Proteome Analysis of the Six-Eyed Sand-Spider Sicarius thomisoides Venom
Abstract
1. Introduction
2. Results
2.1. Bidimentional Electrophoresis of Sicarius thomisoides Venom
2.2. Fractionation of the Venom of Sicarius thomisoides by RP-HPLC
2.3. Identification of Protein Components of S. thomisoides Venom Using Mass Spectrometry
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Spiders and Venoms
5.2. 1D-Electrophoretic Separation of Sicarius thomisoides Venom
5.3. Bidimentional Electrophoretical Separation of S. thomisoides Venom
5.4. Western Blot of Sicarius thomisoides Venom with Anti-Phospholipase D Antibody
5.5. RP-HPLC of Venoms and Fractioning of S. thomisoides Venom
5.6. Phospholipase D Activity of S. thomisoides Venom Fractions
5.7. Phospholipase D Detection from S. thomisoides Venom Fractions Using Western Blot
5.8. Sample Preparation of S. thomisoides Venom for Mass Spectrometry
5.9. Reverse-Phase Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS) and Sequence Analysis of Proteins from the Venom of Sicarius thomisoides
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WSC. World Spider Catalog. Version 26. Natural History Museum Bern. Available online: http://wsc.nmbe.ch (accessed on 7 May 2025).
- Magalhaes, I.L.F.; Brescovit, A.D.; Santos, A.J. The six-eyed sand spiders of the genus Sicarius (Araneae: Haplogynae: Sicariidae) from the Brazilian Caatinga. Zootaxa 2013, 3599, 101–135. [Google Scholar] [CrossRef]
- Magalhaes, I.L.F.; Santos, A.J.; Ramírez, M.J. Incorporating topological and age uncertainty into event-based biogeography of sand spiders supports Paleo-Islands in Galapagos and ancient connections among neotropical dry forests. Diversity 2021, 13, 418. [Google Scholar] [CrossRef]
- Magalhaes, I.L.F.; Brescovit, A.D.; Santos, A.J. Phylogeny of Sicariidae spiders (Araneae: Haplogynae), with a monograph on neotropical Sicarius. Zool. J. Linn. Soc. 2017, 179, 767–864. Available online: https://academic.oup.com/zoolinnean/article-abstract/179/4/767/3076119 (accessed on 7 May 2025). [CrossRef]
- Magalhaes, I.L.F. Sicarius thomisoides, la araña de la arena. In Arácnidos comunes de Chile; Taucare-Ríos, A., Canals, M., Eds.; Revista Parasitología Latinoamericana: Santiago, Chile, 2021; Volume 20, pp. 183–187. [Google Scholar]
- Taucare-Rios, A.; Veloso, C.; Bustamante, R.O. Thermal niche conservatism in an environmental gradient in the spider Sicarius thomisoides (Araneae: Sicariidae): Implications for microhabitat selection. J. Therm. Biol. 2018, 78, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Levi, H.W. Predatory and sexual behavior of the spider Sicarius (Araneae: Sicariidae). Psyche A J. Èntomol. 1967, 74, 320–330. [Google Scholar] [CrossRef]
- Binford, G.J.; Callahan, M.S.; Bodner, M.R.; Rynerson, M.R.; Núñez, P.B.; Ellison, C.E.; Duncan, R.P. Phylogenetic relationships of Loxosceles and Sicarius spiders are consistent with western Gondwanan vicariance. Mol. Phylogenet. Evol. 2008, 49, 538–553. [Google Scholar] [CrossRef] [PubMed]
