Cytotoxic Activity of the Baltic Cyanobacterium Pseudanabaena galeata CCNP1313
Abstract
1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Culture Conditions, Extraction, and Fractionation of Pseudanabaena galeata CCNP1313 Metabolites
5.2. Cell Culture and Cytotoxicity Assessment
5.3. High-Resolution Mass Spectrometry Analyses
5.4. Mass Spectrometry Data Processing
5.5. Bioactivity-Based Molecular Networking Analyses
5.6. Data Visualisation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 2-MIB | 2-methylisoborneol |
| A549 | Lung cancer cell line |
| ADCs | Antibody–drug conjugates |
| BALL-1 | Acute lymphoblastoid leukaemia cell line |
| BGCs | Biosynthetic gene clusters |
| BxPC-3 | Pancreatic cancer cell line |
| C33-A | Cervical cancer cell line |
| CaSki | Cervical cancer cell line |
| DAG | Diacylglycerol |
| DGDG | Digalactosyldiacylglycerol |
| DoTC2 | Cervical cancer cell line |
| ESI | Electrospray ionisation |
| FA | Fatty acid |
| fastDDA | Fast data-dependent acquisition |
| FBMN | Feature-Based Molecular Networking |
| GNPS | Global Natural Products Social Molecular Networking |
| GP | Galeapeptin |
| HCoV-OC43 | Human coronavirus OC43 |
| HCT116 | Colon cancer cell line |
| HDFa | Adult human dermal fibroblasts |
| HeLa | Cervical cancer cell line |
| HL60 | Promyelocytic leukaemia cell line |
| HRMS | High-resolution mass spectrometer |
| HSV-2 | Herpes simplex virus type 2 |
| m/z | Mass to charge ratio |
| MAG | Monoacylglycerol |
| MCF-7 | Breast cancer cell line |
| MeOH | Methanol |
| MGDG | Monogalactosyldiacylglycerol |
| MiaPaCa-2 | Pancreatic cancer cell line |
| MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide |
| NUGC-3 | Stomach cancer cell line |
| PANC-1 | Pancreatic cancer cell line |
| PC3 | Prostate cancer cell line |
| PGs | Pseudanabaena galeata peptides |
| SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
| SiHa | Cervical cancer cell line |
| SQDG | Sulfoquinovosyl diacylglycerol |
| T47D | Breast cancer cell line |
| WNV | West Nile Virus |
References
- Popin, R.V.; Alvarenga, D.O.; Castelo-Branco, R.; Fewer, D.P.; Sivonen, K. Mining of cyanobacterial genomes indicates natural product biosynthetic gene clusters located in conjugative plasmids. Front. Microbiol. 2021, 12, 684565. [Google Scholar] [CrossRef] [PubMed]
- Grabski, M.; Gawor, J.; Cegłowska, M.; Gromadka, R.; Mazur-Marzec, H.; Węgrzyn, G. Genome mining of Pseudanabaena galeata CCNP1313 indicates a new scope in the search for antiproliferative and antiviral agents. Microorganisms 2024, 12, 1628. [Google Scholar] [CrossRef]
- Oudra, B.; Loudiki, M.; Sbiyyaa, B.; Martins, R.; Vasconcelos, V.; Namikoshi, N. Isolation, characterization and quantification of microcystins (heptapeptides hepatotoxins) in Microcystis aeruginosa dominated bloom of Lalla Takerkoust lakereservoir (Morocco). Toxicon 2001, 39, 1375–1381. [Google Scholar] [CrossRef] [PubMed]
- Oudra, B.; Loudiki, M.; Vasconcelos, V.; Sabour, B.; Sbiyyaa, B.; Oufdou, K.; Mezrioui, N. Detection and quantification of microcystins from cyanobacteria strains isolated from reservoirs and ponds in Morocco. Environ. Toxicol. 2002, 17, 32–39. [Google Scholar] [CrossRef]
- Maršálek, B.; Bláha, L.; Babica, P. Analyses of microcystins in the biomass of Pseudanabaena limnetica collected in Znojmo reservoir. Fottea 2003, 3, 195–197. [Google Scholar]
- Douma, M.; Loudiki, M.; Oudra, B.; Mouhri, K.; Ouahid, Y.; del Campo, F.F. Taxonomic diversity and toxicological assessment of cyanobacteria in Moroccan inland waters. Rev. Sci. L’eau J. Water Sci. 2009, 22, 435–449. [Google Scholar] [CrossRef]
