Reviewing Evidence for Disturbance to Coral Reefs Increasing the Risk of Ciguatera
Abstract
:1. Introduction
- Increase cell numbers (a bloom) of resident CTX-producing Gambierdiscus, and/or,
- Increase cellular production of CTX in resident Gambierdiscus species or strains and/or,
- Shift the dominance of the species/strains of resident Gambierdiscus from low CTX-producing to higher CTX-producing populations (super-bug hypothesis).
- 4.
- Behavioural changes in consumer species that ingest Gambierdiscus that increase their risk of predation and therefore increase the probability that CTX is transferred to higher trophic level fish more often consumed by people, and/or,
- 5.
- Alter the diet of herbivorous or carnivorous fishes that increases the flux of CTX transferred to higher trophic levels, and/or,
- 6.
- Changes in abundance and/or size of reef fishes that alter the dynamics of reef food chains and the flux of CTX through them to human consumers. This could occur through natural processes such as variation in fish recruitment, and/or depletion of stocks from harvesting of marine resources.
2. Examination of the Six Potential Mechanisms to Increase Ciguatera Risk from Disturbance to Coral Reefs
2.1. Increase Cell Numbers (A Bloom) of Resident CTX-Producing Gambierdiscus
2.2. Increase Cellular Production of CTX in Resident Gambierdiscus Species or Strains
2.3. Shift the Dominance of the Species/Strains of Resident Gambierdiscus from Low CTX-Producing to Higher CTX-Producing Populations (Super-Bug Hypothesis)
2.4. Behavioural Changes in Consumer Species That Ingest Gambierdiscus That Increase Their Risk of Predation and Therefore Increase the Probability That CTX Is Transferred to Higher Trophic Level Fish More Often Consumed by People
2.5. Change in the Diet of Herbivorous or Carnivorous Fishes That Increases the Flux of CTX Transferred to Higher Trophic Levels
2.6. Changes in Abundance and/or Size of Reef Fishes That Alter the Dynamics of Reef Food Chains and the Flux of CTX Through Them to Human Consumers: This Could Occur Through Natural Processes Such as Variation in Fish Recruitment and/or Depletion of Stocks from Harvesting of Marine Resources
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gillespie, N.C.; Lewis, R.J.; Pearn, J.H.; Bourke, A.T.C.; Holmes, M.J.; Bourke, J.B.; Shields, W.J. Ciguatera in Australia: Occurrence, clinical features, pathophysiology and management. Med. J. Aust. 1986, 145, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.J.; Holmes, M.J. Origin and transfer of toxins involved in ciguatera. Comp. Biochem. Physiol. 1993, 106C, 615–628. [Google Scholar] [CrossRef]
- FAO; WHO. Report of the Expert Meeting on Ciguatera Poisoning: Rome, 19–23 November 2018; Food Safety and Quality No. 9; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2020; Available online: https://books.google.com.sg/books?hl=zh-TW&lr=&id=HhvtDwAAQBAJ&oi=fnd&pg=PR6&dq=10.4060/ca8817en&ots=UUfascmP-s&sig=UbOO36DHmBc8aCkBNQpXUxfuHdk#v=onepage&q=10.4060%2Fca8817en&f=false (accessed on 27 May 2024).
- Holmes, M.J.; Venables, B.; Lewis, R.J. Critical review and conceptual and quantitative models for the transfer and depuration of ciguatoxins in fishes. Toxins 2021, 13, 515. [Google Scholar] [CrossRef] [PubMed]
- Holmes, M.J.; Lewis, R.J. Origin of ciguateric fish: Quantitative modelling of the flow of ciguatoxin through a marine food chain. Toxins 2022, 14, 534. [Google Scholar] [CrossRef] [PubMed]
- Holmes, M.J.; Lewis, R.J. Model of the origin of a ciguatoxic grouper (Plectropomus leopardus). Toxins 2023, 15, 230. [Google Scholar] [CrossRef]
- Parsons, M.L.; Richlen, M.L.; Smith, T.B.; Anderson, D.M.; Abram, A.L.; Erdner, D.L.; Robertson, A. CiguaMOD I: A conceptual model of ciguatoxin loading in the Greater Caribbean Region. Harmful Algae 2024, 131, 102561. [Google Scholar] [CrossRef]
- Clausing, R.J.; Gharbia, H.B.; Sdiri, K.; Sibat, M.; Rañada-Mestizo, M.L.; Lavenu, L.; Hess, P.; Chinain, M.; Bottein, M.-Y.D. Tissue distribution and metabolization of ciguatoxins in an herbivorous fish following experimental dietary exposure to Gambierdiscus polynesiensis. Mar. Drugs 2024, 22, 14. [Google Scholar] [CrossRef]
- Murata, M.; Legrand, A.-M.; Ishibashi, Y.; Fukui, M.; Yasumoto, T. Structures and Configurations of Ciguatoxin from the Moray Eel Gymnothorax javanicus and Its Likely Precursor from the Dinoflagellate Gambierdiscus toxicus. J. Am. Chem. Soc. 1990, 112, 4380–4386. [Google Scholar] [CrossRef]
- Satake, M.; Murata, M.; Yasumoto, T. The structure of CTX3C, a ciguatoxin congener isolated from Gambierdiscus toxicus. Tetrahedron Lett. 1993, 34, 1975–1978. [Google Scholar] [CrossRef]
- Oshiro, N.; Nagasawa, H.; Watanabe, M.; Nishimura, M.; Kuniyoshi, K.; Kobayashi, K.; Sugita-Konishi, Y.; Asakura, H.; Tachihara, K.; Yasumoto, T. An Extensive Survey of Ciguatoxins on Grouper Variola louti from the Ryukyu Islands, Japan, Using Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS). J. Mar. Sci. Eng. 2022, 10, 423. [Google Scholar] [CrossRef]
- Oshiro, N.; Nagasawa, H.; Nishimura, M.; Kuniyoshi, K.; Kobayashi, N.; Sugita-Konishi, Y.; Ikehara, T.; Tachihara, K.; Yasumoto, T. Analytical Studies on Ciguateric Fish in Okinawa, Japan (II): The Grouper Variola albimarginata. J. Mar. Sci. Eng. 2023, 11, 242. [Google Scholar] [CrossRef]
- Lehane, L.; Lewis, R.J. Ciguatera: Recent advances but the risk remains. Int. J. Food Microbiol. 2000, 61, 91–125. [Google Scholar] [CrossRef]
- Lewis, R.J.; Vernoux, J.-P.; Brereton, I.M. Structure of Caribbean ciguatoxin isolated from Caranx latus. J. Am. Chem. Soc. 1998, 120, 5914–5920. [Google Scholar] [CrossRef]
- Hamilton, B.; Hurbungs, M.; Vernoux, J.P.; Jones, A.; Lewis, R.J. Isolation and characterisation of Indian Ocean ciguatoxin. Toxicon 2002, 40, 685–693. [Google Scholar] [CrossRef]
- Mudge, E.M.; Miles, C.O.; Ivanova, L.; Uhlig, S.; James, K.S.; Erdner, D.L.; Fæste, C.K.; McCarron, P.; Robertson, A. Algal ciguatoxin identified as source of ciguatera poisoning in the Caribbean. Chemosphere 2023, 330, 138659. [Google Scholar] [CrossRef] [PubMed]
- Mudge, E.M.; Robertson, A.; Uhlig, S.; McCarron, P.; Miles, C.O. 3-epimers of 1 Caribbean ciguatoxins in fish and algae. Toxicon 2023, 237, 107536. [Google Scholar] [CrossRef] [PubMed]
- Pottier, I.; Lewis, R.J.; Vernoux, J.-P. Ciguatera Fish Poisoning in the Caribbean Sea and Atlantic Ocean: Reconciling the Multiplicity of Ciguatoxins and Analytical Chemistry Approach for Public Health Safety. Toxins 2023, 15, 453. [Google Scholar] [CrossRef]