- Arán-Sekul, T.; Perčić-Sarmiento, I.; Valencia, V.; Olivero, N.; Rojas, J.M.; Araya, J.E.; Taucare-Ríos, A.; Catalán, A. Toxicological characterization and phospholipase D activity of the venom of the spider Sicarius thomisoides. Toxins 2020, 12, 702. [Google Scholar] [CrossRef]
- Binford, G.J.; Bodner, M.R.; Cordes, M.H.J.; Baldwin, K.L.; Rynerson, M.R.; Burns, S.N.; Zobel-Thropp, P.A. Molecular evolution, functional variation, and proposed nomenclature of the gene family that includes sphingomyelinase D in Sicariid spider venoms. Mol. Biol. Evol. 2008, 26, 547–566. [Google Scholar] [CrossRef]
- Binford, G.J.; Wells, M.A. The phylogenetic distribution of sphingomyelinase D activity in venoms of Haplogyne spiders. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2003, 135, 25–33. [Google Scholar] [CrossRef]
- Lopes, P.H.; Bertani, R.; Gonçalves-de-Andrade, R.M.; Nagahama, R.H.; van den Berg, C.W.; Tambourgi, D.V. Venom of the Brazilian spider Sicarius ornatus (Araneae, Sicariidae) contains active sphingomyelinase D: Potential for toxicity after envenomation. PLoS Negl. Trop. Dis. 2013, 7, e2394. [Google Scholar] [CrossRef]
- Lopes, P.H.; Fukushima, C.S.; Shoji, R.; Bertani, R.; Tambourgi, D.V. Sphingomyelinase D activity in Sicarius tropicus venom: Toxic potential and clues to the evolution of SMases D in the Sicariidae family. Toxins 2021, 13, 256. [Google Scholar] [CrossRef]
- Gremski, L.H.; da Justa, H.C.; da Silva, T.P.; Polli, N.L.C.; Antunes, B.C.; Minozzo, J.C.; Wille, A.C.M.; Senff-Ribeiro, A.; Arni, R.K.; Veiga, S.S. Forty years of the description of brown spider venom phospholipases-D. Toxins 2020, 12, 164. [Google Scholar] [CrossRef]
- Zobel-Thropp, P.A.; Bodner, M.R.; Binford, G.J. Comparative analyses of venoms from American and African Sicarius spiders that differ in sphingomyelinase D activity. Toxicon 2010, 55, 1274–1282. [Google Scholar] [CrossRef]
- Van Aswegen, G.; Van Rooyen, J.M.; Van Der Nest, D.G.; Veldman, F.J.; De Villiers, T.H.; Oberholzer, G. Venom of a six-eyed crab spider, Sicarius testaceus (Purcell, 1908), causes necrotic and haemorrhagic lesions in the rabbit. Toxicon 1997, 35, 1149–1152. [Google Scholar] [CrossRef]
- Lee, S.; Lynch, K.R. Brown recluse spider (Loxosceles reclusa) venom phospholipase D (PLD) generates lysophosphatidic acid (LPA). Biochem. J. 2005, 391, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Lajoie, D.M.; Roberts, S.A.; Zobel-Thropp, P.A.; Delahaye, J.L.; Bandarian, V.; Binford, G.J.; Cordes, M.H.J. Variable substrate preference among phospholipase D toxins from Sicariid spiders. J. Biol. Chem. 2015, 290, 10994–11007. [Google Scholar] [CrossRef] [PubMed]
- Chaves-Moreira, D.; Matsubara, F.H.; Schemczssen-Graeff, Z.; De Bona, E.; Heidemann, V.R.; Guerra-Duarte, C.; Gremski, L.H.; Chávez-Olórtegui, C.; Senff-Ribeiro, A.; Chaim, O.M.; et al. Brown spider (Loxosceles) venom toxins as potential biotools for the development of novel therapeutics. Toxins 2019, 11, 355. [Google Scholar] [CrossRef] [PubMed]