- Gantar, M.; Sekar, R.; Richardson, L.L. Cyanotoxins from black band disease of corals and from other coral reef environments. Microb. Ecol. 2009, 58, 856–864. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Y.; Shao, J.; Wang, J.; Li, R. Genes associated with 2-methylisoborneol biosynthesis in cyanobacteria: Isolation, characterization, and expression in response to light. PLoS ONE 2011, 6, e18665. [Google Scholar] [CrossRef]
- Kakimoto, M.; Ishikawa, T.; Miyagi, A.; Saito, K.; Miyazaki, M.; Asaeda, T.; Yamaguchi, M.; Uchimiya, H.; Kawai-Yamada, M. Culture temperature affects gene expression and metabolic pathways in the 2-methylisoborneol-producing cyanobacterium Pseudanabaena galeata. J. Plant Physiol. 2014, 171, 292–300. [Google Scholar] [CrossRef]
- Zhang, T.; Zheng, L.; Li, L.; Song, L. 2-Methylisoborneol production characteristics of Pseudanabaena sp. FACHB 1277 isolated from Xionghe Reservoir, China. J Appl Phycol 2016, 28, 3353–3362. [Google Scholar] [CrossRef]
- Zimba, P.V.; Dionigi, C.P.; Millie, D.F. Evaluating the relationship between photopigment synthesis and 2-methylisoborneol ac-cumulation in cyanobacteria. J. Phycol. 1999, 35, 1422–1429. [Google Scholar] [CrossRef]
- Paliwal, C.; Ghosh, T.; Bhayani, K.; Maurya, R.; Mishra, S. Antioxidant, anti-nephrolithe activities and in vitro digestibility studies of three different cyanobacterial pigment extracts. Mar. Drugs 2015, 13, 5384–5401. [Google Scholar] [CrossRef] [PubMed]
- Wojtasiewicz, B.; Stoń-Egiert, J. Bio-optical characterization of selected cyanobacteria strains present in marine and freshwater ecosystems. J. Appl. Phycol. 2016, 28, 2299–2314. [Google Scholar] [CrossRef]
- Schlüter, L.; David, G.S.; Jørgensen, N.O.G.; Poddutur, R.; Tucci, A.; Dias, A.S.; da Silva, R.J. Characterization of phytoplankton by pigment analysis and the detection of toxic cyanobacteria in reservoirs with aquaculture production. Aquac. Environ. Interact. 2018, 10, 35–48. [Google Scholar] [CrossRef]
- Cegłowska, M.; Toruńska-Sitarz, A.; Stoń-Egiert, J.; Mazur-Marzec, H.; Kosakowska, A. Characteristics of cyanobacterium Pseudanabaena galeata CCNP1313 from the Baltic Sea. Algal Res. 2020, 47, 101861. [Google Scholar] [CrossRef]
- Cegłowska, M.; Szubert, K.; Grygier, B.; Lenart, M.; Plewka, J.; Milewska, A.; Lis, K.; Szczepański, A.; Chykunova, Y.; Barreto-Duran, E.; et al. Pseudanabaena galeata CCNP1313—Biological activity and peptides production. Toxins 2022, 14, 330. [Google Scholar] [CrossRef]
- Cano-Europa, E.; Ortiz-Butrón, R.; Gallardo-Casas, C.A.; Blas-Valdivia, V.; Pineda-Reynoso, M.; Olvera-Ramírez, R.; Franco-Colin, M. Phycobiliproteins from Pseudanabaena tenuis rich in c-phycoerythrin protect against HgCl2-caused oxidative stress and cellular damage in the kidney. J. Appl. Phycol. 2010, 22, 495–501. [Google Scholar] [CrossRef]
- Patterson, G.M.L.; Baker, K.K.; Baldwin, C.L.; Bolis, C.M.; Caplan, F.R.; Larsen, L.K.; Levine, I.A.; Moore, R.E.; Moore, E.; Nelson, C.S.; et al. Antiviral activity of cultured blue-green algae (cyanophyta). J. Phycol. 1993, 29, 125–130. [Google Scholar] [CrossRef]
- Costa, M.; Garcia, M.; Costa-Rodrigues, J.; Costa, M.S.; Ribeiro, M.J.; Fernandes, M.H.; Barros, P.; Barreiro, A.; Vasconcelos, V.; Martins, R. Exploring bioactive properties of marine cyanobacteria isolated from the Portuguese coast: High potential as a source of anticancer compounds. Mar. Drugs 2014, 12, 98–114. [Google Scholar] [CrossRef]
