, K.; Béraud, J.J.; Mion, C. Amanita proxima poisoning: A new cause of acute renal insufficiency. Nephrologie 1994, 15, 197–199. [Google Scholar]
  78. West, P.L.; Lindgren, J.; Horowitz, B.Z. Amanita smithiana mushroom ingestion: A case of delayed renal failure and literature review. J. Med. Toxicol. 2009, 5, 32–38. [Google Scholar] [CrossRef]
  79. Kirchmair, M.; Carrilho, P.; Pfab, R.; Haberl, B.; Felgueiras, J.; Carvalho, F.; Cardoso, J.; Melo, I.; Vinhas, J.; Neuhauser, S. Amanita poisonings resulting in acute, reversible renal failure: New cases, new toxic Amanita mushrooms. Nephrol. Dial. Transpl. 2012, 27, 1380–1386. [Google Scholar] [CrossRef]
  80. Apperley, S.; Kroeger, P.; Kroeger, M.; Kiaii, M.; Holmes, D.T.; Garber, I. Laboratory confirmation of Amanita smithiana mushroom poisoning. Clin. Toxicol. 2013, 51, 249–251. [Google Scholar] [CrossRef]
  81. Biagi, M.; Martelli, L.; Perini, C.; Di Lella, L.A.; Miraldi, E. Investigations into Amanita ovoidea (Bull.) link.: Edible or poisonous? Nat. Resour. 2014, 5, 225–232. [Google Scholar]
  82. Graeme, K.A. Mycetism: A review of the recent literature. J. Med. Toxicol. 2014, 10, 173–189. [Google Scholar] [CrossRef]
  83. Fu, X.Y.; Fu, B.; He, Z.M.; Gong, M.; Li, Z.; Chen, Z.H. Acute renal failure caused by Amanita oberwinklerana poisoning. Mycoscience 2017, 58, 121–127. [Google Scholar] [CrossRef]
  84. Lee, J.H.; Kim, S.S.; Seok, S.J.; Bae, E.H. Acute kidney injury resulting from Amanita neoovoidea intoxication. J. Korean. Med. Sci. 2018, 33, e230. [Google Scholar] [CrossRef] [PubMed]
  85. Gioacchino, L.C.; Luisa, B.; Onofrio, S.; Franca, S.; Camillo, C.; Carmela, Z.; Antonio, A.; Tancredi Vincenzo, L.C.; Vitalba, A.; Flavia, C. Acute renal failure after Amanita ovoidea eating. Indian J. Nephrol. 2019, 29, 73–74. [Google Scholar] [CrossRef] [PubMed]
  86. Wang, H.; Wang, Y.; Shi, F.F.; Zhang, S.; Fang, W.T.; Qi, L.M.; Wang, N.; Huang, C.; Fang, H.Q.; Li, H.J. A case report of acute renal failure caused by Amanita neoovoidea poisoning in Anhui Province, eastern China. Toxicon 2020, 173, 62–67. [Google Scholar] [CrossRef] [PubMed]
  87. Garcia, J.; Costa, V.M.; Costa, A.E.; Andrade, S.; Carneiro, A.C.; Conceição, F.; Paiva, J.A.; Pinho, P.G.; Baptista, P.; Lourdes Bastos, M.; et al. Coingestion of amatoxins and isoxazoles-containing mushrooms and successful treatment: A case report. Toxicon 2015, 103, 55–59. [Google Scholar] [CrossRef]
  88. Benjamin, D.R. Mushroom poisoning in infants and children: The Amanita pantherina/muscaria group. Clin. Toxicol. 1992, 30, 13–22. [Google Scholar]
  89. Tulloss, R.E.; Lindgren, J.E. Amanita aprica—A new toxic species from western North America. Mycotaxon 2005, 91, 193–206. [Google Scholar]
  90. Gonmori, K.; Hasegawa, K.; Fujita, H.; Kamijo, Y.; Nozawa, H.; Yamagishi, I.; Minakata, K.; Watanabe, K.; Suzuki, O. Analysis of ibotenic acid and muscimol in Amanita mushroom by hydrophilic interaction liquid chromatography-tandem mass spectrometry. Forensic. Toxicol. 2012, 30, 168–172. [Google Scholar] [CrossRef]