- Estevez, P.; Oses-Prieto, J.; Castro, D.; Penin, A.; Burlingame, A.; Gago-Martinez, A. First detection of algal Caribbean ciguatoxin in Amberjack causing ciguatera poisoning in the Canary Islands (Spain). Toxins 2024, 16, 189. [Google Scholar] [CrossRef]
- Miles, C.O.; Burton, I.W.; Lewis, N.I.; Robertson, A.; Giddings, S.D.; McCarron, P.; Mudge, E.M. Isolation of Caribbean Ciguatoxin-5 (C-CTX5) and confirmation of its structure by NMR spectroscopy. Tetrahedron 2024, 162, 134115. [Google Scholar] [CrossRef]
- Halstead, B.W.; Bunker, N.C. A survey of the poisonous fishes of Johnston Island. Zoologica 1954, 39, 61–77. [Google Scholar] [CrossRef]
- Halstead, B.W.; Schall, D.W. A report of the poisonous fishes of the Line Islands. Acta Trop. 1958, 15, 193–233. [Google Scholar] [PubMed]
- Randall, J.E. A review of ciguatera, tropical fish poisoning, with a tentative explanation of its cause. Bull. Mar. Sci. 1958, 8, 236–267. [Google Scholar]
- Cooper, M.J. Ciguatera and other marine poisoning in the Gilbert Islands. Pac. Sci. 1964, 4, 411–440. [Google Scholar]
- Helfrich, P.; Piyakarnchana, T.; Mikes, P.S. Ciguatera fish poisoning. I. The ecology of ciguateric reef fishes in the Line Islands. Occas. Pap. Bernice P Bish. Mus. 1968, XXIII, 305–369. [Google Scholar]
- Bagnis, R. Naissance et développment d’une flambée de ciguatera dans un atoll des Tuamotu. Rev. Corps Santé 1969, 10, 783–795. [Google Scholar]
- Bagnis, R. Natural versus anthropogenic disturbances to coral reefs: Comparison in epidemiological patterns of ciguatera. Mem. Qld. Mus. 1994, 34, 455–460. [Google Scholar]
- Banner, A.H. Ciguatera: A Disease from Coral Reef Fish. In Biology and Geology of Coral Reefs; Jones, A.O., Endean, R., Eds.; Academic Press: London, UK, 1976; Volume 3, pp. 177–212. [Google Scholar]
- Bagnis, R.; Bennett, J.; Barsinas, M.; Drollet, J.H.; Jacquet, G.; Legrand, A.M.; Cruchet, P.H.; Pascal, H. Correlation between Ciguateric Fish and Damage to Reefs in the Gambier Islands (French Polynesia). In Proceedings of the 6th International Coral Reef Symposium Executive Committee, Townsville, Australia, 8–12 August 1988; Volume 2, pp. 195–200. [Google Scholar]
- Ruff, T. Ciguatera in the Pacific: A link with military activities. Lancet 1989, 333, 201–205. [Google Scholar] [CrossRef]
- Rongo, T.; van Woesik, R. Ciguatera poisoning in Rarotonga, southern Cook Islands. Harmful Algae 2011, 10, 345–355. [Google Scholar] [CrossRef]
- Rongo, T.; van Woesik, R. The effects of natural disturbances, reef state, and herbivorous fish densities on ciguatera poisoning in Rarotonga, southern Cook Islands. Toxicon 2013, 64, 87–95. [Google Scholar] [CrossRef]
- Gingold, D.B.; Strickland, M.J.; Hess, J.J. Ciguatera Fish Poisoning and Climate Change: Analysis of National Poison Center Data in the United States, 2001–2011. Environ. Health Perspect. 2014, 122, 580–586. [Google Scholar] [CrossRef]
- Rarai, A.; Webber, E.; Ruben, J.; Parsons, M. Indigenous knowledge with science forms an early warning system for ciguatera fish poisoning outbreak in Vanuatu. Commun. Earth Environ. 2024, 5, 761. [Google Scholar] [CrossRef]
- Lewis, N.D. Epidemiology and impact of ciguatera in the Pacific—A review. Mar. Fish. Rev. 1986, 48, 6–13. [Google Scholar]
- Banner, A.H. The biological origin and transmission of ciguatoxin. In Bioactive Compounds from the Sea; Humm, H.J., Lane, C.E., Eds.; Marcel Dekker: New York, NY, USA, 1974; pp. 15–36. [Google Scholar]
- Belliveau, S.A.; Paul, V.J. Effects of herbivory and nutrients on the early colonization of crustose coralline and fleshy algae. Mar. Ecol. Prog. Ser. 2002, 232, 105–114. [Google Scholar] [CrossRef]
- Hughes, T.P.; Rodrigues, M.J.; Bellwood, D.R.; Ceccarelli, D.; Hoegh-Guldberg, O.; McCook, L.; Moltschaniwsky, N.; Pratchett, M.S.; Steneck, R.S.; Willis, B. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr. Biol. 2007, 17, 360–365. [Google Scholar] [CrossRef]
- Mellin, C.; McNeil, M.A.; Cheal, A.J.; Emslie, M.J.; Caley, M.J. Marine protected areas increase resilience among coral reef communities. Ecol. Lett. 2016, 19, 629–637. [Google Scholar] [CrossRef]
- Stuart-Smith, R.D.; Brown, C.J.; Ceccarelli, D.M.; Edgar, G.J. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 2018, 560, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Bellwood, D.R.; Pratchett, M.S.; Morrison, T.H.; Gurney, G.G.; Hughes, T.P.; Álvarez-Romero, J.G.; Day, J.C.; Grantham, R.; Grech, A.; Hoey, A.S.; et al. Coral reef conservation in the Anthropocene: Confronting spatial mismatches and prioritizing functions. Biol. Conserv. 2019, 236, 604–615. [Google Scholar] [CrossRef]
- Morais, R.A.; Depczynski, M.; Fulton, C.; Marnane, M.; Narvaez, P.; Huertas, V.; Brandl, S.J.; Bellwood, D.R. Severe coral loss shifts energetic dynamics on a coral reef. Funct. Ecol. 2020, 34, 1507–1518. [Google Scholar] [CrossRef]
- Crisp, S.K.; Tebbett, S.B.; Bellwood, D.R. A critical evaluation of benthic phase shift studies on coral reefs. Mar. Environ. Res. 2022, 178, 105667. [Google Scholar] [CrossRef]
- Elma, E.; Gullström, M.; Yahya, S.A.S.; Jouffray, J.-B.; East, H.K.; Nyström, M. Post-bleaching alterations in coral reef communities. Mar. Poll. Bull. 2023, 186, 114479. [Google Scholar] [CrossRef]
- Mills, M.S.; Ungermann, M.; Rigot, G.; den Haan, J.; Leon, J.X.; Schils, T. Coral reefs in transition: Temporal photoquadrat analyses and validation of underwater hyperspectral imaging for resource-efficient monitoring in Guam. PLoS ONE 2024, 19, e0299523. [Google Scholar] [CrossRef] [PubMed]
- Kaly, U.L.; Jones, G.P. Test of the effect of disturbance on ciguatera in Tuvalu. Mem. Qld. Mus. 1994, 34, 523–532. [Google Scholar]
- Lewis, R.J.; Sellin, M.; Gillespie, N.C.; Holmes, M.J.; Keys, A.; Street, R.; Smythe, H.; Thaggard, H.; Bryce, S. Ciguatera and herbivores: Uptake and accumulation of ciguatoxins in Ctenochaetus striatus on the Great Barrier Reef. Mem. Qld. Mus. 1994, 34, 565–570. [Google Scholar]
- Diaz-Pulido, G.; McCook, L.J. The fate of bleached corals: Patterns and dynamics of algal recruitment. Mar. Ecol. Prog. Ser. 2002, 232, 115–128. [Google Scholar] [CrossRef]
- Doropoulos, C.; Roff, G.; Bozec, Y.-M.; Zupan, M.; Werminghausen, J.; Mumby, P.J. Characterizing the ecological trade-offs throughout the early ontogeny of coral recruitment. Ecol. Monogr. 2016, 86, 20–44. [Google Scholar] [CrossRef]
- Wolfe, K.; Kenyon, T.M.; Mumby, P.J. The biology and ecology of coral rubble and implications for the future of coral reefs. Coral Reefs 2021, 40, 1769–1806. [Google Scholar] [CrossRef]
- Victoria-Salazar, I.; Ruiz-Zárate, M.Á.; Vega-Zepeda, A.; Bahena-Basave, H. Benthic successional dynamics on settlement substrate in coral reefs lagoons. Mar. Biol. 2023, 170, 57. [Google Scholar] [CrossRef]