- Taucare-Ríos, A.; Veloso, C.; Bustamante, R.O. Microhabitat selection in the sand recluse spider (Sicarius thomisoides): The effect of rock size and temperature. J. Nat. Hist. 2017, 51, 2199–2210. [Google Scholar] [CrossRef]
- Taucare-Ríos, A. Predation on the gecko Phyllodactylus gerrhopygus (Wiegmann) (Squamata: Gekkonidae) by the six-eyed sand spider Sicarius thomisoides (Walckenaer (Araneae: Sicariidae). Rev. De. La. Soc. Entomol. Argent. 2020, 79, 48–51. Available online: https://www.biotaxa.org/RSEA/article/view/62813 (accessed on 7 May 2025). [CrossRef]
- Pekár, S.; Bočánek, O.; Michálek, O.; Petráková, L.; Haddad, C.R.; Šedo, O.; Zdráhal, Z. Venom gland size and venom complexity—Essential trophic adaptations of venomous predators: A case study using spiders. Mol. Ecol. 2018, 27, 4257–4269. [Google Scholar] [CrossRef]
- Arán-Sekul, T.; Rojas, J.M.; Subiabre, M.; Cruz, V.; Cortés, W.; Osorio, L.; González, J.; Araya, J.E.; Catalán, A. Heterophilic antibodies in sera from individuals without loxoscelism cross-react with phospholipase D from the venom of Loxosceles and Sicarius spiders. J. Venom. Anim. Toxins Incl. Trop. Dis. 2018, 24, 18. [Google Scholar] [CrossRef]
- Catalán, A.; García, C.; Sambra, V.; Cadena, N.; Rojas, J.; Arán-Sekul, T.; San Francisco, J.; Vásquez-Saez, V.; Muñoz, C.; Vásquez, A.; et al. Predictive analysis of B-Cell antigenic epitopes in phospholipase D toxins from Loxosceles spiders. Toxicon X 2025, 26, 100222. [Google Scholar] [CrossRef]
- Catalán, A.; Cortes, W.; Sagua, H.; González, J.; Araya, J.E. Two new phospholipase D isoforms of Loxosceles laeta: Cloning, heterologous expression, functional characterization, and potential biotechnological application. J. Biochem. Mol. Toxicol. 2011, 25, 393–403. [Google Scholar] [CrossRef]
- de Giuseppe, P.O.; Ullah, A.; Silva, D.T.; Gremski, L.H.; Wille, A.C.M.; Chaves Moreira, D.; Ribeiro, A.S.; Chaim, O.M.; Murakami, M.T.; Veiga, S.S.; et al. Structure of a novel Class II phospholipase D: Catalytic cleft is modified by a disulphide bridge. Biochem. Biophys. Res. Commun. 2011, 409, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.T.; Freitas Fernandes-Pedrosa, M.; de Andrade, S.A.; Gabdoulkhakov, A.; Betzel, C.; Tambourgi, D.V.; Arni, R.K. Structural insights into the catalytic mechanism of sphingomyelinases D and evolutionary relationship to Glycerophosphodiester phosphodiesterases. Biochem. Biophys. Res. Commun. 2006, 342, 323–329. [Google Scholar] [CrossRef] [PubMed]
- de Santi Ferrara, G.I.; Fernandes-Pedrosa, M.d.F.; Junqueira-de-Azevedo, I.d.L.M.; Gonçalves-de-Andrade, R.M.; Portaro, F.C.V.; Manzoni-de-Almeida, D.; Murakami, M.T.; Arni, R.K.; van den Berg, C.W.; Ho, P.L.; et al. SMase II, a new sphingomyelinase D from Loxosceles laeta venom gland: Molecular cloning, expression, function and structural analysis. Toxicon 2009, 53, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Machado, L.F.; Laugesen, S.; Botelho, E.D.; Ricart, C.A.O.; Fontes, W.; Barbaro, K.C.; Roepstorff, P.; Valle De Sousa, M. Proteome analysis of brown spider venom: Identification of Loxnecrogin isoforms in Loxosceles gaucho venom. Proteomics 2005, 5, 2167–2176. [Google Scholar] [CrossRef]
