Therapeutic Potential of Scolopendra subspinipes: A Comprehensive Scoping Review of Its Bioactive Compounds, Preclinical Pharmacology, and Clinical Applications
Abstract
:1. Introduction
2. Results
2.1. Literature Search and Selection Process of Preclinical and Clinical Studies
2.2. Scoping Review on Therapeutic Activities of S. subspinipes from the Literature
2.2.1. Analgesic Effects
2.2.2. Anti-Inflammatory Effects
2.2.3. Antimicrobial Effects
2.2.4. Antifungal Effects
2.2.5. Antioxidant Effects
2.2.6. Antithrombotic Effects
2.2.7. Antitumor Effects
2.2.8. Anti-Fibrotic Activity
2.2.9. Neuroprotective Effects
2.2.10. Identification of Eligible Korean Medicine CPGs
3. Discussion
4. Methods
4.1. Preclinical and Clinical Studies on Scolopedra subspinipes
4.1.1. Search Strategy and Selection of Preclinical and Clinical Studies
4.1.2. Data Extraction from the Selected Literature
4.2. Clinical Practice Guidelines (CPGs) Regarding S. subspinipes
4.2.1. Search Strategy and Selection of Eligible CPGs for Scolopendra subspinipes
4.2.2. Basic Elements of the CPGs, Their Recommendations, and Evidence Appraisal
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, J.H.; Kim, I.W.; Kim, S.H.; Kim, M.A.; Yun, E.Y.; Nam, S.H.; Ahn, M.Y.; Kang, D.; Hwang, J.S. Anticancer Activity of the Antimicrobial Peptide Scolopendrasin VII Derived from the Centipede, Scolopendra subspinipes mutilans. J. Microbiol. Biotechnol. 2015, 25, 1275–1280. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Moon, W.; Kim, S.; Chung, S.H.; Kim, J.; Kim, N.; Lee, Y.J.; Park, M. Development of clinical practice guidelines for Korean medicine: Towards evidence-based complementary and alternative medicine. Integr. Med. Res. 2023, 12, 100924. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; Yang, J.; Hua, D.; Wang, D.; Zhao, C.; Weng, L.; Yue, D.; Cai, X.; Meng, Q.; Chen, J.; et al. ZhiJingSan Inhibits Osteoclastogenesis via Regulating RANKL/NF-κB Signaling Pathway and Ameliorates Bone Erosion in Collagen-Induced Mouse Arthritis. Front. Pharmacol. 2021, 12, 693777. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Yang, M.; Wu, C.; Zou, Z.; Tang, J.; Yang, X. Centipede venom peptide SsmTX-I with two intramolecular disulfide bonds shows analgesic activities in animal models. J. Pept. Sci. 2017, 23, 384–391. [Google Scholar] [CrossRef]
- Yoon, S.Y.; Lee, J.Y.; Roh, D.H.; Oh, S.B. Pharmacopuncture with Scolopendra subspinipes Suppresses Mechanical Allodynia in Oxaliplatin-Induced Neuropathic Mice and Potentiates Clonidine-induced Anti-allodynia Without Hypotension or Motor Impairment. J. Pain. 2018, 19, 1157–1168. [Google Scholar] [CrossRef] [PubMed]
- Hua, D.; Yang, J.; Meng, Q.; Ling, Y.; Wei, Q.; Wang, Z.; Wei, Q.; Chen, J.; Ye, J.; Han, X.; et al. Soufeng sanjie formula alleviates collagen-induced arthritis in mice by inhibiting Th17 cell differentiation. Chin. Med. 2021, 16, 39. [Google Scholar] [CrossRef]
- Fan, B.; Liu, Q.; Yang, Y.; Wu, W.; Wei, Q.; Yang, J.; Hu, C.; Sun, X.; Cao, P. Soufeng sanjie formula alleviates osteoarthritis by inhibiting macrophage M1 polarization and modulating intestinal metabolites. J. Ethnopharmacol. 2025, 339, 119147. [Google Scholar] [CrossRef]