- Tebbett, S.B.; Connolly, S.R.; Bellwood, D.R. Benthic composition changes on coral reefs at global scales. Nat. Ecol. Evol. 2023, 7, 71–81. [Google Scholar] [CrossRef]
- Richards, Z.T.; Haines, L.; Ross, C.; Preston, S.; Matthews, T.; Terriaca, A.; Black, E.; Lewis, Y.; Mannolini, J.; Dean, P.; et al. Deoxygenation following coral spawning and low-level thermal stress trigger mass coral mortality at Coral Bay, Ningaloo Reef. Coral Reefs 2024, 43, 443–453. [Google Scholar] [CrossRef]
- Tester, P.A.; Kibler, S.R.; Holland, W.C.; Usup, G.; Vandersea, M.W.; Leaw, C.P.; Teen, L.P.; Larsen, J.; Mohammad-Noor, N.; Faust, M.A.; et al. Sampling harmful benthic dinoflagellates: Comparison of artificial and natural substrate methods. Harmful Algae 2014, 39, 8–25. [Google Scholar] [CrossRef]
- Tester, P.A.; Litaker, R.W.; Soler-Onís, E.; Fernández-Zabala, J.; Berdalet, E. Using artificial substrates to quantify Gambierdiscus and other toxic benthic dinoflagellates for monitoring purposes. Harmful Algae 2022, 120, 102351. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.M.; Lobel, P.S. The continuing enigma of ciguatera. Biol. Bull. 1987, 172, 89–107. [Google Scholar] [CrossRef]
- Cruz-Rivera, E.; Villareal, T.A. Macroalgal palatability and the flux of ciguatera toxins through marine food webs. Harmful Algae 2006, 5, 497–525. [Google Scholar] [CrossRef]
- Parsons, M.L.; Richlen, M.L.; Smith, T.B.; Solow, A.R.; Anderson, D.M. Evaluation of 24-h screen deployments as a standardized platform to monitor Gambierdiscus populations in the Florida Keys and U.S. Virgin Islands. Harmful Algae 2021, 103, 101998. [Google Scholar] [CrossRef]
- Bellwood, D.R.; Hughes, T.P.; Hoey, A.S. Sleeping functional group drives coral-reef recovery. Curr. Biol. 2006, 16, 2434–2439. [Google Scholar] [CrossRef] [PubMed]
- Ledlie, M.H.; Graham, N.A.J.; Bythell, J.C.; Wilson, S.K.; Jennings, S.; Polunin, N.V.C.; Hardcastle, J. Phase shifts and the role of herbivory in the resilience of coral reefs. Coral Reefs 2007, 26, 641–653. [Google Scholar] [CrossRef]
- Morillo-Velarde, P.S.; Briones-Fourzán, P.; Álvarez-Filip, L.; Aguíñiga-García, S.; Sánchez-González, A.; Lozano-Álvarez, E. Habitat degradation alters trophic pathways but not food chain length on shallow Caribbean coral reefs. Sci. Rep. 2018, 8, 4109. [Google Scholar] [CrossRef]
- Tebbett, S.B.; Bennett, S.; Bellwood, D.R. A functional perspective on the meaning of the term ‘herbivore’: Patterns versus processes in coral reef fishes. Coral Reefs 2023, 43, 219–232. [Google Scholar] [CrossRef]
- Tebbett, S.B.; Crisp, S.K.; Evans, R.C.; Fulton, C.J.; Pessarrodona, A.; Wernberg, T.; Wilson, S.K.; Bellwood, D.R. On the challenges of identifying benthic dominance on Anthropocene coral reefs. BioScience 2023, 73, 220–228. [Google Scholar] [CrossRef]
- Bellwood, D.R.; Brandl, S.J.; McWilliam, M.; Streit, R.P.; Yan, H.F.; Tebbett, S.B. Studying functions on coral reefs: Past perspectives, current conundrums, and future potential. Coral Reefs 2024, 43, 281–297. [Google Scholar] [CrossRef]
- Edmunds, P.J. Decadal-scale time series highlight the role of chronic disturbances in driving ecosystem collapse in the Anthropocene. Ecology 2024, 105, e4360. [Google Scholar] [CrossRef]
- Parsons, M.L.; Settlemier, C.J.; Bienfang, P.K. A simple model capable of simulating the population dynamics of Gambierdiscus, the benthic dinoflagellate responsible for ciguatera fish poisoning. Harmful Algae 2010, 10, 71–80. [Google Scholar] [CrossRef]
- Loeffler, C.R.; Richlen, M.L.; Brandt, M.E.; Smith, T.B. Effects of grazing, nutrients, and depth on the ciguatera-causing dinoflagellate Gambierdiscus in the US Virgin Islands. Mar. Ecol. Prog. Ser. 2015, 531, 91–104. [Google Scholar] [CrossRef]
- Kassim, N.S.; Lee, L.K.; Hii, K.S.; Azmi, N.F.M.; Baharudin, S.N.; Liu, M.; Gu, H.; Lim, P.T.; Leaw, C.P. Molecular diversity of benthic harmful dinoflagellates on a tropical reef: Comparing natural and artificial substrate sampling methods using DNA metabarcoding and morphological analysis. Harmful Algae 2025, 142, 102795. [Google Scholar] [CrossRef]
- Mangialajoa, L.; Fricke, A.; Perez-Gutierreza, G.; Catania, D.; Jauzeina, C.; Lemeea, R. Benthic dinoflagellate integrator (BEDI): A new method for the quantification of benthic harmful algal blooms. Harmful Algae 2017, 64, 1–10. [Google Scholar] [CrossRef]
- Tebbett, S.B.; Emslie, M.J.; Jonker, M.J.; Ling, S.D.; Pratchett, M.S.; Siqueira, A.C.; Thompson, A.A.; Yan, H.F.; Bellwood, D.R. Epilithic algal composition and the functioning of Anthropocene reefs. Mar. Pollut. Bull. 2025, 210, 117332. [Google Scholar] [CrossRef] [PubMed]
- Radford, B.; Puotinen, M.; Sahin, D.; Boutros, N.; Wyatt, M.; Gilmour, J. A remote sensing model for coral recruitment habitat. Remote Sens. Environ. 2024, 311, 114231. [Google Scholar] [CrossRef]
- Waterhouse, J.; Schaffelke, B.; Bartley, R.; Eberhard, R.; Brodie, J.; Star, M.; Thorburn, P.; Rolfe, J.; Ronan, M.; Taylor, B.; et al. Scientific Consensus Statement: Land Use Impacts on Great Barrier Reef Water Quality and Ecosystem Condition; Queensland Government: Brisbane, Australia, 2017. Available online: https://www.reefplan.qld.gov.au/__data/assets/pdf_file/0029/45992/2017-scientific-consensus-statement-summary.pdf (accessed on 28 May 2024).
- Bozec, Y.-M.; Hock, K.; Mason, R.A.B.; Baird, M.E.; Castro-Sanguino, C.; Condie, S.A.; Puotinen, M.; Thompson, A.; Mumby, P.J. Cumulative impacts across Australia’s Great Barrier Reef: A mechanistic evaluation. Ecol. Monogr. 2022, 92, e01494. [Google Scholar] [CrossRef]
- Kopecky, K.L.; Holbrook, S.J.; Partlow, E.; Cunningham, M.; Schmitt, R.J. Changing disturbance regimes, material legacies, and stabilizing feedbacks: Dead coral skeletons impair key recovery processes following coral bleaching. Glob. Change Biol. 2024, 30, e17504. [Google Scholar] [CrossRef]
- Pratchett, M.S.; Hoey, A.S.; Wilson, S.K.; Messmer, V.; Graham, N.A.J. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 2011, 3, 424–452. [Google Scholar] [CrossRef]
- Hahn, S.T.; Capra, M.F. The cyanobacterium Oscillatoria erythraea—A potential source of the toxin in the ciguatera food-chain. Food Addit. Contam. 1992, 9, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Laurent, D.; Kerbrat, A.-S.; Darius, H.T.; Cirarad, E.; Golubic, S.; Benoit, E.; Sauviat, M.-P.; Chinain, M.; Molgo, J.; Pauillac, S. Are cyanobacteria involved in ciguatera fish poisoning-like outbreaks in New Caledonia. Harmful Algae 2008, 7, 827–838. [Google Scholar] [CrossRef]
- Kerbrat, A.-S.; Darius, H.T.; Pauillac, S.; Chinain, M.; Laurent, D. Detection of ciguatoxin-like and paralysing toxins in Trichodesmium spp. from New Caledonia lagoon. Mar. Pol. Bull. 2010, 61, 360–366. [Google Scholar] [CrossRef]