- Cunha, R.B.; Barbaro, K.C.; Muramatsu, D.; Portaro, F.C.V.; Fontes, W.; Valle de Sousa, M. Purification and characterization of Loxnecrogin, a dermonecrotic toxin from Loxosceles gaucho brown spider venom. J. Protein Chem. 2003, 22, 135–146. [Google Scholar] [CrossRef]
- Silvestre, F.G.; de Castro, C.S.; de Moura, J.F.; Giusta, M.S.; De Maria, M.; Álvares, É.S.S.; Lobato, F.C.F.; Assis, R.A.; Gonçalves, L.A.; Gubert, I.C.; et al. Characterization of the venom from the Brazilian brown spider Loxosceles similis Moenkhaus, 1898 (Araneae, Sicariidae). Toxicon 2005, 46, 927–936. [Google Scholar] [CrossRef]
- Luciano, M.N.; da Silva, P.H.; Chaim, O.M.; dos Santos, V.L.P.; Franco, C.R.C.; Soares, M.F.S.; Zanata, S.M.; Mangili, O.C.; Gremski, W.; Veiga, S.S. Experimental evidence for a direct cytotoxicity of Loxosceles intermedia (Brown spider) venom in renal tissue. J. Histochem. Cytochem. 2004, 52, 455–467. [Google Scholar] [CrossRef]
- Pretel, F.; Gonçalves-de-Andrade, R.M.; Magnoli, F.C.; da Silva, M.E.R.; Ferreira, J.M.C.; van den Berg, C.W.; Tambourgi, D.V. Analysis of the toxic potential of venom from Loxosceles adelaida, a Brazilian brown spider from Karstic areas. Toxicon 2005, 45, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, L.D.; Dias, N.B.; Pinto, R.A.S.; Palma, M.S. Brown recluse spider venom: Proteomic analysis and proposal of a putative mechanism of action. Protein Pept. Lett. 2009, 16, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Trevisan-Silva, D.; Bednaski, A.V.; Fischer, J.S.G.; Veiga, S.S.; Bandeira, N.; Guthals, A.; Marchini, F.K.; Leprevost, F.V.; Barbosa, V.C.; Senff-Ribeiro, A.; et al. A multi-protease, multi-dissociation, Bottom-up-to-Top-down proteomic view of the Loxosceles intermedia venom. Sci. Data 2017, 4, 170090. [Google Scholar] [CrossRef] [PubMed]
- Gremski, L.H.; da Silveira, R.B.; Chaim, O.M.; Probst, C.M.; Ferrer, V.P.; Nowatzki, J.; Weinschutz, H.C.; Madeira, H.M.; Gremski, W.; Nader, H.B.; et al. A novel expression profile of the Loxosceles intermedia spider venomous gland revealed by transcriptome analysis. Mol. Biosyst. 2010, 6, 2403. [Google Scholar] [CrossRef]
- Fernandes-Pedrosa, M.d.F.; Junqueira-de-Azevedo, I.d.L.; Gonçalves-de-Andrade, R.M.; Kobashi, L.S.; Almeida, D.D.; Ho, P.L.; Tambourgi, D.V. Transcriptome analysis of Loxosceles laeta (Araneae, Sicariidae) spider venomous gland using expressed sequence tags. BMC Genom. 2008, 9, 279. [Google Scholar] [CrossRef]
- Medina-Santos, R.; Fernandes Costa, T.G.; Silva de Assis, T.C.; Kalapothakis, Y.; de Almeida Lima, S.; do Carmo, A.O.; Gonzalez-Kozlova, E.E.; Kalapothakis, E.; Chávez-Olórtegui, C.; Guerra-Duarte, C. Analysis of NGS data from Peruvian Loxosceles laeta spider venom gland reveals toxin diversity. Comp. Biochem. Physiol. Part D Genom. Proteom. 2022, 43, 101017. [Google Scholar] [CrossRef]