- Felczykowska, A.; Pawlik, A.; Mazur-Marzec, H.; Toruńska-Sitarz, A.; Narajczyk, M.; Richert, M.; Węgrzyn, G.; Herman-Antosiewicz, A. Selective inhibition of cancer cells’ proliferation by compounds included in extracts from Baltic Sea cyanobacteria. Toxicon 2015, 108, 1–10. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Nothias, L.F.; Petras, D.; Schmid, R.; Dührkop, K.; Rainer, J.; Sarvepalli, A.; Protsyuk, I.; Ernst, M.; Tsugawa, H.; Fleischauer, M.; et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 2020, 17, 905–908. [Google Scholar] [CrossRef] [PubMed]
- Fewer, D.P.; Jokela, J.; Rouhiainen, L.; Wahlsten, M.; Koskenniemi, K.; Stal, L.J.; Sivonen, K. The non-ribosomal assembly and frequent occurrence of the protease inhibitors spumigins in the bloom-forming cyanobacterium Nodularia spumigena. Mol. Microbiol. 2009, 73, 924–937. [Google Scholar] [CrossRef]
- Jokela, J.; Oftedal, L.; Herfindal, L.; Permi, P.; Wahlsten, M.; Døskeland, S.O.; Sivonen, K. Anabaenolysins, novel cytolytic lipopeptides from benthic Anabaena cyanobacteria. PLoS ONE 2012, 7, e41222. [Google Scholar] [CrossRef]
- Mazur-Marzec, H.; Błaszczyk, A.; Felczykowska, A.; Hohlfeld, N.; Kobos, J.; Toruńska-Sitarz, A.; Devi, P.; Montalvão, S.; D’souza, L.; Tammela, P.; et al. Baltic cyanobacteria—A source of biologically active compounds. Eur. J. Phycol. 2015, 50, 343–360. [Google Scholar] [CrossRef]
- Mazur-Marzec, H.; Fidor, A.; Cegłowska, M.; Wieczerzak, E.; Kropidłowska, M.; Goua, M.; Macaskill, J.; Edwards, C. Cyanopeptolins with trypsin and chymotrypsin inhibitory activity from the cyanobacterium Nostoc edaphicum CCNP1411. Mar. Drugs 2018, 16, 220. [Google Scholar] [CrossRef]
- Szubert, K.; Wiglusz, M.; Mazur-Marzec, H. Bioactive metabolites produced by Spirulina subsalsa from the Baltic Sea. Oceanologia 2018, 60, 245–255. [Google Scholar] [CrossRef]
- Fewer, D.P.; Jokela, J.; Heinilä, L.; Aesoy, R.; Sivonen, K.; Galica, T.; Hrouzek, P.; Herfindal, L. Chemical diversity and cellular effects of antifungal cyclic lipopeptides from cyanobacteria. Physiol. Plant 2021, 173, 639–650. [Google Scholar] [CrossRef]
- Konkel, R.; Cegłowska, M.; Szubert, K.; Wieczerzak, E.; Iliakopoulou, S.; Kaloudis, T.; Mazur-Marzec, H. Structural diversity and biological activity of cyanopeptolins produced by Nostoc edaphicum CCNP1411. Mar. Drugs 2023, 21, 508. [Google Scholar] [CrossRef]
- Konkel, R.; Grabski, M.; Cegłowska, M.; Wieczerzak, E.; Węgrzyn, G.; Mazur-Marzec, H. Anabaenopeptins from Nostoc edaphicum CCNP1411. Int. J. Environ. Res. Public Health 2022, 19, 12346. [Google Scholar] [CrossRef] [PubMed]
- Konkel, R.; Milewska, A.; Do, N.D.T.; Barreto Duran, E.; Szczepanski, A.; Plewka, J.; Wieczerzak, E.; Iliakopoulou, S.; Kaloudis, T.; Jochmans, D.; et al. Anti-SARS-CoV-2 activity of cyanopeptolins produced by Nostoc edaphicum CCNP1411. Antivir. Res. 2023, 219, 105731. [Google Scholar] [CrossRef] [PubMed]
- Overlingė, D.; Cegłowska, M.; Konkel, R.; Mazur-Marzec, H. Aeruginosin 525 (AER525) from cyanobacterium Aphanizomenon Sp. (KUCC C2): A new serine proteases inhibitor. Mar. Drugs 2024, 22, 506. [Google Scholar] [CrossRef]
- Overlingė, D.; Toruńska-Sitarz, A.; Cegłowska, M.; Szubert, K.; Mazur-Marzec, H. Phylogenetic and molecular characteristics of two Aphanizomenon strains from the Curonian Lagoon, South-eastern Baltic Sea and their biological activities. Sci. Rep. 2024, 14, 24686. [Google Scholar] [CrossRef] [PubMed]
- Mazur-Marzec, H.; Grabowski, Ł.; Węgrzyn, A.; Błaszczyk, A.; Cegłowska, M.; Dąbek, P.; Farooq, M.; Górecka, E.; Jurczak-Kurek, A.; Kaczorowska, A.-K.; et al. Unlocking the biotechnological potential of Baltic microorganisms. Front. Microbiol. 2025, 16, 1682611. [Google Scholar] [CrossRef]
- Karan, T.; Aydin, A. Anticancer potential and cytotoxic effect of some freshwater cyanobacteria. Trop. J. Pharm. Res. 2018, 17, 2183–2188. [Google Scholar] [CrossRef]
- Ramadan, K.M.A.; El-Beltagi, H.S.; Shanab, S.M.M.; El-Fayoumy, E.A.; Shalaby, E.A.; Bendary, E.S.A. Potential antioxidant and anticancer activities of secondary metabolites of Nostoc linckia cultivated under Zn and Cu stress conditions. Processes 2021, 9, 1972. [Google Scholar] [CrossRef]
- Gheda, S.; Abd El-Zaher, E.H.F.; Abou-Zeid, A.M.; Bedair, N.A.; Pereira, L. Potential activity of Arthrospira platensis as antioxidant, cytotoxic and antifungal against some skin diseases: Topical cream application. Mar. Drugs 2023, 21, 160. [Google Scholar] [CrossRef]
- Bharat, N.; Irshad, M.; Rizvi, M.M.A.; Fatma, T. Antimicrobial and cytotoxic activities of cyanobacteria. Int. J. Innov. Res. Sci. Eng. Technol. 2013, 2, 4328–4343. [Google Scholar]
- Hrouzek, P.; Kapuścik, A.; Vacek, J.; Voráčová, K.; Paichlová, J.; Kosina, P.; Voloshko, L.; Ventura, S.; Kopecký, J. Cytotoxicity evaluation of large cyanobacterial strain set using selected human and murine in vitro cell models. Ecotoxicol. Environ. Saf. 2016, 124, 177–185. [Google Scholar] [CrossRef]
- Batsalova, T.; Basheva, D.; Bardarov, K.; Bardarov, V.; Dzhambazov, B.; Teneva, I. Assessment of the cytotoxicity, antioxidant activity and chemical composition of extracts from the cyanobacterium Fischerella major Gomont. Chemosphere 2019, 218, 93–103. [Google Scholar] [CrossRef]
- Pettit, G.R.; Kamano, Y.; Herald, C.L.; Tuinman, A.A.; Boettner, F.E.; Kizu, H.; Schmidt, J.M.; Baczynskyj, L.; Tomer, K.B.; Bontems, R.J. The isolation and structure of a remarkable marine animal antineoplastic constituent: Dolastatin 10. J. Am. Chem. Soc. 1987, 109, 6883–6885. [Google Scholar] [CrossRef]
- de Loura, I.C.; Dubacq, J.P.; Thomas, J.C. The effects of nitrogen deficiency on pigments and lipids of cyanobacteria. Plant Physiol. 1987, 83, 838–843. [Google Scholar] [CrossRef] [PubMed]
- Murakami, N.; Imamura, H.; Sakakibara, J.; Yamada, N. Seven new monogalactosyl diacylglycerols isolated from the axenic cyanobacterium Phormidium tenue. Chem. Pharm. Bull. 1990, 38, 3497–3499. [Google Scholar] [CrossRef]
- Kim, Y.; Choi, J.-S.; Hong, J.; Yoo, J.; Kim, M. Identification of acylated glycoglycerolipids from a cyanobacterium, Synechocystis sp., by tandem mass spectrometry. Lipids 1999, 34, 847–853. [Google Scholar] [CrossRef]
- Kim, Y.H.; Choi, J.-S.; Yoo, J.S.; Park, Y.-M.; Kim, M.S. Structural identification of glycerolipid molecular species isolated from cyanobacterium Synechocystis sp. PCC 6803 using fast atom bombardment tandem mass spectrometry. Anal Biochem 1999, 267, 260–270. [Google Scholar] [CrossRef]
- Marcolongo, G.; de Appolonia, F.; Venzo, A.; Berrie, C.P.; Carofiglio, T.; Ceschi Berrini, C. Diacylglycerolipids isolated from a thermophile cyanobacterium from the Euganean hot springs. Nat. Prod. Res. 2006, 20, 766–774. [Google Scholar] [CrossRef]
- Abedin, M.R.; Barua, S. Isolation and purification of glycoglycerolipids to induce apoptosis in breast cancer cells. Sci. Rep. 2021, 11, 1298. [Google Scholar] [CrossRef]
- Son, B.-W.; Cho, Y.-J.; Kim, N.-K.; Choi, H.-D. New glyceroglycolipids from the brown alga Sargassum thunbergii. Bull. Korean Chem. Soc. 1992, 13, 584. [Google Scholar]
- Mizushina, Y.; Sugiyama, Y.; Yoshida, H.; Hanashima, S.; Yamazaki, T.; Kamisuki, S.; Ohta, K.; Takemura, M.; Yamaguchi, T.; Matsukage, A.; et al. Galactosyldiacylglycerol, a mammalian DNA polymerase alpha-specific inhibitor from a sea alga, Petalonia bingbamiae. Biol. Pharm. Bull. 2001, 24, 982–987. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, E.-H.; Lee, C.; Kim, M.-H.; Rho, J.-R. Two new monogalactosyl diacylglycerols from brown alga Sargassum thunbergii. Lipids 2007, 42, 395–399. [Google Scholar] [CrossRef]
- Plouguerné, E.; de Souza, L.M.; Sassaki, G.L.; Hellio, C.; Trepos, R.; da Gama, B.A.P.; Pereira, R.C. Barreto-Bergter, E. Glycoglycerolipids from Sargassum vulgare as potential antifouling agents. Front. Mar. Sci. 2020, 7, 116. [Google Scholar] [CrossRef]
- Hölzl, G.; Dörmann, P. Structure and function of glycoglycerolipids in plants and bacteria. Prog. Lipid Res. 2007, 46, 225–243. [Google Scholar] [CrossRef]
- Nakamura, Y. Galactolipid biosynthesis in flowers. Bot. Stud. 2013, 54, 29. [Google Scholar] [CrossRef]
- Gao, Q.M.; Yu, K.; Xia, Y.; Shine, M.B.; Wang, C.; Navarre, D.; Kachroo, A.; Kachroo, P. Mono- and digalactosyldiacylglycerol lipids function nonredundantly to regulate systemic acquired resistance in plants. Cell Rep. 2014, 9, 1681–1691. [Google Scholar] [CrossRef]
- Al-Hasan, R.H.; Ali, A.M.; Radwan, S.S. Effects of light and dark incubation on the lipid and fatty acid vomposition of marine cyanobacteria. Microbiology 1989, 135, 865–872. [Google Scholar] [CrossRef]
- Roessler, P.G. Environmental control of glycerolipid metabolism in microalgae: Commercial implications and future research directions. J. Phycol. 1990, 26, 393–399. [Google Scholar] [CrossRef]
- Sallal, A.K.; Nimer, N.A.; Radwan, S.S. Lipid and fatty acid composition of freshwater cyanobacteria. Microbiology 1990, 136, 2043–2048. [Google Scholar] [CrossRef]
- Li, Y.; Horsman, M.; Wang, B.; Wu, N.; Lan, C.Q. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 2008, 81, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Huerlimann, R.; de Nys, R.; Heimann, K. Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production. Biotechnol. Bioeng. 2010, 107, 245–257. [Google Scholar] [CrossRef]
- von Alvensleben, N.; Stookey, K.; Magnusson, M.; Heimann, K. Salinity tolerance of Picochlorum atomus and the use of salinity for contamination control by the freshwater cyanobacterium Pseudanabaena limnetica. PLoS ONE 2013, 8, e63569. [Google Scholar] [CrossRef]
- Guo, S.S.; Wang, Z.G. Glyceroglycolipids in marine algae: A review of their pharmacological activity. Front. Pharmacol. 2022, 13, 1008797. [Google Scholar] [CrossRef]
- Maeda, N.; Kokai, Y.; Ohtani, S.; Sahara, H.; Hada, T.; Ishimaru, C.; Kuriyama, I.; Yonezawa, Y.; Iijima, H.; Yoshida, H.; et al. Anti-tumor effects of the glycolipids fraction from spinach which inhibited DNA polymerase activity. Nutr. Cancer 2007, 57, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Maeda, N.; Matsubara, K.; Yoshida, H.; Mizushina, Y. Anti-cancer effect of spinach glycoglycerolipids as angiogenesis inhibitors based on the selective inhibition of DNA polymerase activity. Mini Rev. Med. Chem. 2011, 11, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Akasaka, H.; Sasaki, R.; Yoshida, K.; Takayama, I.; Yamaguchi, T.; Yoshida, H.; Mizushina, Y. Monogalactosyl diacylglycerol, a replicative DNA polymerase inhibitor, from spinach enhances the anti-cell proliferation effect of gemcitabine in human pancreatic cancer cells. Biochim. Biophys. Acta 2013, 1830, 2517–2525. [Google Scholar] [CrossRef] [PubMed]
- Fischer, W.; Gustafsson, L.; Mossberg, A.K.; Gronli, J.; Mork, S.; Bjerkvig, R.; Svanborg, C. Human alpha-lactalbumin made lethal to tumor cells (HAMLET) kills human glioblastoma cells in brain xenografts by an apoptosis-like mechanism and prolongs survival. Cancer Res. 2004, 64, 2105–2112. [Google Scholar] [CrossRef]
- Gustafsson, L.; Leijonhufvud, I.; Aronsson, A.; Mossberg, A.K.; Svanborg, C. Treatment of skin papillomas with topical alpha-lactalbumin-oleic acid. N. Engl. J. Med. 2004, 350, 2663–2672. [Google Scholar] [CrossRef] [PubMed]
- Mossberg, A.K.; Wullt, B.; Gustafsson, L.; Månsson, W.; Ljunggren, E.; Svanborg, C. Bladder cancers respond to intravesical instillation of HAMLET (human alpha-lactalbumin made lethal to tumor cells). Int. J. Cancer 2007, 121, 1352–1359. [Google Scholar] [CrossRef] [PubMed]
- Mossberg, A.K.; Hou, Y.; Svensson, M.; Holmqvist, B.; Svanborg, C. HAMLET treatment delays bladder cancer development. J. Urol. 2010, 183, 1590–1597. [Google Scholar] [CrossRef]
- Tolin, S.; De Franceschi, G.; Spolaore, B.; Frare, E.; Canton, M.; Polverino de Laureto, P.; Fontana, A. The oleic acid complexes of proteolytic fragments of alpha-lactalbumin display apoptotic activity. FEBS J. 2010, 277, 163–173. [Google Scholar] [CrossRef]
- Fang, B.; Zhang, M.; Tian, M.; Ren, F.Z. Self-assembled β-lactoglobulin-oleic acid and β-lactoglobulin-linoleic acid complexes with antitumor activities. J. Dairy Sci. 2015, 98, 2898–28907. [Google Scholar] [CrossRef]
- Permyakov, S.E.; Knyazeva, E.L.; Khasanova, L.M.; Fadeev, R.S.; Zhadan, A.P.; Roche-Hakansson, H.; Håkansson, A.P.; Akatov, V.S.; Permyakov, E.A. Oleic acid is a key cytotoxic component of HAMLET-like complexes. Biol. Chem. 2012, 393, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Nothias, L.F.; Nothias-Esposito, M.; da Silva, R.; Wang, M.; Protsyuk, I.; Zhang, Z.; Sarvepalli, A.; Leyssen, P.; Touboul, D.; Costa, J.; et al. Bioactivity-based molecular networking for the discovery of drug leads in natural product bioassay-guided fractionation. J. Nat. Prod. 2018, 81, 758–767. [Google Scholar] [CrossRef]
- Schmid, R.; Heuckeroth, S.; Korf, A.; Smirnov, A.; Myers, O.; Dyrlund, T.S.; Bushuiev, R.; Murray, K.J.; Hoffmann, N.; Lu, M.; et al. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat. Biotechnol. 2023, 41, 447–449. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]





| Relative Cell Viability [%] | ||||||||
|---|---|---|---|---|---|---|---|---|
| A549 | C-33A | CaSki | DoTC2 | HDFa | HeLa | PC3 | SiHa | T47D |
| 121 ± 7 * | 8 ± 4 * | 10 ± 3 * | 80 ± 7 * | 8 ± 2 * | 14 ± 5 * | 13 ± 3 * | 3 ± 2 * | 8 ± 3 * |
| Sample | Relative Cell Viability [%] | ||||||
|---|---|---|---|---|---|---|---|
| C-33A | CaSki | HDFa | HeLa | PC3 | SiHa | T47D | |
| F20%.1 | 72 * | 66 * | 39 * | 30 * | 63 * | 7 * | 59 * |
| F20%.2 | 81 * | 65 * | 102 | 59 * | 83 * | 97 | 87 * |
| F30%.1 | 60 * | 98 | 100 | 74 * | 90 * | 121 * | 99 |
| F30%.2 | 91 * | 86 * | 109 * | 65 * | 89 * | 114 * | 94 * |
| F40%.1 | 86 * | 92 * | 103 | 63 * | 88 * | 114 * | 95 * |
| F40%.2 | 86 * | 90 * | 112 * | 71 * | 89 * | 113 * | 89 * |
| F50%.1 | 78 * | 90 * | 87 * | 61 * | 83 * | 120 * | 93 * |
| F50%.2 | 89 * | 93 * | 110 * | 72 * | 101 | 121 * | 98 |
| F50%.3 | 89 * | 98 * | 111 * | 71 * | 100 | 121 * | 100 |
| F60%.1 | 84 * | 102 | 115 * | 79 * | 98 | 111 * | 94 * |
| F60%.2 | 85 * | 101 | 111 * | 71 * | 94 * | 116 * | 81 * |
| F60%.3 | 73 * | 96 | 113 * | 80 * | 99 | 122 * | 80 * |
| F70%.1 | 70 * | 92 * | 109 * | 86 * | 95 * | 115 * | 60 * |
| F70%.2 | 53 * | 80 * | 95 * | 53 * | 78 * | 94 * | 51 * |
| F70%.3 | 63 * | 90 * | 112 * | 78 * | 90 * | 119 * | 50 * |
| F80%.1 | 53 * | 81 * | 107 * | 85 * | 92 * | 117 * | 44 * |
| F80%.2 | 33 * | 48 * | 123 * | 75 * | 87 * | 94 * | 40 * |
| F80%.3 | 28 * | 41 * | 116 * | 76 * | 87 * | 73 * | 42 * |
| F80%.4 | 28 * | 37 * | 106 * | 76 * | 80 * | 53 * | 42 * |
| F90%.1 | 22 * | 22 * | 114 * | 66 * | 88 * | 79 * | 41 * |
| F90%.2 | 27 * | 34 * | 60 * | 68 * | 80 * | 61 * | 34 * |
| F90%.3 | 18 * | 16 * | 108 * | 70 * | 79 * | 38 * | 27 * |
| F100%.1 | 32 * | 37 * | 91 * | 85 * | 85 * | 100 | 34 * |
| F100%.2 | 17 * | 9 * | 51 * | 48 * | 60 * | 32 * | 12 * |
| F100%.3 | 15 * | 8 * | 54 * | 55 * | 64 * | 19 * | 12 * |
| F100%.4 | 7 * | 5 * | 56 * | 29 * | 45 * | 19 * | 11 * |
| Compound | m/z | Fraction | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| F20%–F50% | F60% | F70% | F80% | F90% | F100% | ||||||||||||||
| 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | |||
| GP598 | 599.4133 | n.d. | 1.37 × 104 | 5.82 × 101 | 9.54 × 102 | 1.32 × 103 | n.d. | n.d. | n.d. | n.d. | n.d. | 4.24 × 103 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
| PG638 | 639.3181 | n.d. | 1.43 × 104 | n.d. | 4.32 × 103 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
| GP655 | 656.8993 | n.d. | 1.53 × 104 | n.d. | 1.42 × 102 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.01 × 103 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
| GP715 | 716.4362 | n.d. | 6.28 × 104 | n.d. | 8.06 × 104 | n.d. | n.d. | 2.48 × 102 | n.d. | 2.81 × 103 | 2.48 × 102 | 4.87 × 103 | 1.29 × 103 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
| GP725 | 726.3513 | n.d. | 1.37 × 104 | n.d. | nd | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
| GP729 | 730.4509 | n.d. | 8.44 × 104 | 5.91 × 102 | 1.03 × 105 | 1.10 × 103 | 4.22 × 103 | 3.68 × 102 | 3.10 × 103 | 2.29 × 103 | 3.73 × 102 | 6.42 × 103 | 1.68 × 103 | 2.88 × 103 | 2.56 × 103 | 1.00 × 103 | 1.35 × 103 | 1.31 × 103 | 2.16 × 102 |
| GP818 | 819.5004 | n.d. | n.d. | n.d. | 7.02 × 103 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
| GP828 | 829.5208 | n.d. | n.d. | n.d. | n.d. | n.d. | 5.66 × 102 | n.d. | 2.75 × 103 | 2.43 × 103 | n.d. | 1.30 × 103 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
| GP998 | 999.6283 | n.d. | n.d. | n.d. | 6.55 × 103 | n.d. | n.d. | 3.16 × 103 | 3.41 × 104 | n.d. | 2.87 × 102 | 7.01 × 101 | n.d. | n.d. | 9.63 × 102 | n.d. | n.d. | n.d. | n.d. |
| m/z | Activity Against | ||||||
|---|---|---|---|---|---|---|---|
| C-33A | CaSki | HDFa | HeLa | PC3 | SiHa | T47D | |
| 207.1361 | + | ||||||
| 219.1467 | + | ||||||
| 221.1517 | + | + | |||||
| 225.1466 | + | ||||||
| 225.1569 | + | ||||||
| 251.1622 | + | + | + | + | |||
| 257.1269 | + | ||||||
| 265.1417 | + | ||||||
| 277.2144 (±0.0001) | + | ||||||
| 279.2300 | + | + | + | + | |||
| 282.2772 | + | + | + | + | |||
| 285.2408 (±0.0004) | + | + | |||||
| 289.1780 | + | + | |||||
| 303.1321 | + | ||||||
| 309.4792 | + | ||||||
| 322.1996 | + | ||||||
| 333.2155 | + | ||||||
| 335.2178 | + | + | + | + | |||
| 335.2565 | + | + | + | ||||
| 337.2711 (±0.0004) | + | + | + | ||||
| 340.2575 | + | ||||||
| 350.1525 | + | + | + | ||||
| 353.2172 | + | ||||||
| 353.2287 (±0.0002) | + | + | + | + | |||
| 391.223 | + | + | + | ||||
| 394.1432 | + | + | + | + | |||
| 405.1667 | + | ||||||
| 407.2168 | + | ||||||
| 425.2275 | + | ||||||
| 455.1573 | + | + | |||||
| 531.3165 | + | ||||||
| 542.3255 | + | ||||||
| 545.4564 | + | + | + | ||||
| 547.4725 (±0.0005) | + | + | + | ||||
| 553.2986 | + | + | + | + | |||
| 556.3051 | + | ||||||
| 561.4517 | + | + | + | ||||
| 563.4675 (±0.0007) | + | + | + | + | + | + | |
| 563.4671 | + | + | + | + | |||
| 569.2938 | + | + | |||||
| 573.2365 | + | ||||||
| 575.2547 | + | ||||||
| 577.2682 | + | ||||||
| 579.2844 | + | + | + | ||||
| 579.4617 | + | ||||||
| 580.3329 | + | ||||||
| 589.3192 | + | ||||||
| 589.4825 (±0.0004) | + | + | + | + | |||
| 611.3179 | + | ||||||
| 633.3594 | + | ||||||
| 704.5299 | + | + | |||||
| 707.5107 | + | + | + | ||||
| 715.5839 | + | ||||||
| 718.5453 | + | + | |||||
| 723.5057 | + | + | + | ||||
| 725.3865 | + | ||||||
| 725.5214 | + | + | + | ||||
| 741.5170 | + | ||||||
| 741.5171 | + | + | + | ||||
| 744.5640 | + | ||||||
| 746.5799 | + | ||||||
| 747.5040 | + | ||||||
| 760.5592 | + | + | + | ||||
| 763.4997 (±0.0004) | + | + | + | + | + | ||
| 765.5152 (±0.0001) | + | + | |||||
| 770.5802 | + | ||||||
| 772.5962 | + | ||||||
| 775.3880 | + | ||||||
| 779.4948 (±0.0001) | + | + | |||||
| 788.5908 | + | ||||||
| 791.5309 (±0.0007) | + | + | + | + | |||
| 801.5524 | + | ||||||
| 807.5264 | + | + | + | ||||
| 817.5467 | + | + | + | ||||
| 819.5604 | + | ||||||
| 863.6228 | + | + | |||||
| 863.6238 | + | + | |||||
| 877.6397 | + | + | + | ||||
| 906.6187 | + | + | |||||
| 908.6340 | + | + | |||||
| 909.5584 | + | + | |||||
| 911.5744 | + | + | + | ||||
| Feature | m/z | Bonferroni | Retention Time | Sum Area |
|---|---|---|---|---|
| FA | 279.22998 | 0.000 | 24.384 | 4.2 × 104 |
| MGDG | 763.49993 | 0.000 | 32.736 | 1.6 × 104 |
| MAG | 335.21721 | 0.001 | 20.581 | 2.0 × 104 |
| MGDG | 763.49932 | 0.003 | 34.228 | 2.9 × 104 |
| PQMS | 394.14324 | 0.003 | 25.013 | 9.3 × 103 |
| FA | 251.16223 | 0.004 | 17.598 | 2.2 × 104 |
| PQMS | 353.22855 | 0.009 | 18.025 | 1.6 × 104 |
| MAG | 335.2178 | 0.010 | 22.025 | 5.1 × 104 |
| DAG | 589.48208 | 0.013 | 33.961 | 4.9 × 103 |
| FA | 282.27723 | 0.014 | 29.775 | 5.0 × 103 |
| DAG | 553.29857 | 0.015 | 19.188 | 2.4 × 104 |
| MGDG | 723.50568 | 0.016 | 32.744 | 1.0 × 104 |
| MGDG | 791.53029 | 0.016 | 33.979 | 2.7 × 103 |
| PQMS | 391.22303 | 0.017 | 33.681 | 4.5 × 103 |
| DAG | 563.46758 | 0.018 | 33.681 | 3.3 × 104 |
| DAG | 563.46711 | 0.018 | 31.362 | 3.3 × 103 |
| MAG | 335.2565 | 0.018 | 33.681 | 2.8 × 103 |
| DAG | 545.45635 | 0.018 | 33.681 | 4.7 × 103 |
| MGDG | 707.51071 | 0.018 | 33.681 | 8.6 × 103 |
| MGDG | 741.51706 | 0.018 | 34.038 | 7.9 × 103 |
| MGDG | 760.55916 | 0.019 | 35.046 | 8.6 × 103 |
| DAG | 561.45171 | 0.019 | 34.034 | 1.3 × 104 |
| FA | 350.15251 | 0.021 | 24.390 | 8.1 × 103 |
| DAG | 579.2844 | 0.022 | 24.155 | 1.3 × 104 |
| DGDG | 909.55839 | 0.024 | 34.598 | 1.4 × 104 |
| MGDG | 725.52141 | 0.027 | 33.704 | 4.8 × 103 |
| DAG | 563.46753 | 0.029 | 34.951 | 8.0 × 103 |
| FA | 289.17797 | 0.031 | 18.708 | 3.5 × 104 |
| DAG | 579.28396 | 0.036 | 20.103 | 9.1 × 103 |
| DGDG | 911.57439 | 0.039 | 35.657 | 1.7 × 104 |
| PQMS | 455.1573 | 0.041 | 5.270 | 6.3 × 103 |
| MGDG | 807.52642 | 0.048 | 33.090 | 5.1 × 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cegłowska, M.; Konkel, R.; Mazur-Marzec, H. Cytotoxic Activity of the Baltic Cyanobacterium Pseudanabaena galeata CCNP1313. Toxins 2025, 17, 586. https://doi.org/10.3390/toxins17120586
Cegłowska M, Konkel R, Mazur-Marzec H. Cytotoxic Activity of the Baltic Cyanobacterium Pseudanabaena galeata CCNP1313. Toxins. 2025; 17(12):586. https://doi.org/10.3390/toxins17120586
Chicago/Turabian StyleCegłowska, Marta, Robert Konkel, and Hanna Mazur-Marzec. 2025. "Cytotoxic Activity of the Baltic Cyanobacterium Pseudanabaena galeata CCNP1313" Toxins 17, no. 12: 586. https://doi.org/10.3390/toxins17120586
APA StyleCegłowska, M., Konkel, R., & Mazur-Marzec, H. (2025). Cytotoxic Activity of the Baltic Cyanobacterium Pseudanabaena galeata CCNP1313. Toxins, 17(12), 586. https://doi.org/10.3390/toxins17120586