- Yasumoto, T.; Nakajima, I.; Bagnis, R.; Adachi, R. Finding of a dinoflagellate as a likely culprit for ciguatera. Bull. Jpn. Soc. Sci. Fish. 1977, 43, 1021–1026. [Google Scholar] [CrossRef]
- Yasumoto, T.; Inoue, A.; Bagnis, R.; Garcon, M. Ecological survey on a dinoflagellate possibly responsible for the induction of ciguatera. Bull. Jpn. Soc. Sci. Fish. 1979, 45, 395–399. [Google Scholar] [CrossRef]
- Yasumoto, T.; Inoue, A.; Ochi, T.; Fujimoto, K.; Oshima, Y.; Fukuyo, Y.; Adachi, R.; Bagnis, R. Environmental studies on a toxic dinoflagellate responsible for ciguatera. Bull. Jpn. Soc. Sci. Fish. 1980, 46, 1397–1404. [Google Scholar] [CrossRef]
- Hurtel, J.M.; Chanteau, A.U.; Drollet, J.H.; Bagnis, R. Culture en milieu artificiel du dinoflagelle responsable de la ciguatera. Rev. Int. Océanogr. Méd. Tome 1979, 55, 29–32. [Google Scholar]
- Faust, M.A. Observation of sand-dwelling toxic dinoflagellates (Dinophyceae) from widely differing sites, including two new species. J. Phycol. 1995, 31, 996–1003. [Google Scholar] [CrossRef]
- Nguyen-Ngoc, L.; Larsen, J.; Doan-Nhu, H.; Nguyen, X.-V.; Chomérat, N.; Lundholm, N.; Phan-Tan, L.; Viet Dao, N.; Nguyen, N.-L.; Nguyen, H.-H.; et al. Gambierdiscus (gonyaulacales, dinophyceae) diversity in Vietnamese waters with description of G. vietnamensis sp. nov. J. Phycol. 2023, 59, 496–517. [Google Scholar] [CrossRef]
- Chinain, M.; Gatti, C.M.; Roué, M.; Darius, H.T. Ciguatera-Causing Dinoflagellates in the Genera Gambierdiscus and Fukuyoa: Distribution, Ecophysiology and Toxicology. In Dinoflagellates; Subba Rao, D.V., Ed.; Nova Science: New York, NY, USA, 2020; pp. 405–457. [Google Scholar]
- Chinain, M.; Gatti Howell, C.; Roué, M.; Ung, A.; Henry, K.; Revel, T.; Cruchet, P.; Viallon, J.; Darius, H.T. Ciguatera poisoning in French Polynesia: A review of the distribution and toxicity of Gambierdiscus spp., and related impacts on food web components and human health. Harmful Algae 2023, 129, 102525. [Google Scholar] [CrossRef]
- Murray, J.S.; Passfield, E.M.F.; Rhodes, L.L.; Puddick, J.; Finch, S.C.; Smith, K.F.; van Ginkel, R.; Mudge, E.M.; Nishimura, T.; Funaki, H.; et al. Targeted metabolite fingerprints of thirteen Gambierdiscus, five Coolia and two Fukuyoa species. Mar. Drugs 2024, 22, 119. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, N.C.; Lewis, R.J.; Burke, J.; Holmes, M. The Significance of the Absence of Ciguatoxin in a Wild Population of G. toxicus. In Proceedings of the Fifth International Coral Reef Congress, Tahiti, France, 27 May–1 June 1985; Gabrie, C., Salvat, B., Eds.; Antenne Museum-Ephe: Moorea, France, 1985; pp. 437–441. [Google Scholar]
- Holmes, M.J.; Lewis, R.J.; Poli, M.A.; Gillespie, N.C. Strain dependent production of ciguatoxin precursors (gambiertoxins) by Gambierdiscus toxicus (Dinophyceae) in culture. Toxicon 1991, 29, 761–775. [Google Scholar] [CrossRef] [PubMed]
- Chinain, M.; Faust, M.A.; Pauillac, S. Morphology and molecular analyses of three toxic species of Gambierdiscus (Dinophyceae): G. pacificus, sp. nov., G. australes, sp. nov., and G. polynesiensis, sp. nov. J. Phycol. 1999, 35, 1282–1296. [Google Scholar] [CrossRef]
- Anderson, D.M.; Alpermann, T.J.; Cembella, A.D.; Collos, Y.; Masseret, E.; Montresor, M. The globally distributed genus Alexandrium: Multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae 2012, 14, 10–35. [Google Scholar] [CrossRef]
- Clausing, R.J.; Annunziata, C.; Baker, G.; Lee, C.; Bittick, S.J.; Fong, P. Effects of sediment depth on algal turf height are mediated by interactions with fish herbivory on a fringing reef. Mar. Ecol. Prog. Ser. 2014, 517, 121–129. [Google Scholar] [CrossRef]
- Gordon, S.E.; Goatley, C.H.R.; Bellwood, D.R. Low-quality sediments deter grazing by the parrotfish Scarus rivulatus on inner-shelf reefs. Coral Reefs 2016, 35, 285–291. [Google Scholar] [CrossRef]
- Tebbett, S.B.; Goatley, C.H.R.; Bellwood, D.R. Fine sediments suppress detritivory on coral reefs. Mar. Poll. Bull. 2017, 114, 934–940. [Google Scholar] [CrossRef]
- Tebbett, S.B.; Goatley, C.H.R.; Bellwood, D.R. The effects of algal turf sediments and organic loads on feeding by coral reef surgeonfishes. PLoS ONE 2017, 12, e0169479. [Google Scholar] [CrossRef]
- Tebbett, S.B.; Goatley, C.H.R.; Bellwood, D.R. Algal turf sediments across the Great Barrier Reef: Putting coastal reefs in perspective. Mar. Poll. Bull. 2018, 137, 518–525. [Google Scholar] [CrossRef]
- Walker, T.A. Dependence of phytoplankton chlorophyll on bottom resuspension in Cleveland Bay, Northern Queensland. Aust. J. Mar. Freshw. Res. 1981, 32, 981–986. [Google Scholar] [CrossRef]
- Brodie, J.; Wolanski, E.; Lewis, S.; Bainbridge, Z. An assessment of residence times of land-sourced contaminants in the Great Barrier Reef lagoon and the implications for management and reef recovery. Mar. Poll. Bull. 2012, 65, 267–279. [Google Scholar] [CrossRef] [PubMed]
- Furnas, M.J.; Mitchell, A.W. Nutrient inputs into the central Great Barrier Reef (Australia) from subsurface intrusions of Coral Sea waters: A two-dimensional displacement model. Cont. Shelf Res. 1996, 16, 1127–1148. [Google Scholar] [CrossRef]
- Wooldridge, S.A.; Heron, S.F.; Brodie, J.E.; Done, T.J.; Masiri, I.; Hinrichs, S. Excess seawater nutrients, enlarged algal symbiont densities and bleaching sensitive reef locations: 2. A regional-scale predictive model for the Great Barrier Reef, Australia. Mar. Poll. Bull. 2017, 114, 343–354. [Google Scholar] [CrossRef]
- Baird, M.E.; Mongin, M.; Skerratt, J.; Margvelashvili, N.; Tickell, S.; Steven, A.D.L.; Robillot, C.; Ellis, R.; Waters, D.; Kaniewska, P.; et al. Impact of catchment-derived nutrients and sediments on marine water quality on the Great Barrier Reef: An application of the eReefs marine modelling system. Mar. Poll. Bull. 2021, 167, 112297. [Google Scholar] [CrossRef]
- Shibuno, T.; Hashimoto, K.; Abe, O.; Takada, Y. Short-term changes in the structure of a fish community following coral bleaching at Ishigaki Island, Japan. Galaxea 1999, 1, 51–58. [Google Scholar] [CrossRef]
- Cheal, A.J.; MacNeill, M.A.; Cripps, E.; Emslie, M.J.; Jonker, M.; Schaffelke, B.; Sweatman, H. Coral-macroalgal phase shifts or reef resilience: Links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef. Coral Reefs 2010, 29, 1005–1015. [Google Scholar] [CrossRef]
- Webley, J.; McInnes, K.; Teixeira, D.; Lawson, A.; Quinn, R. Statewide Recreational Fishing Survey 2013–2014. Queensland Government Report. 2015; p. 127. Available online: http://era.daf.qld.gov.au/id/eprint/6513/ (accessed on 28 May 2024).