  91. Mikaszewska-Sokolewicz, M.A.; Pankowska, S.; Janiak, M.; Pruszczyk, P.; Łazowski, T.; Jankowski, K. Coma in the course of severe poisoning after consumption of red fly agaric (Amanita muscaria). Acta Biochim. Pol. 2016, 63, 181–182. [Google Scholar] [CrossRef]
  92. Moss, M.J.; Hendrickson, R.G. Toxicity of muscimol and ibotenic acid containing mushrooms reported to a regional poison control center from 2002–2016. Clin. Toxicol. 2018, 57, 99–103. [Google Scholar] [CrossRef]
  93. Wieland, T. Poisonous principles of mushrooms of the genus Amanita Four-carbon amines acting on the central nervous system and cell-destroying cyclic peptides are produced. Science 1968, 159, 946–952. [Google Scholar] [CrossRef]
  94. Beutler, J.A.; Vergeer, P.P. Amatoxins in American mushrooms: Evaluation of the Meixner test. Mycologia 1980, 72, 1142–1149. [Google Scholar] [CrossRef]
  95. Hama, J.R.; Strobel, B.W. Occurrence of pyrrolizidine alkaloids in ragwort plants, soils and surface waters at the field scale in grassland. Sci. Total Environ. 2021, 755, 142822. [Google Scholar] [CrossRef]
  96. Hongo, T. Notes on Japanese larger fungi (13). J. Jpn. Bot. 1958, 33, 344–350. [Google Scholar]
  97. Hongo, T. The Agaricales of Japan I-(1). Mem. Fac. Liberal Arts Shiga Univ. Nat. Sci. 1959, 9, 47–94. [Google Scholar]
  98. Zhang, K.P. Taxonomy of the Amanita spissacea Complex in China. Master’s Thesis, Beijing Forestry University, Beijing, China, 2020. [Google Scholar]
  99. Chen, Z.H.; Yang, Z.L.; Zhang, Z.G. Three noteworthy Amanitae of subgenus Lepidella from China. Mycotaxon 2001, 79, 275–284. [Google Scholar]
  100. Zhang, K.P.; Zhang, Y.Z.; Sun, C.Y.; Zhang, H.S.; Lu, J.J.; Si, J.; Li, H.J. Amanita lacerosquamosa, a new species of Amanita sect. Validae from Southwestern China. Phytotaxa 2020, 456, 95–104. [Google Scholar] [CrossRef]
  101. Yan, Y.Y.; Zhang, Y.Z.; Vauras, J.; Zhao, L.N.; Fan, Y.G.; Li, H.J.; Xu, F. Pseudosperma arenarium (Agaricales, Inocybaceae), a new poisonous species from Eurasia based on morphological, ecological, molecular, and biochemical evidence. Mycokeys 2022, 92, 79–93. [Google Scholar] [CrossRef]
  102. Handovsky, H. Ein alkaloid im gifte von Bufo vulgaris—Ausgeführt mit unterstützung der Fürst-Liechtenstein-Spende in wien und der gesellschaft zur förderung deutscher wissenschaft, kunst und literatur in böhmen. Arch. Exp. Pathol. Pharmakol. 1920, 86, 138–158. [Google Scholar] [CrossRef]
  103. Chilton, W.S.; Bigwood, J.; Jensen, R.E. Psilocin, bufotenine and serotonin: Historical and biosynthetic observations. J. Psychoact. Drugs 1979, 11, 61–69. [Google Scholar] [CrossRef]
  104. Rodríguez, C.; Rollins-Smith, L.; Ibáñez, R.; Durant-Archibold, A.A.; Gutiérrez, M. Toxins and pharmacologically active compounds from species of the family Bufonidae (Amphibia, Anura). J. Ethnopharmacol. 2017, 198, 235–254. [Google Scholar] [CrossRef]
  105. Stromberg, V.L. The isolation of bufotenine from piptadenia peregrine. J. Am. Chem. Soc. 1954, 76, 1707. [Google Scholar] [CrossRef]