- Park, Y.J.; Park, B.; Lee, M.; Jeong, Y.S.; Lee, H.Y.; Sohn, D.H.; Song, J.J.; Lee, J.H.; Hwang, J.S.; Bae, Y.S. A novel antimicrobial peptide acting via formyl peptide receptor 2 shows therapeutic effects against rheumatoid arthritis. Sci. Rep. 2018, 8, 14664. [Google Scholar] [CrossRef]
- Cai, M.; Choi, S.M.; Song, B.K.; Son, I.; Kim, S.; Yang, E.J. Scolopendra subspinipes mutilans attenuates neuroinflammation in symptomatic hSOD1(G93A) mice. J. Neuroinflamm. 2013, 10, 131. [Google Scholar] [CrossRef]
- Park, Y.J.; Kim, H.S.; Lee, H.Y.; Hwang, J.S.; Bae, Y.S. A novel antimicrobial peptide isolated from centipede Scolopendra subspinipes mutilans stimulates neutrophil activity through formyl peptide receptor 2. Biochem. Biophys. Res. Commun. 2017, 494, 352–357. [Google Scholar] [CrossRef]
- Hong, J.Y.; Lee, J.; Kim, H.; Yeo, C.; Jeon, W.J.; Lee, Y.J.; Ha, I.H. Shinbaro2 enhances axonal extension beyond the glial scar for functional recovery in rats with contusive spinal cord injury. Biomed. Pharmacother. 2023, 168, 115710. [Google Scholar] [CrossRef] [PubMed]
- Hwang, L.; Ko, I.G.; Jin, J.J.; Kim, S.H.; Kim, C.J.; Jeon, J.W.; Han, J.H. Scolopendra subspinipes mutilans Extract Suppresses Inflammatory and Neuropathic Pain In Vitro and In Vivo. Evid. Based Complement. Alternat Med. 2018, 2018, 5057372. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.M.; Khan, N.A.; Sagathevan, K.; Anwar, A.; Siddiqui, R. Biologically active metabolite(s) from haemolymph of red-headed centipede Scolopendra subspinipes possess broad spectrum antibacterial activity. AMB Express 2019, 9, 95. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, V.K.; Shukla, S.; Paek, W.K.; Lim, J.; Kumar, P.; Na, M. Antibacterial Action of Jineol Isolated from Scolopendra subspinipes mutilans against Selected Foodborne Pathogens. Front. Microbiol. 2017, 8, 552. [Google Scholar] [CrossRef]
- Kim, Y.G.; Lee, J.H.; Park, J.G.; Lee, J. Inhibition of Candida albicans and Staphylococcus aureus biofilms by centipede oil and linoleic acid. Biofouling 2020, 36, 126–137. [Google Scholar] [CrossRef]
- Kwon, Y.N.; Lee, J.H.; Kim, I.W.; Kim, S.H.; Yun, E.Y.; Nam, S.H.; Ahn, M.Y.; Jeong, M.; Kang, D.C.; Lee, I.H.; et al. Antimicrobial activity of the synthetic peptide scolopendrasin ii from the centipede Scolopendra subspinipes mutilans. J. Microbiol. Biotechnol. 2013, 23, 1381–1385. [Google Scholar] [CrossRef]
- Peng, K.; Kong, Y.; Zhai, L.; Wu, X.; Jia, P.; Liu, J.; Yu, H. Two novel antimicrobial peptides from centipede venoms. Toxicon 2010, 55, 274–279. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, I.W.; Kim, M.A.; Ahn, M.Y.; Yun, E.Y.; Hwang, J.S. Antimicrobial Activity of the Scolopendrasin V Peptide Identified from the Centipede Scolopendra subspinipes mutilans. J. Microbiol. Biotechnol. 2017, 27, 43–48. [Google Scholar] [CrossRef]
- Lee, W.; Hwang, J.S.; Lee, D.G. A novel antimicrobial peptide, scolopendin, from Scolopendra subspinipes mutilans and its microbicidal mechanism. Biochimie 2015, 118, 176–184. [Google Scholar] [CrossRef]
- Hou, H.; Yan, W.; Du, K.; Ye, Y.; Cao, Q.; Ren, W. Construction and expression of an antimicrobial peptide scolopin 1 from the centipede venoms of Scolopendra subspinipes mutilans in Escherichia coli using SUMO fusion partner. Protein Expr. Purif. 2013, 92, 230–234. [Google Scholar] [CrossRef]