- Dantas, A.E.; Carmo, A.O.; Horta, C.C.R.; Leal, H.G.; Oliveira-Mendes, B.B.R.; Martins, A.P.V.; Chávez-Olórtegui, C.; Kalapothakis, E. Description of Loxtox protein family and identification of a new group of phospholipases D from Loxosceles similis venom gland. Toxicon 2016, 120, 97–106. [Google Scholar] [CrossRef]
- Theodoro, J.L.; da Justa, H.C.; de Caires Schluga, P.H.; Fischer, M.L.; Minozzo, J.C.; Gremski, L.H.; Veiga, S.S. Subtranscriptome analysis of phospholipases D in Loxosceles venom glands: Confirmation of predominance, intra-species diversity, and description of novel isoforms. Int. J. Biol. Macromol. 2024, 280, 136108. [Google Scholar] [CrossRef]
- Dippenaar-Schoeman, A.S.; Haddad, C.R.; Foord, S.H.; Lotz, L.N. South African national survey of Arachnida photo identification guide: The Sicariidae of South Africa. Zenodo 2021, 1, 1–24. [Google Scholar] [CrossRef]
- Gremski, L.H.; da Justa, H.C.; Polli, N.L.C.; Schluga, P.H.d.C.; Theodoro, J.L.; Wille, A.C.M.; Senff-Ribeiro, A.; Veiga, S.S. Systemic loxoscelism, less frequent but more deadly: The involvement of phospholipases D in the pathophysiology of envenomation. Toxins 2022, 15, 17. [Google Scholar] [CrossRef]
- da Silveira, R.B.; Wille, A.C.M.; Chaim, O.M.; Appel, M.H.; Silva, D.T.; Franco, C.R.C.; Toma, L.; Mangili, O.C.; Gremski, W.; Dietrich, C.P.; et al. Identification, cloning, expression and functional characterization of an Astacin-like metalloprotease toxin from Loxosceles intermedia (Brown spider) venom. Biochem. J. 2007, 406, 355–363. [Google Scholar] [CrossRef]
- Trevisan-Silva, D.; Bednaski, A.V.; Gremski, L.H.; Chaim, O.M.; Veiga, S.S.; Senff-Ribeiro, A. Differential metalloprotease content and activity of three Loxosceles spider venoms revealed using two-dimensional electrophoresis approaches. Toxicon 2013, 76, 11–22. [Google Scholar] [CrossRef]
- Trevisan-Silva, D.; Gremski, L.H.; Chaim, O.M.; da Silveira, R.B.; Meissner, G.O.; Mangili, O.C.; Barbaro, K.C.; Gremski, W.; Veiga, S.S.; Senff-Ribeiro, A. Astacin-like metalloproteases are a gene family of toxins present in the venom of different species of the brown spider (genus Loxosceles). Biochimie 2010, 92, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Gomis-Rüth, F.X.; Stöcker, W. Structural and evolutionary insights into Astacin metallopeptidases. Front. Mol. Biosci. 2023, 9, 1080836. [Google Scholar] [CrossRef] [PubMed]
- Medina-Santos, R.; Guerra-Duarte, C.; de Almeida Lima, S.; Costal-Oliveira, F.; Alves de Aquino, P.; Oliveira do Carmo, A.; Ferreyra, C.B.; Gonzalez-Kozlova, E.E.; Kalapothakis, E.; Chávez-Olórtegui, C. Diversity of Astacin-like metalloproteases identified by transcriptomic analysis in Peruvian Loxosceles laeta spider venom and in vitro activity characterization. Biochimie 2019, 167, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Feitosa, L.; Gremski, W.; Veiga, S.S.; Elias, M.C.Q.B.; Graner, E.; Mangili, O.C.; Brentani, R.R. Detection and characterization of metalloproteinases with gelatinolytic, fibronectinolytic and fibrinogenolytic activities in brown spider (Loxosceles intermedia) venom. Toxicon 1998, 36, 1039–1051. [Google Scholar] [CrossRef]
- Gremski, L.H.; Matsubara, F.H.; da Justa, H.C.; Schemczssen-Graeff, Z.; Baldissera, A.B.; Schluga, P.H.d.C.; Leite, I.d.O.; Boia-Ferreira, M.; Wille, A.C.M.; Senff-Ribeiro, A.; et al. Brown spider venom toxins: What are the functions of Astacins, serine proteases, Hyaluronidases, Allergens, TCTP, Serpins and Knottins? J. Venom. Anim. Toxins Incl. Trop. Dis. 2021, 27, e20200188. [Google Scholar] [CrossRef]
- da Silveira, R.B.; dos Santos Filho, J.F.; Mangili, O.C.; Veiga, S.S.; Gremski, W.; Nader, H.B.; von Dietrich, C.P. Identification of proteases in the extract of venom glands from brown spiders. Toxicon 2002, 40, 815–822. [Google Scholar] [CrossRef]
- Veiga, S.S.; da Silveira, R.B.; Dreyfuss, J.L.; Haoach, J.; Pereira, A.M.; Mangili, O.C.; Gremski, W. Identification of high molecular weight serine-proteases in Loxosceles intermedia (Brown spider) venom. Toxicon 2000, 38, 825–839. [Google Scholar] [CrossRef]
- Siezen, R.J.; Leunissen, J.A.M. Subtilases: The superfamily of Subtilisin-like serine proteases. Protein Sci. 1997, 6, 501–523. [Google Scholar] [CrossRef]
- Zobel-Thropp, P.A.; Mullins, J.; Kristensen, C.; Kronmiller, B.A.; David, C.L.; Breci, L.A.; Binford, G.J. Not so dangerous after All? venom composition and potency of the Pholcid (Daddy Long-Leg) spider Physocyclus mexicanus. Front. Ecol. Evol. 2019, 7, 256. [Google Scholar] [CrossRef] [PubMed]
- Ushkaryov, Y.A.; Volynski, K.E.; Ashton, A.C. The multiple actions of black widow spider toxins and their selective use in neurosecretion studies. Toxicon 2004, 43, 527–542. [Google Scholar] [CrossRef] [PubMed]
- De Castro, C.S.; Silvestre, F.G.; Araújo, S.C.; de Menezes Yazbeck, G.; Mangili, O.C.; Cruz, I.; Kalapothakis, E. Identification and molecular cloning of insecticidal toxins from the venom of the brown spider Loxosceles intermedia. Toxicon 2004, 44, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, F.H.; Gremski, L.H.; Meissner, G.O.; Constantino Lopes, E.S.; Gremski, W.; Senff-Ribeiro, A.; Chaim, O.M.; Veiga, S.S. A novel ICK peptide from the Loxosceles intermedia (Brown spider) venom gland: Cloning, heterologous expression and immunological cross-reactivity approaches. Toxicon 2013, 71, 147–158. [Google Scholar] [CrossRef]
- Dutertre, S.; Lewis, R.J. Use of venom peptides to probe ion channel structure and function. J. Biol. Chem. 2010, 285, 13315–13320. [Google Scholar] [CrossRef]
- Loening, N.M.; Wilson, Z.N.; Zobel-Thropp, P.A.; Binford, G.J. Solution structures of two homologous venom peptides from Sicarius dolichocephalus. PLoS ONE 2013, 8, e54401. [Google Scholar] [CrossRef]
- Kasahara, M.; Gutknecht, J.; Brew, K.; Spurr, N.; Goodfellow, P.N. Cloning and mapping of a testis-specific gene with sequence similarity to a sperm-coating glycoprotein gene. Genomics 1989, 5, 527–534. [Google Scholar] [CrossRef]
- Barua, A.; Mikheyev, A.S. Many options, few solutions: Over 60 my snakes converged on a few optimal venom formulations. Mol. Biol. Evol. 2019, 36, 1964–1974. [Google Scholar] [CrossRef]