- Pessarrodona, A.; Filbee-Dexter, K.; Wernberg, T. Recovery of algal turfs following removal. Mar. Environ. Res. 2023, 192, 106185. [Google Scholar] [CrossRef]
- Hughes, T. Phase shifts, and large-scale degradation of a Caribbean coral reef. Science 1994, 265, 1547–1551. [Google Scholar] [CrossRef]
- Mumby, P.J.; Hastings, A.; Edwards, H.J. Thresholds and the resilience of Caribbean coral reefs. Nature 2007, 450, 98–101. [Google Scholar] [CrossRef]
- Edwards, C.B.; Friedlander, A.M.; Green, A.G.; Hardt, M.J.; Sala, E.; Sweatman, H.P.; Williams, I.D.; Zgliczynski, B.; Sandin, S.A.; Smith, J.E. Global assessment of the status of coral reef herbivorous fishes: Evidence for fishing effects. Proc. R. Soc. B 2014, 281, 20131835. [Google Scholar] [CrossRef]
- Arias-González, J.E.; Fung, T.; Seymour, R.M.; Garza-Pérez, J.R.; Acosta-González, G.; Bozec, Y.-M.; Johnson, C.R. A coral-algal phase shift in Mesoamerica not driven by changes in herbivorous fish abundance. PLoS ONE 2017, 12, e0174855. [Google Scholar] [CrossRef] [PubMed]
- Bruno, J.F.; Sweatman, H.; Precht, W.F.; Selig, E.R.; Schutte, V.G.W. Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs. Ecology 2009, 90, 1478–1484. [Google Scholar] [CrossRef] [PubMed]
- Adam, T.C.; Schmitt, R.J.; Holbrook, S.J.; Brooks, A.J.; Edmunds, P.J.; Carpenter, R.C.; Bernardi, G. Herbivory, connectivity, and ecosystem resilience: Response of a coral reef to a large-scale perturbation. PLoS ONE 2011, 6, e23717. [Google Scholar] [CrossRef] [PubMed]
- Menge, B.A.; Gravem, S.A.; Richmond, E.; Noble, M.M. A unified meta-ecosystem dynamics model: Integrating herbivore-plant subwebs with the intermittent upwelling hypothesis. Ecosphere 2023, 14, e4531. [Google Scholar] [CrossRef]
- Bittick, S.J.; Fong, C.R.; Clausing, R.J.; Harvey, J.D.; Johnson, T.M.; Frymann, T.A.; Fong, P. Herbivory strength is similar or even greater in algal- compared to coral-dominated habitats on a recovering coral reef. Mar. Ecol. Prog. Ser. 2020, 634, 225–229. [Google Scholar] [CrossRef]
- Adam, T.C.; Holbrook, S.J.; Burkepile, D.E.; Speare, K.E.; Brooks, A.J.; Ladd, M.C.; Shantz, A.A.; Thurber, R.V.; Schmitt, R.J. Priority effects in coral–macroalgae interactions can drive alternate community paths in the absence of top-down control. Ecology 2022, 103, e3831. [Google Scholar] [CrossRef]
- Cline, T.J.; Allgeier, J.E. Fish community structure and dynamics are insufficient to mediate coral resilience. Nat. Ecol. Evol. 2022, 6, 1700–1709. [Google Scholar] [CrossRef]
- Cook, D.T.; Schmitt, R.J.; Holbrook, S.J.; Moeller, H.V. Modeling the effects of selectively fishing key functional groups of herbivores on coral resilience. Ecosphere 2024, 15, e4749. [Google Scholar] [CrossRef]
- Randazzo-Eisemann, Á.; Molina-Hernández, A.L.; Alvarez-Filip, L.; Garza-Pérez, J.R. Strong linkage between parrotfish functions and habitat characteristics. PLoS ONE 2024, 19, e0315179. [Google Scholar] [CrossRef]
- Xu, C.; Chen, W.; Hu, J. Deterministic and stochastic analysis of a coral reef ecosystem with grazed macroalgae. Int. J. Biomath. 2024, 2450039. [Google Scholar] [CrossRef]
- Sperr, A.E.; Doucette, G.J. Variation in growth rate and ciguatera toxin production among geographically distinct isolates of Gambierdiscus toxicus. In Harmful and Toxic Algal Blooms; Yasumoto, T., Oshima, Y., Fukuyo, Y., Eds.; Intergovernmental Oceanographic Commission—UNESCO: Paris, France, 1996; pp. 309–312. [Google Scholar]
- Lartigue, J.; Jester, E.L.E.; Dickey, R.W.; Villareal, T.A. Nitrogen source effects on the growth and toxicity of two strains of the ciguatera-causing dinoflagellate Gambierdiscus toxicus. Harmful Algae 2009, 8, 781–791. [Google Scholar] [CrossRef]
- Litaker, R.W.; Holland, W.C.; Hardison, D.H.; Pisapia, F.; Hess, P.; Kibler, S.R.; Tester, P.A. Ciguatoxicity of Gambierdiscus and Fukuyoa species from the Caribbean and Gulf of Mexico. PLoS ONE 2017, 12, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Vacarizas, J.; Benico, G.; Austero, N.; Azanza, R. Taxonomy and toxin production of Gambierdiscus carpenteri (Dinophyceae) in a tropical marine ecosystem: The first record from the Philippines. Mar. Pol. Bull. 2018, 137, 430–443. [Google Scholar] [CrossRef] [PubMed]
- Chinain, M.; Darius, H.T.; Ung, A.; Cruchet, P.; Wang, Z.; Ponton, D.; Laurent, D.; Pauillac, S. Growth and toxin production in the ciguatera-causing dinoflagellate Gambierdiscus polynesiensis (Dinophyceae) in culture. Toxicon 2010, 56, 739–750. [Google Scholar] [CrossRef]
- Darius, H.T.; Revel, T.; Viallon, J.; Sibat, M.; Cruchet, P.; Longo, S.; Hardison, D.R.; Holland, W.C.; Tester, P.A.; Litaker, R.W.; et al. Comparative study on the performance of three detection methods for the quantification of Pacific ciguatoxins in French Polynesian strains of Gambierdiscus polynesiensis. Toxins 2022, 20, 348. [Google Scholar] [CrossRef]
- Villareal, T.A.; Morton, S.L. Use of cell-specific PAM-fluorometry to characterize host shading in the epiphytic dinoflagellate Gambierdiscus toxicus. Mar. Ecol. 2002, 23, 127–140. [Google Scholar] [CrossRef]
- Tebbett, S.B.; Bellwood, D.R.; Bassett, T.; Cuttler, M.V.W.; Moustaka, M.; Wilson, S.K.; Yan, H.F.; Evans, R.D. The limited role of herbivorous fishes and turf-based trophic pathways in the functioning of turbid coral reefs. Rev. Fish Biol. Fish. 2024, 34, 439–460. [Google Scholar] [CrossRef]
- Darius, H.T.; Revel, T.; Cruchet, P.; Viallon, J.; Gatti, C.M.I.; Sibat, M.; Hess, P.; Chinain, M. Deep-water fish are potential vectors of ciguatera poisoning in the Gambier Islands, French Polynesia. Mar. Drugs 2021, 19, 644. [Google Scholar] [CrossRef]
- Wang, B.; Yao, M.; Zhou, J.; Tan, S.; Jin, H.; Zhang, F.; Mal, Y.L.; Wu, J.; Chan, L.L.; Cai, Z. Growth and toxin production of Gambierdiscus spp. can be regulated by quorum-sensing bacteria. Toxins 2018, 10, 257. [Google Scholar] [CrossRef]
- Price, D.C.; Farinholt, N.; Gates, C.; Shumaker, A.; Wagner, N.E.; Bienfang, P.; Bhattacharya, D. Analysis of Gambierdiscus transcriptome data supports ancient origins of mixotrophic pathways in dinoflagellates. Environ. Microbiol. 2016, 18, 4501–4510. [Google Scholar] [CrossRef]
- Faust, M.A. Mixotrophy in tropical benthic dinoflagellates. In Harmful Algae, Proceedings of the VIII International Conference on Harmful Algae, Vigo, Spain, 25–29 June 1997; Reguera, B., Blanco, J., Fernández, M.L., Wyatt, T., Eds.; Xunta de Galicia and International Oceanographic Commission of UNESCO: Santiago de Compostela, Spain, 1998; pp. 390–393. [Google Scholar]
- Selander, E.; Thor, P.; Toth, G.; Pavia, H. Copepods induce paralytic shellfish toxin production in marine dinoflagellates. Proc. R. Soc. B 2006, 273, 1673–1680. [Google Scholar] [CrossRef] [PubMed]
- Bergkvist, J.; Selander, E.; Pavia, H. Induction of toxin production in dinoflagellates: The grazer makes a difference. Oecologia 2008, 156, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Tammilehto, A.; Nielsen, T.G.; Krock, B.; Møller, E.F.; Lundholm, N. Induction of domoic acid production in the toxic diatom Pseudo-nitzschia seriata by calanoid copepods. Aquat. Toxicol. 2015, 159, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Senft-Batoh, C.D.; Dam, H.G.; Shumway, S.E.; Wikfors, G.H.; Schlichting, C.D. Influence of predator–prey evolutionary history, chemical alarm-cues, and feeding selection on induction of toxin production in a marine dinoflagellate. Limnol. Oceanogr. 2015, 60, 318–328. [Google Scholar] [CrossRef]
- Lundholm, N.; Krock, B.; John, U.; Skov, J.; Cheng, J.; Pančić, M.; Wohlrab, S.; Rigby, K.; Nielsen, T.G.; Selander, E.; et al. Induction of domoic acid production in diatoms—Types of grazers and diatoms are important. Harmful Algae 2018, 79, 64–73. [Google Scholar] [CrossRef]
- Park, G.; Norton, L.; Avery, D.; Dam, H.G. Grazers modify the dinoflagellate relationship between toxin production and cell growth. Harmful Algae 2023, 126, 102439. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, T.; Zhou, M.; Niu, B.; Li, Y. Exposure to the mixotrophic dinoflagellate Lepidodinium sp. and its cues increase toxin production of Pseudo-nitzschia multiseries. Sci. Total Environ. 2024, 914, 169812. [Google Scholar] [CrossRef]
- Karban, R. The ecology and evolution of induced resistance against herbivores. Funct. Ecol. 2011, 25, 339–347. [Google Scholar] [CrossRef]
- Gillespie, N.C.; Holmes, M.J.; Burke, J.B.; Doley, J. Distribution and periodicity of Gambierdiscus toxicus in Queensland, Australia. In Toxic Dinoflagellates; Anderson, D.M., White, A.W., Baden, D.G., Eds.; Elsevier: Oxford, UK, 1985; pp. 183–188. [Google Scholar]
- Holmes, M.; Lewis, R.J.; Sellin, M.; Street, R. The origin of ciguatera in Platypus Bay, Australia. Mem. Qld Mus. 1994, 34, 505–512. [Google Scholar]
- Legrand, A.-M. Ciguatera toxins: Origin, transfer through the food chain and toxicity to humans. In Harmful Algae; Reguera, B., Blanco, J., Fernández, M.L., Wyatt, T., Eds.; Xunta de Galicia and Intergovernmental Oceanographic Commission of UNESCO: Santiago de Compostela, Spain, 1998; pp. 39–43. [Google Scholar]
- Longo, S.; Sibat, M.; Viallon, J.; Darius, H.T.; Hess, P.; Chinain, M. Intraspecific variability in the toxin production and toxin profiles of in vitro cultures of Gambierdiscus polynesiensis (Dinophyceae) from French Polynesia. Toxins 2019, 11, 735. [Google Scholar] [CrossRef]
- Richlen, M.L.; Horn, K.; Uva, V.; Fachon, E.; Heidmann, S.L.; Smith, T.B.; Parsons, M.L.; Anderson, D.M. Gambierdiscus species diversity and community structure in St. Thomas, USVI and the Florida Keys, USA. Harmful Algae 2024, 131, 102562. [Google Scholar] [CrossRef]
- Rhodes, L.L.; Smith, K.F.; Murray, J.S.; Nishimura, T.; Finch, S.C. Ciguatera fish poisoning: The risk from an Aotearoa/New Zealand perspective. Toxins 2020, 12, 50. [Google Scholar] [CrossRef] [PubMed]
- Fraga, S.; Rodríguez, F.; Caillaud, A.; Diogène, J.; Raho, N.; Zapata, M. Gambierdiscus excentricus sp. nov. (Dinophyceae), a benthic toxic dinoflagellate from the Canary Islands (NE Atlantic Ocean). Harmful Algae 2011, 11, 10–22. [Google Scholar] [CrossRef]
- Pisapia, F.; Holland, W.C.; Hardison, D.R.; Litaker, R.W.; Fraga, S.; Nishimura, T.; Adachi, M.; Nguyen-Ngoc, L.; Sécheta, V.; Amzil, Z.; et al. Toxicity screening of 13 Gambierdiscus strains using neuro-2a and erythrocyte lysis bioassays. Harmful Algae 2017, 63, 173–183. [Google Scholar] [CrossRef]
- Robertson, A.; Richlen, M.L.; Erdner, D.; Smith, T.B.; Anderson, D.M.; Liefer, J.D.; Xu, Y.; McCarron, P.; Miles, C.O.; Parsons, M.L. Toxicity, chemistry, and implications of Gamberdiscus silvae: A ciguatoxin superbug in the Greater Caribbean Region. In 18th International Conference for Harmful Algae [Abstract Book]; Hess, P., Ed.; International Society for the Study of Harmful Algae: Nantes, France, 2018; p. 115. [Google Scholar]
- Rossignoli, A.E.; Tudó, A.; Bravo, I.; Díaz, P.A.; Diogène, J.; Riobó, P. Toxicity characterisation of Gambierdiscus species from the Canary Islands. Toxins 2020, 12, 134. [Google Scholar] [CrossRef] [PubMed]
- Gaiani, G.; Leonardo, S.; Tudó, À.; Toldrà, A.; Rey, M.; Andree, K.B.; Tsumuraya, T.; Hirama, M.; Diogène, J.; O’Sullivan, C.K.; et al. Rapid detection of ciguatoxins in Gambierdiscus and Fukuyoa with immunosensing tools. Ecotoxicol. Environ. Saf. 2020, 204, 111004. [Google Scholar] [CrossRef] [PubMed]
- Chateau-Degat, M.-L.; Chinain, M.; Cerf, N.; Gingras, S.; Hubert, B.; Dewailly, É. Seawater temperature, Gambierdiscus spp. variability and incidence of ciguatera in French Polynesia. Harmful Algae 2005, 4, 1053–1062. [Google Scholar] [CrossRef]
- Liefer, J.D.; Richlen, M.L.; Smith, T.B.; DeBose, J.L.; Xu, Y.; Anderson, D.M.; Robertson, A. Asynchrony of Gambierdiscus spp. abundance and toxicity in the U.S. Virgin Islands: Implications for monitoring and management of ciguatera. Toxins 2021, 13, 413. [Google Scholar] [CrossRef]
- Litaker, R.W.; Vandersea, M.W.; Faust, M.A.; Kibler, S.R.; Nau, A.W.; Holland, W.C.; Chinain, M.; Holmes, M.J.; Tester, P.A. Global distribution of ciguatera causing dinoflagellates in the genus Gambierdiscus. Toxicon 2010, 56, 711–730. [Google Scholar] [CrossRef]
- Kingsford, M.J. Spatial and temporal variation in predation on reef fishes by coral trout (Plectropomus leopardus, Serranidae). Coral Reefs 1992, 11, 193–198. [Google Scholar] [CrossRef]
- St John, J.; Russ, G.R.; Brown, I.W.; Squire, L.C. The diet of the large coral reef serranid Plectropomus leopardus in two fishing zones on the Great Barrier Reef, Australia. Fish. Bull. 2001, 99, 180–192. [Google Scholar]
- Matley, J.K.; Maes, G.E.; Devloo-Delva, F.; Huerlimann, R.; Chua, G.; Tobin, A.J.; Fisk, A.T.; Simpfendorfer, C.A.; Heupel, M.R. Integrating complementary methods to improve diet analysis in fishery-targeted species. Ecol. Evol. 2018, 8, 9503–9515. [Google Scholar] [CrossRef] [PubMed]
- Magnelia, S.J.; Kohler, C.C.; Tindall, D.R. Acanthurids do not avoid consuming cultured toxic dinoflagellates yet do not become ciguatoxic. Trans. Am. Fish. Soc. 1992, 121, 737–745. [Google Scholar] [CrossRef]
- Clausing, R.J.; Losen, B.; Oberhaensli, F.R.; Darius, H.T.; Sibat, M.; Hess, P.; Swarzenski, P.W.; Chinain, M.; Bottein, M.-Y.D. Experimental evidence of dietary ciguatoxin accumulation in an herbivorous coral reef fish. Aquat. Toxicol. 2018, 200, 257–265. [Google Scholar] [CrossRef]
- Darius, H.T.; Ponton, D.; Revel, T.; Cruchet, P.; Ung, A.; Tchou Fouc, M.; Chinain, M. Ciguatera risk assessment in two toxic sites of French Polynesia using the receptor-binding assay. Toxicon 2007, 50, 612–626. [Google Scholar] [CrossRef]
- FishBase. World Wide Web Electronic Publication, Version (02/2024). Froese, R.; Pauly, D., Eds.; 2024. Available online: https://www.fishbase.se/search.php (accessed on 31 May 2024).
- Bray, D.J. Introduction to Australia’s Fishes. In Fishes of Australia; Bray, D.J., Gomon, M.F., Eds.; Museums Victoria and OzFishNet: Melbourne, Australia, 2018; Available online: https://fishesofaustralia.net.au/ (accessed on 31 May 2024).
- Darias-Dágfeel, Y.; Sanchez-Henao, A.; Padilla, D.; Martín, M.V.; Ramos-Sosa, M.J.; Poquet, P.; Barreto, M.; Sergent, F.S.; Jerez, S.; Real, F. Effects on biochemical parameters and animal welfare of dusky grouper (Epinephelus marginatus, Lowe 1834) by feeding CTX toxic flesh. Animals 2024, 14, 1757. [Google Scholar] [CrossRef]
- Leigh, G.M.; Campbell, A.B.; Lunow, C.P.; O’Neill, M.F. Stock Assessment of the Queensland East Coast Common Coral Trout (Plectropomus leopardus) Fishery; Queensland Department of Agriculture, Fisheries and Forestry: Brisbane, Australia, 2014; p. 113. [Google Scholar]
- Fenner, P.J.; Lewis, R.J.; Williamson, J.A.; Williams, M.L. A Queensland family with ciguatera after eating coral trout. Med. J. Aust. 1997, 166, 473–475. [Google Scholar] [CrossRef]
- Greenwood, N.D.W.; Sweeting, C.J.; Polunin, N.V.C. Elucidating the trophodynamics of four coral reef fishes of the Solomon Islands using δ15N and δ13C. Coral Reefs 2010, 29, 785–792. [Google Scholar] [CrossRef]
- Bierwagen, S.L.; Pethybridge, H.; Heupel, M.R.; Chin, A.; Simpfendorfer, C.A. Trophic niches determined from fatty acid profiles of sympatric coral reef mesopredators. Mar. Ecol. Prog. Ser. 2019, 632, 159–174. [Google Scholar] [CrossRef]
- Skinner, C.; Newman, S.P.; Mill, A.C.; Newton, J.; Polunin, N.V.C. Prevalence of pelagic dependence among coral reef predators across an atoll seascape. J. Anim. Ecol. 2019, 88, 1564–1574. [Google Scholar] [CrossRef]
- Frisch, A.J.; Ireland, M.; Baker, R. Trophic ecology of large predatory reef fishes: Energy pathways, trophic level, and implications for fisheries in a changing climate. Mar. Biol. 2014, 161, 61–73. [Google Scholar] [CrossRef]
- Emslie, M.J.; Cheal, A.J.; Logan, M. The distribution and abundance of reef-associated predatory fishes on the Great Barrier Reef. Coral Reefs 2017, 36, 829–846. [Google Scholar] [CrossRef]
- Frisch, A.; van Herwerden, L. Field and experimental studies of hybridization between coral trouts, Plectropomus leopardus and Plectropomus maculatus (Serranidae), on the Great Barrier Reef, Australia. J. Fish Biol. 2006, 68, 1013–1025. [Google Scholar] [CrossRef]
- Van Noord, J.E.; Lewallen, E.A.; Pitman, R.L. Flyingfish feeding ecology in the eastern Pacific: Prey partitioning within a speciose epipelagic community. J. Fish Biol. 2013, 83, 326–342. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Li, J.; Wu, J.; Liu, X.; Lin, Y.; Deng, H.; Qin, X.; Wong, M.H.; Chan, L.L. The prevalence of marine lipophilic phycotoxins causes potential risks in a tropical small island developing State. Environ. Sci. Technol. 2024, 58, 9815–9827. [Google Scholar] [CrossRef] [PubMed]
- Skinner, C.; Gallimore, S.; Polunin, N.V.C.; Rushton, S.; Newman, S.P.; Desbiens, A.A.; Mill, A.C. Corresponding planktivore and predator spatial distributions in an oceanic coral reef system. Coral Reefs 2024, 43, 985–998. [Google Scholar] [CrossRef]
- Hempson, T.N.; Graham, N.A.J.; MacNeil, M.A.; Williamson, D.W.; Jones, G.P.; Almany, G.R. Coral reef mesopredators switch prey, shortening food chains, in response to habitat degradation. Ecol. Evol. 2017, 7, 2626–2635. [Google Scholar] [CrossRef]
- Hempson, T.N.; Graham, N.A.J.; MacNeil, M.A.; Bodin, N.; Wilson, S.K. Regime shifts shorten food chains for mesopredators with potential sublethal effects. Funct. Ecol. 2018, 32, 820–830. [Google Scholar] [CrossRef]
- Wilson, S.K.; Graham, N.A.J.; Pratchett, M.S.; Jones, G.P.; Polunin, N.V.C. Multiple disturbances and the global degradation of coral reefs: Are reef fishes at risk or resilient? Glob. Change Biol. 2006, 12, 2220–2234. [Google Scholar] [CrossRef]
- Graham, N.A.J.; Wilson, S.K.; Jennings, S.; Polunin, N.V.C.; Robinson, J.; Bijoux, J.P.; Daw, T.M. Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv. Biol. 2007, 21, 1291–1300. [Google Scholar] [CrossRef]
- Huang, M.; Wei, S.; Li, Q.; Gao, K.; Peng, Z.; Chen, Y.; Zhou, W.; Wei, F. Degradation of coral reefs altered the community trophic structure and reduced the shoaling size of fish. Front. Conserv. Sci. 2023, 4, 1229513. [Google Scholar] [CrossRef]
- Halstead, B.W.; Bunker, N.C. A survey of the poisonous fishes of the Phoenix Islands. Copeia 1954, 1954, 1–11. [Google Scholar] [CrossRef]
- Halstead, B.W. Poisonous and Venomous Marine Animals of the World; Darwin Press: Princeton, NJ, USA, 1988; 288. [Google Scholar]
- Robertson, D.R.; Van Tassell, J. Shorefishes of the Greater Caribbean: Online Information System, Version 3.0; Smithsonian Tropical Research Institute: Balboa, Panamá, 2023; Available online: https://biogeodb.stri.si.edu/caribbean/en/pages (accessed on 31 May 2024).
- Díaz-Ascenio, L.; Clausing, R.J.; Vandersea, M.; Chamero-Lago, D.; Gómez-Batista, M.; Hernández-Albernas, J.I.; Chomérat, N.; Rojas-Abrahantes, G.; Litaker, R.W.; Tester, P.; et al. Ciguatoxin occurrence in food-web components of a Cuban coral reef ecosystem: Risk-assessment implications. Toxins 2019, 11, 722. [Google Scholar] [CrossRef]
- Roff, G.; Mumby, P.J. Global disparity in the resilience of coral reefs. Trends Ecol. Evol. 2012, 27, 404–413. [Google Scholar] [CrossRef]
- Bellwood, D.R.; Hughes, T.P.; Folke, C.; Nyström, M. Confronting the coral reef crisis. Nature 2004, 429, 827–833. [Google Scholar] [CrossRef]
- Hemingson, C.R.; Bellwood, D.R. Greater multihabitat use in Caribbean fishes when compared to their Great Barrier Reef counterparts. Est. Coast. Shelf Sci. 2020, 239, 106748. [Google Scholar] [CrossRef]
- Siqueira, A.C.; Bellwood, D.R.; Cowman, P.F. The evolution of traits and functions in herbivorous coral reef fishes through space and time. Proc. R. Soc. B 2019, 286, 20182672. [Google Scholar] [CrossRef]
- Siqueira, A.C.; Bellwood, D.R.; Cowman, P.F. Historical biogeography of herbivorous coral reef fishes: The formation of an Atlantic fauna. J. Biogeogr. 2019, 46, 1611–1624. [Google Scholar] [CrossRef]
- O’Dea, A.; Lessios, H.A.; Coates, A.G.; Eytan, R.I.; Restrepo-Moreno, S.A.; Cione, A.L.; Collins, L.S.; de Queiroz, A.; Farris, D.W.; Norris, R.D.; et al. Formation of the isthmus of Panama. Sci. Adv. 2016, 2, e1600883. [Google Scholar] [CrossRef]
- Carlson, A.E. Ice sheets and sea level in Earth’s past. Nat. Educ. Knowl. 2011, 3, 3. Available online: https://www.nature.com/scitable/knowledge/library/ice-sheets-and-sea-level-in-earth-24148940/ (accessed on 28 December 2024).
- Voris, H.K. Maps of Pleistocene Sea levels in southeast Asia: Shorelines, river systems and time durations. J. Biogeogr. 2000, 27, 1153–1167. [Google Scholar] [CrossRef]
- Larsson, M.E.; Laczka, O.F.; Suthers, I.M.; Ajani, P.A.; Doblin, M.A. Hitchhiking in the East Australian current: Rafting as a dispersal mechanism for harmful epibenthic dinoflagellates. Mar. Ecol. Prog. Ser. 2018, 596, 49–60. [Google Scholar] [CrossRef]
- Saura, S.; Bodin, Ö.; Fortin, M.J. Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 2014, 51, 171–182. [Google Scholar] [CrossRef]
- Loeffler, C.R.; Spielmeyer, A.; Blaschke, V.; Bodi, D.; Kappenstein, O. Ciguatera poisoning in Europe: A traceback to Indian Ocean sourced snapper fish (Lutjanus bohar). Food Control 2023, 151, 109799. [Google Scholar] [CrossRef]
- Li, X.; Lew, K.; Leyau, Y.L.; Shen, P.; Chua, J.; Lin, K.J.; Wu, Y.; Chan, S.H. Application of high-resolution mass spectrometry for ciguatoxin detection in fish from the Asia–Pacific Region. Toxins 2025, 17, 100. [Google Scholar] [CrossRef]
- Feng, M.; Zhang, N.; Wijffles, S. The Indonesian throughflow, its variability and centennial change. Geosci. Lett. 2018, 5, 3. [Google Scholar] [CrossRef]
- Cao, Z.; Li, M.; Gordon, A.L.; Wang, D. Enhanced Indonesian Throughflow heat transport prolongs the recharge process during triple La Niña events. Environ. Res. Lett. 2025, 20, 014071. [Google Scholar] [CrossRef]
- Habibi, N.; Uddin, S.; Bottein, M.-Y.D.; Faizuddin, M. Ciguatera in the Indian Ocean with special insights on the Arabian Sea and adjacent gulf and seas: A review. Toxins 2021, 13, 525. [Google Scholar] [CrossRef]
- Lucas, R.E.; Lewis, R.J.; Taylor, J.M. Pacific ciguatoxin-1 associated with a large common-source outbreak of ciguatera in East Arnhem Land, Australia. Nat. Toxins 1997, 5, 136–140. [Google Scholar] [CrossRef]
- Post, D.M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 2002, 83, 703–718. [Google Scholar] [CrossRef]
- Tebbett, S.B.; Goatley, C.H.R.; Bellwood, D.R. Clarifying functional roles: Algal removal by the surgeonfishes Ctenochaetus striatus and Acanthurus nigrofuscus. Coral Reefs 2017, 36, 803–813. [Google Scholar] [CrossRef]
- Tebbett, S.B.; Goatley, C.H.R.; Huertas, V.; Mihalitsis, M.; Bellwood, D.R. A functional evaluation of feeding in the surgeonfish Ctenochaetus striatus: The role of soft tissues. R. Soc. Open Sci. 2018, 5, 171111. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.; Silva, R.; Gibran, F.Z.; Bacha, L.; de Freitas, M.A.M.; Thompson, M.; Landuci, F.; Tschoeke, D.; Zhang, X.-H.; Wang, X.; et al. The Abrolhos nominally herbivorous coral reef fish Acanthurus chirurgus, Kyphosus sp., Scarus trispinosus, and Sparisoma axillare have similarities in feeding but species-specific microbiomes. Microb. Ecol. 2024, 87, 110. [Google Scholar] [CrossRef] [PubMed]
- Ledreux, A.; Brand, H.; Chinain, M.; Bottein, M.-Y.D. Dynamics of ciguatoxins from Gambierdiscus polynesiensis in the benthic herbivore Mugil cephalus: Trophic transfer implications. Harmful Algae 2014, 39, 165–174. [Google Scholar] [CrossRef]
- Li, J.; Mak, Y.L.; Chang, Y.-H.; Xiao, C.; Chen, Y.-M.; Shen, J.; Wang, Q.; Ruan, Y.; Lam, P.K.S. Uptake and depuration kinetics of Pacific ciguatoxins in orange-spotted grouper (Epinephelus coioides). Environ. Sci. Technol. 2020, 54, 4475–4483. [Google Scholar] [CrossRef]
- Clements, K.D.; German, D.P.; Piché, J.; Tribollet, A.; Choat, J.H. Integrating ecological roles and trophic diversification on coral reefs: Multiple lines of evidence identify parrotfishes as microphages. Biol. J. Linn. Soc. 2017, 120, 729–751. [Google Scholar] [CrossRef]
- Nicholson, G.M.; Clments, K.D. Resolving resource partitioning in parrotfishes (Scarini) using microhistology of feeding substrata. Coral Reefs 2020, 39, 1313–1327. [Google Scholar] [CrossRef]
- Russ, G.R.; Questel, S.-L.A.; Rizzari, J.R.; Alcala, A.C. The parrotfish-coral relationship: Refuting the ubiquity of a prevailing paradigm. Mar. Biol. 2015, 162, 2029–2045. [Google Scholar] [CrossRef]
- Vallès, H.; Oxenford, H.A. Parrotfish Size: A simple yet useful alternative indicator of fishing effects on Caribbean Reefs? PLoS ONE 2014, 9, e86291. [Google Scholar] [CrossRef]
- Bozec, Y.-M.; O’Farrell, S.; Bruggemannd, J.H.; Luckhurstf, B.E.; Mumby, P.J. Tradeoffs between fisheries harvest and the resilience of coral reefs. Proc. Natl. Acad. Sci. USA 2016, 113, 4536–4541. [Google Scholar] [CrossRef]
- Boucaud-Maitre, D.; Vernoux, J.-P.; Pelczar, S.; Daudens-Vaysse, E.; Aubert, L.; Boa, S.; Ferracci, S.; Garnier, R. Incidence and clinical characteristics of ciguatera fish poisoning in Guadeloupe (French West Indies) between 2013 and 2016: A retrospective cases-series. Sci. Rep. 2018, 8, 3095. [Google Scholar] [CrossRef] [PubMed]
- Tester, P.A.; Feldman, R.L.; Nau, A.W.; Kibler, S.R.; Litaker, R.W. Ciguatera fish poisoning and sea surface temperatures in the Caribbean Sea and the West Indies. Toxicon 2010, 56, 698–710. [Google Scholar] [CrossRef] [PubMed]
- Kindinger, T.L.; Adam, T.C.; Baum, J.K.; Dimoff, S.A.; Hoey, A.S.; Williams, I.D. Herbivory through the lens of ecological processes across Pacific coral reefs. Ecosphere 2024, 15, e4791. [Google Scholar] [CrossRef]
- Robinson, J.P.W.; McDevitt-Irwin, J.M.; Dajka, J.-C.; Hadj-Hammou, J.; Howlett, S.; Graba-Landry, A.; Hoey, A.S.; Nash, K.L.; Wilson, S.K.; Graham, N.A.J. Habitat and fishing control grazing potential on coral reefs. Funct. Ecol. 2020, 34, 240–251. [Google Scholar] [CrossRef]
- Munsterman, K.S.; Allgeier, J.E.; Peters, J.R.; Burkepile, D.E. A view from both ends: Shifts in herbivore assemblages impact top-down and bottom-up processes on coral reefs. Ecosystems 2021, 24, 1702–1715. [Google Scholar] [CrossRef]
- DeMartini, E.E.; Smith, J. Effects of fishing on the fishes and habitat of coral reefs. In Ecology of Fishes on Coral Reefs; Mora, C., Ed.; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar] [CrossRef]
- Houk, P.; Cuetos-Bueno, J.; Kerr, A.M.; McCann, K. Linking fishing pressure with ecosystem thresholds and food web stability on coral reefs. Ecol. Monogr. 2018, 88, 109–119. [Google Scholar] [CrossRef]
- Kuempel, C.D.; Altieri, A.H. The emergent role of small-bodied herbivores in pre-empting phase shifts on degraded coral reefs. Sci. Rep. 2017, 7, 39670. [Google Scholar] [CrossRef]
- Heenan, A.; Hoey, A.S.; Williams, G.J.; Williams, I.D. Natural bounds on herbivorous coral reef fishes. Proc. R. Soc. B 2016, 283, 20161716. [Google Scholar] [CrossRef]
- Jones, H.P.; Schmitz, O.J. Rapid recovery of damaged ecosystems. PLoS ONE 2023, 4, e5653. [Google Scholar] [CrossRef]
- Morais, J.; Tebbett, S.B.; Morais, R.A.; Bellwood, D.R. Natural recovery of corals after severe disturbance. Ecol. Lett. 2023, 27, e14332. [Google Scholar] [CrossRef]
- NOAA 2024. NOAA Confirms 4th Global Coral Bleaching Event. Available online: https://www.noaa.gov/news-release/noaa-confirms-4th-global-coral-bleaching-event (accessed on 12 June 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holmes, M.J.; Lewis, R.J. Reviewing Evidence for Disturbance to Coral Reefs Increasing the Risk of Ciguatera. Toxins 2025, 17, 195. https://doi.org/10.3390/toxins17040195
Holmes MJ, Lewis RJ. Reviewing Evidence for Disturbance to Coral Reefs Increasing the Risk of Ciguatera. Toxins. 2025; 17(4):195. https://doi.org/10.3390/toxins17040195
Chicago/Turabian StyleHolmes, Michael J., and Richard J. Lewis. 2025. "Reviewing Evidence for Disturbance to Coral Reefs Increasing the Risk of Ciguatera" Toxins 17, no. 4: 195. https://doi.org/10.3390/toxins17040195
APA StyleHolmes, M. J., & Lewis, R. J. (2025). Reviewing Evidence for Disturbance to Coral Reefs Increasing the Risk of Ciguatera. Toxins, 17(4), 195. https://doi.org/10.3390/toxins17040195