- Chaparro-Aguirre, E.; Segura-Ramírez, P.J.; Alves, F.L.; Riske, K.A.; Miranda, A.; Silva Júnior, P.I. Antimicrobial activity and mechanism of action of a novel peptide present in the ecdysis process of centipede Scolopendra subspinipes subspinipes. Sci. Rep. 2019, 9, 13631. [Google Scholar] [CrossRef]
- Lee, B.; Hwang, J.S.; Lee, D.G. Antibacterial action of lactoferricin B like peptide against Escherichia coli: Reactive oxygen species-induced apoptosis-like death. J. Appl. Microbiol. 2020, 129, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.J.; Lee, H.Y.; Jung, Y.S.; Park, J.S.; Hwang, J.S.; Bae, Y.S. Antimicrobial peptide scolopendrasin VII, derived from the centipede Scolopendra subspinipes mutilans, stimulates macrophage chemotaxis via formyl peptide receptor 1. BMB Rep. 2015, 48, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.J.; Lee, S.K.; Jung, Y.S.; Lee, M.; Lee, H.Y.; Kim, S.D.; Park, J.S.; Koo, J.; Hwang, J.S.; Bae, Y.S. Promotion of formyl peptide receptor 1-mediated neutrophil chemotactic migration by antimicrobial peptides isolated from the centipede Scolopendra subspinipes mutilans. BMB Rep. 2016, 49, 520–525. [Google Scholar] [CrossRef]
- Lee, H.; Hwang, J.S.; Lee, J.; Kim, J.I.; Lee, D.G. Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism. Biochim. Biophys. Acta 2015, 1848, 634–642. [Google Scholar] [CrossRef]
- Choi, H.; Hwang, J.S.; Lee, D.G. Identification of a novel antimicrobial peptide, scolopendin 1, derived from centipede Scolopendra subspinipes mutilans and its antifungal mechanism. Insect Mol. Biol. 2014, 23, 788–799. [Google Scholar] [CrossRef] [PubMed]
- Jo, I.J.; Bae, G.S.; Park, K.C.; Choi, S.B.; Jung, W.S.; Jung, S.Y.; Cho, J.H.; Choi, M.O.; Song, H.J.; Park, S.J. Scolopendra subspinipes mutilans protected the cerulein-induced acute pancreatitis by inhibiting high-mobility group box protein-1. World J. Gastroenterol. 2013, 19, 1551–1562. [Google Scholar] [CrossRef]
- Yoo, W.G.; Lee, J.H.; Shin, Y.; Shim, J.Y.; Jung, M.; Kang, B.C.; Oh, J.; Seong, J.; Lee, H.K.; Kong, H.S.; et al. Antimicrobial peptides in the centipede Scolopendra subspinipes mutilans. Funct. Integr. Genom. 2014, 14, 275–283. [Google Scholar] [CrossRef]
- Choi, H.; Hwang, J.S.; Lee, D.G. Antifungal effect and pore-forming action of lactoferricin B like peptide derived from centipede Scolopendra subspinipes mutilans. Biochim. Biophys. Acta 2013, 1828, 2745–2750. [Google Scholar] [CrossRef]
- Kim, S.; Hwang, J.S.; Lee, D.G. Lactoferricin B like peptide triggers mitochondrial disruption-mediated apoptosis by inhibiting respiration under nitric oxide accumulation in Candida albicans. IUBMB Life 2020, 72, 1515–1527. [Google Scholar] [CrossRef]
- Lee, H.; Hwang, J.S.; Lee, D.G. Scolopendin 2 leads to cellular stress response in Candida albicans. Apoptosis 2016, 21, 856–865. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Hwang, J.S.; Lee, D.G. Scolopendin, an antimicrobial peptide from centipede, attenuates mitochondrial functions and triggers apoptosis in Candida albicans. Biochem. J. 2017, 474, 635–645. [Google Scholar] [CrossRef]
- Yoon, M.A.; Jeong, T.S.; Park, D.S.; Xu, M.Z.; Oh, H.W.; Song, K.B.; Lee, W.S.; Park, H.Y. Antioxidant effects of quinoline alkaloids and 2,4-di-tert-butylphenol isolated from Scolopendra subspinipes. Biol. Pharm. Bull. 2006, 29, 735–739. [Google Scholar] [CrossRef]