  106. Sciani, J.M.; Angeli, C.B.; Antoniazzi, M.M.; Jared, C.; Pimenta, D.C. Differences and similarities among parotoid macrogland secretions in South American toads: A preliminary biochemical delineation. Sci. World J. 2013, 2013, 937407. [Google Scholar] [CrossRef] [PubMed]
  107. Vigerelli, H.; Sciani, J.M.; Eula, M.A.C.; Sato, L.A.; Antoniazzi, M.M.; Jared, C.; Pimenta, D.C. Biological effects and biodistribution of bufotenine on mice. BioMed Res. Int. 2018, 2018, 1032638. [Google Scholar] [CrossRef] [PubMed]
  108. Lyttle, T.; Goldstein, D.; Gartz, J. Bufo toads and bufotenine: Facts and fiction surrounding an alleged psychedelic. J. Psychoact. Drugs 1996, 28, 267–290. [Google Scholar] [CrossRef]
  109. Martin, R.; Schürenkamp, J.; Gasse, A.; Pfeiffer, H.; Köhler, H. Determination of psilocin, bufotenine, LSD and its metabolites in serum, plasma and urine by SPE–LC–MS/MS. Int. J. Legal Med. 2013, 127, 593–601. [Google Scholar] [CrossRef]
  110. McBride, M.C. Bufotenine: Towards an understanding of possible psychoactive mechanisms. J. Psychoact. Drugs 2000, 32, 321–331. [Google Scholar] [CrossRef]
  111. Vigerelli, H.; Sciani, J.M.; Pereira, P.M.C.; Lavezo, A.A.; Silva, A.C.; Collaço, R.C.; Rocha, T.; Bueno, T.C.; Pimenta, D.C. Bufotenine, a tryptophan-derived alkaloid, suppresses the symptoms and increases the survival rate of rabies-infected mice: The development of a pharmacological approach for rabies treatment. J. Venom. Anim. Toxins 2020, 26, e20190050. [Google Scholar] [CrossRef]
Figure 1. Basidiomata of Amanita species studied in the present paper: (a) A. citrina (150913-24), (b) A. citrina var. grisea (WX20170922-067), (c) A. sinocitrina (150914-18), (d) A. sinocitrina (171012-23). Bars = 1 cm.
Figure 1. Basidiomata of Amanita species studied in the present paper: (a) A. citrina (150913-24), (b) A. citrina var. grisea (WX20170922-067), (c) A. sinocitrina (150914-18), (d) A. sinocitrina (171012-23). Bars = 1 cm.
Toxins 17 00247 g001
Figure 2. Phylogenetic tree inferred from MP analysis based on internal transcribed spacer (ITS) sequences. Only bootstrap values > 50% are reported. Sequences from present study are shown in bold.
Figure 2. Phylogenetic tree inferred from MP analysis based on internal transcribed spacer (ITS) sequences. Only bootstrap values > 50% are reported. Sequences from present study are shown in bold.
Toxins 17 00247 g002
Figure 3. MRM chromatograms of buiotenine in A. citrina (a) and A. sinocitrina (b).
Figure 3. MRM chromatograms of buiotenine in A. citrina (a) and A. sinocitrina (b).
Toxins 17 00247 g003
Table 1. The buiotenine contents and species identification information in different mushroom specimens used in the present study.
Table 1. The buiotenine contents and species identification information in different mushroom specimens used in the present study.
SpeciesSpecimen VoucherCollection DateLocationITS NumbersBuiotenine (g/kg)
A. citrina150913-2413-Sep-2015China: GuizhouOR3451882.90 ± 0.27