- Tadokoro, T.; M. Modahl, C.; Maenaka, K.; Aoki-Shioi, N. Cysteine-Rich Secretory Proteins (CRISPs) from venomous snakes: An overview of the functional Diversity in a large and underappreciated superfamily. Toxins 2020, 12, 175. [Google Scholar] [CrossRef]
- Lu, G.; Villalba, M.; Coscia, M.R.; Hoffman, D.R.; King, T.P. Sequence analysis and antigenic cross-reactivity of a venom allergen, Antigen 5, from hornets, wasps, and yellow jackets. J. Immunol. 1993, 150, 2823–2830. [Google Scholar] [CrossRef]
- Kiba, A.; Nishihara, M.; Nakatsuka, T.; Yamamura, S. Pathogenesis-related Protein 1 homologue is an antifungal protein in Wasabia japonica leaves and confers resistance to Botrytis cinerea in transgenic Tobacco. Plant Biotechnol. 2007, 24, 247–253. [Google Scholar] [CrossRef]
- King, T.P.; Spangfort, M.D. Structure and biology of stinging insect venom allergens. Int. Arch. Allergy Immunol. 2000, 123, 99–106. [Google Scholar] [CrossRef]
- Gertsch, W.J. The spider genus Loxosceles in South America (Araneae Scytodidae). Bull. Am. Mus. Nat. Hist. 1967, 136, 117–174. [Google Scholar]
Category | Top Protein ID Sequence Match | Description/Function | N° Total Unique Sequences Detected | Predicted MW (kDa) * | Organism |
---|---|---|---|---|---|
Toxins | A0A0D4WV12 | Dermonecrotic toxin StSicTox-betaIB1i | 9 | 31.8 | Sicarius terrosus |
C0JB33 | Dermonecrotic toxin SpeSicTox-betaIB3 (Fragment) | 7 | 34.3 | Sicarius peruensis | |
C0JB34 | Dermonecrotic toxin SpeSicTox-betaIB4 (Fragment) | 1 | 31.8 | Sicarius peruensis | |
C0JB52 | Dermonecrotic toxin SpaSicTox-betaIF1 (Fragment) | 3 | 30.4 | Sicarius patagonicus | |
C0JB53 | Dermonecrotic toxin SpeSicTox-betaIF1 (Fragment) | 4 | 31.3 | Sicarius peruensis | |
C0JB54 | Dermonecrotic toxin StSicTox-betaIF1 (Fragment) | 2 | 32.1 | Sicarius terrosus | |
C0JB55 | Dermonecrotic toxin SdSicTox-betaIF1 (Fragment) | 3 | 31.8 | Sicarius damarensis | |
C0JB56 | Dermonecrotic toxin SpeSicTox-betaIIA3i (Fragment) | 2 | 31.7 | Sicarius peruensis | |
C0JB62 | Dermonecrotic toxin SpeSicTox-betaIIA2iv (Fragment) | 8 | 31.8 | Sicarius peruensis | |
C0JB65 | Dermonecrotic toxin SpeSicTox-betaIIA2v (Fragment) | 1 | 31.8 | Sicarius peruensis | |
C0JB70 | Dermonecrotic toxin SpaSicTox-betaIIA3 (Fragment) | 1 | 31.7 | Sicarius patagonicus | |
C0JB93 | Dermonecrotic toxin LspiSicTox-betaIII2 (Fragment) | 2 | 31.6 | Loxosceles spinulosa | |
C0JB94 | Dermonecrotic toxin LspiSicTox-betaIII1 (Fragment) | 1 | 31.9 | Loxosceles spinulosa | |
C0JB40 | Dermonecrotic toxin LcsSicTox-betaIC1 (Fragment) | 4 | 31.8 | Loxosceles spinulosa | |
C0JB41 | Dermonecrotic toxin LspiSicTox-betaIE2i (Fragment) | 1 | 31.2 | Loxosceles spinulosa | |
C0JB43 | Dermonecrotic toxin LspiSicTox-betaIE2iii (Fragment) | 2 | 31.2 | Loxosceles spinulosa | |
C0JB46 | Dermonecrotic toxin LspiSicTox-betaIE4i (Fragment) | 2 | 31.4 | Loxosceles spinulosa | |
A0A0D4WTV1 | Dermonecrotic toxin LarSicTox-betaID1 (Fragment) | 2 | 33.1 | Loxosceles arizonica | |