- Kong, Y.; Shao, Y.; Chen, H.; Ming, X.; Wang, J.B.; Li, Z.Y.; Wei, J.F. A Novel Factor Xa-Inhibiting Peptide from Centipedes Venom. Int. J. Pept. Res. Ther. 2013, 19, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Lee, J.; Kulkarni, R.; Kim, M.A.; Hwang, J.S.; Na, M.; Bae, J.S. Antithrombotic and antiplatelet activities of small-molecule alkaloids from Scolopendra subspinipes mutilans. Sci. Rep. 2016, 6, 21956. [Google Scholar] [CrossRef]
- Kong, Y.; Huang, S.L.; Shao, Y.; Li, S.; Wei, J.F. Purification and characterization of a novel antithrombotic peptide from Scolopendra subspinipes mutilans. J. Ethnopharmacol. 2013, 145, 182–186. [Google Scholar] [CrossRef]
- Ding, D.; Guo, Y.R.; Wu, R.L.; Qi, W.Y.; Xu, H.M. Two new isoquinoline alkaloids from Scolopendra subspinipes mutilans induce cell cycle arrest and apoptosis in human glioma cancer U87 cells. Fitoterapia 2016, 110, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.R.; Wu, P.X.; Xu, H.M.; Qi, W.Y. A New 1,5-Dihydroxy-4-methoxyisoquinoline from Scolopendra subspinipes mutilans. Chem. Biodivers. 2017, 14, e1600478. [Google Scholar] [CrossRef]
- Mao, Q.Y.; Wang, X.Q.; Lin, F.; Yu, M.W.; Fan, H.T.; Zheng, Q.; Liu, L.C.; Zhang, C.C.; Li, D.R.; Lin, H.S. Scorpiones, Scolopendra and Gekko Inhibit Lung Cancer Growth and Metastasis by Ameliorating Hypoxic Tumor Microenvironment via PI3K/AKT/mTOR/HIF-1α Signaling Pathway. Chin. J. Integr. Med. 2024, 30, 799–808. [Google Scholar] [CrossRef]
- Ma, W.; Liu, R.; Qi, J.; Zhang, Y. Extracts of centipede Scolopendra subspinipes mutilans induce cell cycle arrest and apoptosis in A375 human melanoma cells. Oncol. Lett. 2014, 8, 414–420. [Google Scholar] [CrossRef]
- Hu, Y.X.; Zhang, Z.; Deng, Z.; Huang, Z.; Feng, T.; Tian, S.; Tian, X.F.; Liu, Z.; Zhou, Q.H.; Mei, S.; et al. Antihepatoma peptide, scolopentide, derived from the centipede Scolopendra subspinipes mutilans. World J. Gastroenterol. 2023, 29, 1875–1898. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Li, Y.; Wang, Y.; Zhang, J.; Ouyang, X.; Peng, R.; Yang, J. Antitumor and immunostimulatory activity of a polysaccharide-protein complex from Scolopendra subspinipes mutilans L. Koch in tumor-bearing mice. Food Chem. Toxicol. 2012, 50, 2648–2655. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.Y.; Sun, W.M.; Tao, C.T.; Li, S.H.; Gao, Q.; Yan, Y.M.; Cheng, Y.X. Structurally Diverse Alkaloids with Anti-Renal-Fibrosis Activity from the Centipede Scolopendra subspinipes mutilans. J. Nat. Prod. 2024, 87, 1103–1115. [Google Scholar] [CrossRef]
- Ren, Y.; Houghton, P.; Hider, R.C. Relevant activities of extracts and constituents of animals used in traditional Chinese medicine for central nervous system effects associated with Alzheimer’s disease. J. Pharm. Pharmacol. 2006, 58, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.S.; Ang, M.J.; Moon, B.C.; Kim, H.S.; Choi, G.; Lim, H.S.; Kang, S.; Jeon, M.; Kim, S.H.; Moon, C.; et al. Protective Effects of Scolopendra Water Extract on Trimethyltin-Induced Hippocampal Neurodegeneration and Seizures in Mice. Brain Sci. 2019, 9, 369. [Google Scholar] [CrossRef]