A. citrina var. griseaWX20170922-06722-Sep-2017China: YunnanOR345187<LOD
A. sinocitrina141025-0525-Oct-2014China: Guizhou-2.70 ± 0.19
150914-0214-Sep-2015China: GuizhouOR3451841.19 ± 0.02
150914-1814-Sep-2015China: GuizhouOR3451773.42 ± 0.66
150914-2714-Sep-2015China: GuizhouMN6470234.10 ± 0.95
171012-1912-Oct-2017China: GuizhouOR3451794.00 ± 0.73
171012-2312-Oct-2017China: GuizhouOR3451862.66 ± 0.52
171012-3812-Oct-2017China: GuizhouOR3451786.70 ± 1.36
DL20170920-01120-Sep-2017China: GuizhouOR3451851.22 ± 0.08
GZHS20200703-0403-Jul-2020China: GuizhouOR3451822.97 ± 0.31
GZHS20200703-0603-Jul-2020China: GuizhouOR3451834.48 ± 0.97
GZRH20200701-0401-Jul-2020China: GuizhouOR3451744.20 ± 0.85
GZRH20200709-0209-Jul-2020China: GuizhouOR3451803.85 ± 0.68
GZSN20200617-00617-Jun-2020China: GuizhouOR3451752.88 ± 0.16
HB20190708-02 08-Jul-2019China: HubeiOR3451813.70 ± 0.69
HNZJJCL20200624-0224-Jun-2020China: HunanOR3451765.26 ± 1.15
HNZJJCL20200924-0624-Sep-2020China: HunanOR3451732.66 ± 0.65
Table 2. The mass spectrum parameters of 12 mushroom toxins.
Table 2. The mass spectrum parameters of 12 mushroom toxins.
AnalytePrecursor Ion
(Q1, m/z)
Product Ion
(Q3, m/z)
DP
(V)
CE
(V)
Retention Time
(min)
α-amanitin919.485.7 a, 259.3 b85, 85107, 601.92
β-amanitin920.685.6 a, 259.5 b103, 103104, 591.53
γ-amanitin903.686.1 a, 243.1 b125, 125123, 603.21
Phalloidin789.7157.2 a, 85.7 b108, 108108, 815.13
Phallacidin847.4157.2 a, 330.3 b101, 10180, 634.53
Phallisacin863.6156.8 a, 85.8 b101, 101117, 882.79
Muscarine174.257.1 a, 97.2 b73, 7032, 261.30
Ibotenic acid158.9113.2 a, 142.1 b50, 5016, 170.87
Muscimol115.198.0 a, 68.1 b43, 4017, 200.89
Psilocybin285.258.1 a, 205.3 b82, 8253, 251.32
Buiotenine205.258.1 a, 160.1 b60, 6933, 193.26
Psilocin205.158.1 a, 160.1 b40, 4532, 233.51
Notions: a quantified ions; b qualitative ions.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Zhang, Y.-Z.; Yao, Y.; Zhang, K.-P.; Liang, J.-Q.; Zhong, J.-J.; Li, Z.-F.; Li, H.-J.; Xu, F. Toxin Profiling of Amanita citrina and A. sinocitrina: First Report of Buiotenine Detection. Toxins 2025, 17, 247. https://doi.org/10.3390/toxins17050247

AMA Style

Zhang Y-Z, Yao Y, Zhang K-P, Liang J-Q, Zhong J-J, Li Z-F, Li H-J, Xu F. Toxin Profiling of Amanita citrina and A. sinocitrina: First Report of Buiotenine Detection. Toxins. 2025; 17(5):247. https://doi.org/10.3390/toxins17050247

Chicago/Turabian Style

Zhang, Yi-Zhe, Yi Yao, Kai-Ping Zhang, Jia-Qi Liang, Jia-Ju Zhong, Zhong-Feng Li, Hai-Jiao Li, and Fei Xu. 2025. "Toxin Profiling of Amanita citrina and A. sinocitrina: First Report of Buiotenine Detection" Toxins 17, no. 5: 247. https://doi.org/10.3390/toxins17050247

APA Style

Zhang, Y.-Z., Yao, Y., Zhang, K.-P., Liang, J.-Q., Zhong, J.-J., Li, Z.-F., Li, H.-J., & Xu, F. (2025). Toxin Profiling of Amanita citrina and A. sinocitrina: First Report of Buiotenine Detection. Toxins, 17(5), 247. https://doi.org/10.3390/toxins17050247

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop