Renal Effects of Sulfated Polysaccharides from the Seaweed Gracilaria cornea
Abstract
1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Study Compliance
5.2. Algal Material and Extraction of Sulfated Polysaccharides
5.3. Isolated Kidney Perfusion
5.4. In Vitro Cytotoxicity Assays
5.5. Flow Cytometry Analysis of Cell Death
5.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vanden Berghe, T.; Grootjans, S.; Goossens, V.; Dondelinger, Y.; Krysko, D.; Takahashi, N.; Vandenabeele, P. Determination of apoptotic and necrotic cell death in vitro and in vivo. Methods 2013, 61, 117–129. [Google Scholar] [CrossRef]
- Boyd, W.C.; Almodovar, L.R.; Boyd, L.G. Agglutinin in marine algae for human erythrocytes. Transfusion 1966, 6, 82–83. [Google Scholar] [CrossRef]
- Marinho-Soriano, E. Agar polysaccharides from Gracilaria species (Rhodophyta, Gracilariaceae). J. Biotechnol. 2001, 89, 81–84. [Google Scholar] [CrossRef]
- Maciel, J.S.; Chaves, L.S.; Souza, B.W.S.; Teixeira, D.I.A.; Freitas, A.L.P.; Feitosa, J.P.A.; de Paula, R.C.M. Structural characterization of cold extracted fraction of soluble sulfated polysaccharides from red seaweed Gracilaria birdiae. Carbohydr. Polym. 2008, 71, 559–565. [Google Scholar] [CrossRef]
- Dietrich, C.P.; Dietrich, S.M. Electrophoretic behavior of acidic mucopolysaccharides in diamine buffers. Anal. Biochem. 1976, 70, 645–647. [Google Scholar]
- Wijesekara, I.; Pangestuti, R.; Kim, S.K. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr. Polym. 2011, 81, 14–21. [Google Scholar] [CrossRef]
- Lins, K.O.; Bezerra, D.P.; Alves, A.P.N.; Alencar, N.M.; Lima, M.W.; Torres, V.M.; Farias, W.R.; Pessoa, C.; de Moraes, M.O.; Costa-Lotufo, L.V. Antitumor properties of a sulfated polysaccharide from the red seaweed Champia feldmannii. J. Appl. Toxicol. 2009, 29, 20–26. [Google Scholar] [CrossRef]
- Murad, H.; Hawat, M.; Ekhtiar, A.; AlJapawe, A.; Abbas, A.; Darwish, H.; Sbenati, O.; Ghannam, A. G1-phase cell cycle arrest and apoptosis in MDA-MB-231 breast cancer cells by sulfated polysaccharide from Laurencia papillosa. Cancer Cell Int. 2016, 16, 39. [Google Scholar] [CrossRef] [PubMed]
- Namvar, F.; Mohamad, R.; Baharara, J.; Zafar-Balanejad, S.; Fargahi, F.; Rahman, H.S. Polyphenol-rich seaweed (Sargassum muticum) shows antioxidant and antiproliferative effects. BioMed Res. Int. 2013, 2013, 604787. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.A.G.; Vanderlei, E.D.S.O.; Quinderé, A.L.G.; Fontes, B.P.; Benevides, N.M.B. Polissacarídeos sulfatados das clorofíceas Caulerpa racemosa e C. cupressoides—Extração e atividade anticoagulante. Acta Sci. Biol. Sci. 2010, 32, 113–120. [Google Scholar] [CrossRef]
- Rodrigues, J.A.G.; Torres, V.M.; de Alencar, D.B.; Sampaio, A.H.; Farias, W. Extração e atividade anticoagulante de Halymenia pseudofloresia. Rev. Cienc. Agron. 2009, 40, 224–231. [Google Scholar]
- Hayashi, K.; Hayashi, T.; Kojima, I. A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: In vitro and ex vivo evaluation of anti-herpes simplex virus and anti-HIV activities. AIDS Res. Hum. Retroviruses 1996, 12, 1463–1471. [Google Scholar] [CrossRef]
- Talarico, L.B.; Pujol, C.A.; Zibetti, R.G.M.; Faría, P.C.S.; Noseda, M.D.; Duarte, M.E.R.; Damonte, E.B. The antiviral activity of sulfated polysaccharides against dengue virus is dependent on virus serotype and host cell. Antivir. Res. 2005, 66, 103–110. [Google Scholar] [CrossRef]