- Korean Acupuncture & Moxibustion Medicine Society. Clinical Practice Guideline of Korean Medicine for Knee Osteoarthritis; Standard Clinical Practice Guideline Development for Korean Medicine Project Agency, National Institute of the Korean Medicine Development: Seoul, Republic of Korea, 2020. [Google Scholar]
- The Society of Stroke on Korean Medicine. Clinical Practice Guideline of Korean Medicine for Migraine; Standard Clinical Practice Guideline Development for Korean Medicine Project Agency, National Institute of the Korean Medicine Development: Seoul, Republic of Korea, 2021. [Google Scholar]
- The Society of Sasang Constitutional Medicine. Clinical Practice Guideline of Korean Medicine for Dizziness; Standard Clinical Practice Guideline Development for Korean Medicine Project Agency, National Institute of the Korean Medicine Development: Seoul, Republic of Korea, 2021. [Google Scholar]
- Korean Association of Traditional Oncology. Clinical Practice Guideline of Korean Medicine for Gastric Cancer; Standard Clinical Practice Guideline Development for Korean Medicine Project Agency, National Institute of the Korean Medicine Development: Seoul, Republic of Korea, 2023. [Google Scholar]
- The Association of Korean Oriental Pediatrics. Clinical Practice Guideline of Korean Medicine for Autism Spectrum Disorder; Standard Clinical Practice Guideline Development for Korean Medicine Project Agency, National Institute of the Korean Medicine Development: Seoul, Republic of Korea, 2021. [Google Scholar]
- The Society of Korean Medicine Rehabilitation. Clinical Practice Guideline of Korean Medicine for Carpal Tunnel Syndrome; Standard Clinical Practice Guideline Development for Korean Medicine Project Agency, National Institute of the Korean Medicine Development: Seoul, Republic of Korea, 2023. [Google Scholar]
- The Society of Korean Medicine Rehabilitation. Clinical Practice Guideline of Korean Medicine for Shoulder Pain; Standard Clinical Practice Guideline Development for Korean Medicine Project Agency, National Institute of the Korean Medicine Development: Seoul, Republic of Korea, 2020. [Google Scholar]
Therapeutic Effect | Key Findings | Mechanisms | Key Compounds (Chemical Class, Source) | References |
---|---|---|---|---|
Analgesic | Reduces inflammatory, acute, and neuropathic pain via ion channel blockade and adrenergic pathways. | Kv2.1 ion-channel inhibition, α2-adrenergic receptor activation, NF-κB suppression. | SsmTX-I (peptide, centipede venom). Centipede pharmacopuncture (purified aqueous extract, whole-body dried centipede). Zhi Jing San (herbal medicine, whole-body dried centipede). | [3,4,5] |
Anti-Inflammatory | Suppresses NF-κB signaling, proinflammatory cytokines, and oxidative mediators in systemic and localized models. | NF-κB inhibition, cytokine suppression, iNOS/COX-2 downregulation. | Scolopendrasin X (peptide, centipede venom). Zhi Jing San (herbal medicine, whole-body dried centipede). Soufeng sanjie formula (herbal medicine, whole-body dried centipede). | [3,6,7,8,9,10,11,12] |
Antimicrobial | AMPs target bacteria/fungi via membrane disruption or immune modulation; transcriptomics reveal new candidates. | AMPs, FPR2 activation, ROS-mediated apoptosis, protein synthesis inhibition. | Scolopin 1 (peptide, centipede venom). scolopendrasins III, V, VII, IX, and X (peptide, centipede venom). | [8,10,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28] |
Antifungal | Peptides disrupt Candida membranes or induce apoptosis via ROS, Ca2⁺ dysregulation, and mitochondrial damage. | Membrane permeabilization, ROS generation, apoptosis induction. | LBLP: lactoferricin B-like peptide (peptide, whole-body centipede). Scolopendin (peptide, whole-body centipede). Scolopendin 2 (peptide, whole-body centipede). | [15,29,30,31,32] |
Antioxidant | Compounds scavenge free radicals, chelate Cu2⁺, and inhibit LDL oxidation. | Radical scavenging, metal ion chelation, antioxidant assays. | Compound 1: 3,8-dihydroxyquinoline (alkaloid, whole-body centipede). Compound 2: 2,4-di-tert-butylphenol (phenolic compound, whole-body centipede). Compound 3: 2,8-dihydroxy-3,4-dimethoxyquinoline (alkaloid, whole-body centipede). | [33] |
Antithrombotic | Inhibits thrombin, FXa, and platelet activation; reduces thrombus formation in vivo. | Coagulation factor inhibition, platelet signaling disruption. | TNGYT (peptide, centipede venom). Compound 1 (acyclated polyamines, whole-body centipede). Compound 2 (sulfated analogue of jineol, whole-body centipede). Compound 3 (quinolone alkaloid, whole-body centipede). Compound 4 (indole acetic acid, whole-body centipede). Tri-peptide labeled SQL (peptide, whole-body centipede). | [34,35,36] |
Antitumor | Induces apoptosis, modulates immunity, suppresses angiogenesis, reduces tumor burden in models. | Cell cycle arrest, TRAIL pathway, SPPC-mediated immune shift. | Scolopendrasin VII (peptide, centipede venom). Compound 1–2 (isoquinolone alkaloids, whole-body centipede). Scolopentide (peptide, whole-body centipede). Polysaccharide–protein complex (compound, whole-body centipede). Ethanolc extracts, and dried powder of whole-body centipede. | [1,37,38,39,40,41,42] |
Anti-Fibrotic | Suppresses fibrosis markers (collagen I, fibronectin, α-SMA) in renal cell models. | Inhibition of fibrotic protein expression. | Scolopenolines A-L (alkaloids, whole-body centipede). | [43] |
Neuroprotective | Inhibits AChE, chelates Cu2+, reduces neuroinflammation, preserves neuronal viability in vivo. | AChE inhibition, anti-inflammatory, antioxidative, neuroprotection. | Water extract of whole-body centipede. | [44,45] |
CPG | Specific Conditions | Level of Evidence | Monotherapy or Combined Therapy | Comparison | Details | Origin of Primary Study |
---|---|---|---|---|---|---|
Recommendations on herbal decoction including S. subspinipes | ||||||
Knee Osteoarthritis [46] | Liver-kidney deficiency syndrome | B/Low | Monotherapy | Placebo | Yongbyeol capsule includes potentially toxic herbs like centipede (S. subspinipes). Caution regarding adverse effects is necessary, and safety should be monitored through clinical pathology testing with long-term use. | China (1) |
Migraine [47] | B/Moderate | Monotherapy | Usual care (Flunarizine) | Herbal medicine may be more effective than conventional medication (Flunarizine) for symptom improvement in migraine patients. | China (1) | |
Usual care (pharmacological interventions) | Herbal treatment with Tonggyu-Hwalhyeol-Tang modifications (which include S. subspinipes) can reduce migraine symptoms, attack frequency, and duration compared to standard pharmacological care. | China (1) | ||||
Dizziness (vertigo) [48] | Vertebrobasilar insufficiency-associated vertigo | C/Low | Combined therapy | Usual care (nimodipine) | Combined therapy with herbal medicine and standard anti-vertigo medications (vascular/circulatory enhancers) can be considered over medication alone. | China (1) |
(Banxia-Baizhu-Tianma decoction modified using 2 pcs of dried S. subspinipes.) | ||||||
Meniere’s disease | B/Moderate | Combined therapy | Usual care (anti-vertigo medication) | Combined therapy with herbal medicine and standard anti-vertigo medication is recommended over anti-vertigo medication alone. | China (1) | |
Jingxuan decoction modified with 6 g of S. subspinipes. | ||||||
Gastric cancer [49] | Herbal medicine combined with adjuvant chemotherapy | B/Moderate | Combined therapy | Chemotherapy | For patients undergoing radical gastrectomy followed by adjuvant chemotherapy, combined treatment with herbal medicine containing S. subspinipes may enhance chemotherapy effectiveness and should be considered. | China (1) |
Autism [50] | Hyperactivity, tic disorder | GPP/CTB | Combined therapy | Behavioral/educational therapy | Based on expert consensus, the addition of Chaihu-Longgu-Muli decoction is recommended for symptom improvement in children with autism spectrum disorder presenting as liver qi stagnation syndrome. In cases of hyperactivity or tic disorders, additionally include “... S. subspinipes (5 g) … [50]” | China (1) |
Recommendations on S. subspinipes pharmacopuncture | ||||||
Carpal Tunnel Syndrome [51] | C/Very low | Combined therapy | Electroacupuncture | Clinical considerations: Based on the literature, pharmacopuncture for peripheral nerve conditions commonly uses “… S. subspinipes pharmacopuncture … based on patient status. … Allergy skin tests should precede bee venom or centipede pharmacopuncture. Location: Neiguan (PC6) and Daling (PC7) points, and electroacupuncture may be administered concurrently [51]”. | Korea (1) | |
Shoulder Pain [52] | Extreme pain | C/Low | Monotherapy | Acupuncture | Pharmacopuncture using S. subspinipes “… may be considered for adult patients whose primary symptom is shoulder pain [52]”. | Korea (1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-S.; Lee, Y.J.; Ha, I.-H. Therapeutic Potential of Scolopendra subspinipes: A Comprehensive Scoping Review of Its Bioactive Compounds, Preclinical Pharmacology, and Clinical Applications. Toxins 2025, 17, 229. https://doi.org/10.3390/toxins17050229
Lee Y-S, Lee YJ, Ha I-H. Therapeutic Potential of Scolopendra subspinipes: A Comprehensive Scoping Review of Its Bioactive Compounds, Preclinical Pharmacology, and Clinical Applications. Toxins. 2025; 17(5):229. https://doi.org/10.3390/toxins17050229
Chicago/Turabian StyleLee, Ye-Seul, Yoon Jae Lee, and In-Hyuk Ha. 2025. "Therapeutic Potential of Scolopendra subspinipes: A Comprehensive Scoping Review of Its Bioactive Compounds, Preclinical Pharmacology, and Clinical Applications" Toxins 17, no. 5: 229. https://doi.org/10.3390/toxins17050229
APA StyleLee, Y.-S., Lee, Y. J., & Ha, I.-H. (2025). Therapeutic Potential of Scolopendra subspinipes: A Comprehensive Scoping Review of Its Bioactive Compounds, Preclinical Pharmacology, and Clinical Applications. Toxins, 17(5), 229. https://doi.org/10.3390/toxins17050229