- Furuno, A.; Watari, K.; Nakamura, M.; Fukunaga, Y.; Jung, J.H.; Ono, M. A natural anti-inflammatory enone fatty acid inhibits angiogenesis via NF-κB signaling in endothelial cells. Int. J. Oncol. 2011, 38, 493–501. [Google Scholar]
- Queiroz, I.N.L. Atividade Antitrombótica dos Polissacarídeos Sulfatados da Alga Vermelha Gelidiella acerosa. Master’s Thesis, Universidade Federal do Ceará (UFC), Fortaleza, Brazil, 2010. [Google Scholar]
- Coura, C.O.; de Araújo, I.W.; Vanderlei, E.S.; Rodrigues, J.A.; Quinderé, A.L.; Fontes, B.P.; de Queiroz, I.N.; de Menezes, D.B.; Bezerra, M.M.; e Silva, A.A.; et al. Antinociceptive and anti-inflammatory activities of sulphated polysaccharides from the red seaweed Gracilaria cornea. Basic Clin. Pharmacol. Toxicol. 2012, 110, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Fonteles, M.C.; Cohen, J.J.; Black, A.J.; Wertheim, S.J. Support of renal kidney function by long-chain fatty acids derived from renal tissue. Am. J. Physiol. 1983, 244, F235–F246. [Google Scholar] [CrossRef] [PubMed]
- Melo, M.R.S.; Feitosa, J.P.A.; Freitas, A.L.P.; De Paula, R.C.M. Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria cornea. Carbohydr. Polym. 2002, 49, 491–498. [Google Scholar] [CrossRef]
- Dantas, R.T.; Jorge, A.R.C.; Jorge, R.J.B.; Lima, D.B.; Torres, A.F.C.; Toyama, M.H.; Monteiro, H.S.A.; Martins, A.M.C. L-amino acid oxidase from Bothrops marajoensis causes nephrotoxicity in isolated perfused kidney and cytotoxicity in MDCK renal cells. Toxicon 2015, 104, 52–56. [Google Scholar] [CrossRef]
- Peixoto, E.B.M.I.; Collares-Buzato, C.B. Protamine-induced epithelial barrier disruption in MDCK cells. Cell Struct. Funct. 2005, 29, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Sakaew, W.; Phanphak, J.; Somintara, S.; Hipkaeo, W.; Wongprasert, K.; Kovensky, J.; Pariwatthanakun, C.; Rudtanatip, T. Increased Sulfation in Gracilaria fisheri Sulfated Galactans Enhances Renal Protective Effects against Sodium Oxalate-Induced Oxidative Stress and Apoptosis in HK-2 Cells. Mar. Drugs 2022, 20, 382. [Google Scholar] [CrossRef]
- Yeh, C.-C.; Tseng, C.-N.; Yang, J.-I.; Huang, H.-W.; Fang, Y.; Tang, J.-Y.; Chang, F.-R.; Chang, H.-W. Apoptosis induction in Ca9-22 oral cancer cells by Gracilaria tenuistipitata. Molecules 2012, 17, 10916–10927. [Google Scholar] [CrossRef]
- Tveden-Nyborg, P.; Yang, B.; Simonsen, U.; Lykkesfeldt, J. BCPT perspectives on natural product studies. Clin. Pharmacol. Toxicol. 2024, 135, 782–785. [Google Scholar] [CrossRef]
- Li, X.; Bernardino, S.; Bernardino, R.; Afonso, C. Effects of marine-derived polysaccharides on renal function in animal models. Mar. Drugs 2021, 19, 123–134. [Google Scholar]
- Zhong, Q.; Wei, B.; Wang, S.; Ke, S.; Chen, J.; Zhang, H.; Wang, H. The Antioxidant Activity of Polysaccharides Derived from Marine Organisms: An Overview. Mar. Drugs 2019, 17, 674. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Kim, G.Y.; Nam, T.J.; Kim, N.D.; Choi, H.Y. Fucoidan induces apoptosis and autophagy in AGS cells. J. Food Sci. 2011, 76, T77–T83. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Zhang, Z.; Li, Z. Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. Int. J. Biol. Macromol. 2008, 42, 127–132. [Google Scholar] [CrossRef]
- Kim, K.J.; Yoon, K.Y.; Kim, D.K. Anticancer potential of fucoidan in human leukemia cells: Activation of caspases and degradation of PARP. Mar. Drugs 2012, 10, 2487–2501. [Google Scholar]
- Xie, P.; Fujii, I.; Zhao, J.; Shinohara, M.; Matsukura, M. Polysaccharide from algae extract induces apoptosis in gastric carcinoma via ROS/JNK. Int. J. Oncol. 2016, 49, 1561–1568. [Google Scholar] [CrossRef]
- Xie, P.; Horio, F.; Fujii, I.; Zhao, J.; Shinohara, M.; Matsukura, M. Algae-derived polysaccharide inhibits cancer progression via JNK pathway. Int. J. Oncol. 2018, 52, 1380–1390. [Google Scholar]
- de Jesus Raposo, M.F.; De Morais, A.M.B.; De Morais, R.M.S.C. Marine Polysaccharides from Algae with Potential Biomedical Applications. Mar. Drugs 2015, 13, 2967–3028. [Google Scholar] [CrossRef]
- Lee, J.B.; Hayashi, K.; Hashimoto, M.; Nakano, T.; Hayashi, T. Novel antiviral fucoidan from sporophyll of Undaria pinnatifida (Mekabu). Chem. Pharm. Bull. 2004, 52, 1091–1094. [Google Scholar] [CrossRef] [PubMed]
- Yng, L.; Juan, Q.; Yinghui, C.; Dong, L.; Meng, L.; Yanxia, Q.; Jing, L.; Quiancheng, Z.; Zhibo, L. Marine Sulfated Polysaccharides: Preventive and Therapeutic Potential in Health Promotion and Disease Prevention. Mar. Drugs 2019, 19, 608. [Google Scholar]
- Shikov, A.N.; Flisyuk, E.V.; Obluchinskaya, E.D.; Pozharitskaya, O.N. Pharmacokinetics of Marine-Derived Drugs. Mar. Drugs 2020, 18, 557. [Google Scholar] [CrossRef]
- Warttinger, U.; Giese, C.; Harenberg, J.; Krämer, R. Direct quantification of brown algae-derived fucoidans in human plasma by a fluorescent probe assay. arXiv 2016, arXiv:1608.00108. [Google Scholar] [CrossRef]
- Dodgson, K.S.; Price, R.G. A note on the determination of the ester sulfato content of sulfated polysaccharides. Biochem. J. 1962, 10, 84–106. [Google Scholar]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 6, 28–350. [Google Scholar] [CrossRef]
- Martinez-Maldonado, M.; Opava-Stitzer, S. Freewater clearance curves during saline, mannitol, glucose and urea diuresis in the rat. J. Physiol. 1978, 280, 487–497. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Norões, T.B.S.; Moinhos, S.; Monteiro, H.S.A.; Martins, A.M.C.; Vieira, R.P.G.; Silva, C.G. Renal Effects of Sulfated Polysaccharides from the Seaweed Gracilaria cornea. Toxins 2025, 17, 499. https://doi.org/10.3390/toxins17100499
Norões TBS, Moinhos S, Monteiro HSA, Martins AMC, Vieira RPG, Silva CG. Renal Effects of Sulfated Polysaccharides from the Seaweed Gracilaria cornea. Toxins. 2025; 17(10):499. https://doi.org/10.3390/toxins17100499
Chicago/Turabian StyleNorões, Terentia Batista Sá, Sophia Moinhos, Helena Serra Azul Monteiro, Alice Maria Costa Martins, Ricardo Parente Garcia Vieira, and Claudio Gleidiston Silva. 2025. "Renal Effects of Sulfated Polysaccharides from the Seaweed Gracilaria cornea" Toxins 17, no. 10: 499. https://doi.org/10.3390/toxins17100499
APA StyleNorões, T. B. S., Moinhos, S., Monteiro, H. S. A., Martins, A. M. C., Vieira, R. P. G., & Silva, C. G. (2025). Renal Effects of Sulfated Polysaccharides from the Seaweed Gracilaria cornea. Toxins, 17(10), 499. https://doi.org/10.3390/toxins17100499