C0JB09 | Dermonecrotic toxin LarSicTox-alphaIII1 (Fragment) | 1 | 31.5 | Loxosceles arizonica | |
C0JB30 | Dermonecrotic toxin LarSicTox-alphaVII1 (Fragment) | 2 | 31.6 | Loxosceles arizonica | |
C0JB07 | Dermonecrotic toxin LapSicTox-alphaII1 (Fragment) | 1 | 31.2 | Loxosceles apachea | |
C0JB06 | Dermonecrotic toxin LvSicTox-alphaII1 (Fragment) | 3 | 31.5 | Loxosceles variegata | |
C0JB14 | Dermonecrotic toxin LhSicTox-alphaIV1i (Fragment) | 1 | 31.3 | Loxosceles hirsuta | |
A0A0E3STQ7 | Sphingomyelinase D-like protein (Fragment) | 2 | 31.1 | Loxosceles sp | |
A0A0E3SV20 | Sphingomyelinase D-like protein (Fragment) | 1 | 31.6 | Loxosceles rufescens | |
A0A1B2AS99 | Loxtox protein | 2 | 34.5 | Loxosceles similis | |
A0A1B2ASA6 | Loxtox protein (Fragment) | 1 | 30.7 | Loxosceles similis | |
A0A1B2ASA7 | Loxtox protein | 3 | 38.6 | Loxosceles similis | |
A0A1B2ASA9 | Loxtox protein (Fragment) | 2 | 20.9 | Loxosceles similis | |
A0A1B2ASB2 | Loxtox protein | 2 | 34.9 | Loxosceles similis | |
A0A1B2ASC7 | Loxtox protein | 5 | 34.8 | Loxosceles similis | |
A0A1B2ASF4 | Loxtox protein | 3 | 35.5 | Loxosceles similis | |
A0A1B2ASE8 | PLD-Ls protein | 1 | 54.3 | Loxosceles similis | |
A0A6B9KJ60 | Membrane metalloendopeptidase (Fragment) | 2 | 34.5 | Loxosceles reclusa | |
A0A6B9KRY4 | Membrane metalloendopeptidase (Fragment) | 3 | 59.6 | Loxosceles spinulosa | |
A0FKN6 | Astacin-like metalloprotease toxin 1 | 5 | 30.4 | Loxosceles intermedia | |
A0A6B9KDY5 | Neuroendocrine convertase S8 peptidase (Fragment) | 5 | 67.3 | Loxosceles rufescens | |
A0A6B9KDZ4 | Venom gland peptide U17-PHTX-Pmx1c | 2 | 9.9 | Loxosceles reclusa | |
A0A6B9KL70 | Venom allergen/CRISP (Fragment) | 2 | 46.4 | Loxosceles reclusa | |
Non-toxins | A0A343ZHI3 | Histone 3 (Fragment) | 4 | - | Loxosceles rufescens |
A0A6B9KE20 | Actin | 18 | - | Loxosceles arizonica | |
A0A6B9KL18 | Tropomyosin (Fragment) | 3 | - | Loxosceles rufescens | |
A0A023J1U5 | NADH dehydrogenase subunit 1 (Fragment) | 1 | - | Loxosceles sp | |
A0A023J2D9 | NADH dehydrogenase subunit 1 (Fragment) | 1 | - | Loxosceles sp | |
A0A023J4P5 | NADH dehydrogenase subunit 1 (Fragment) | 1 | - | Loxosceles rufescens | |
B8R316 | NADH-ubiquinone oxidoreductase chain 1 (Fragment) | 1 | - | Loxosceles sp | |
A0A4P8VXV3 | Cytochrome b | 1 | - | Loxosceles similis | |
A0A650CBZ5 | Cytochrome c oxidase subunit 1 (Fragment) | 1 | - | Loxosceles sp | |
A0A097HWB9 | Cytochrome c oxidase subunit 1 (Fragment) | 1 | - | Loxosceles rufescens | |
C1ITM5 | Cytochrome c oxidase subunit 1 (Fragment) | 1 | - | Loxosceles intermedia | |
C1ITN2 | Cytochrome c oxidase subunit 1 (Fragment) | 1 | - | Loxosceles spinulosa | |
C1ITN6 | Cytochrome c oxidase subunit 1 (Fragment) | 1 | - | Loxosceles spinulosa | |
C1ITP4 | Cytochrome c oxidase subunit 1 (Fragment) | 1 | - | Sicarius rupestris | |
C1ITP9 | Cytochrome c oxidase subunit 1 (Fragment) | 1 | - | Sicarius damarensis | |
C1ITQ3 | Cytochrome c oxidase subunit 1 (Fragment) | 1 | - | Sicarius terrosus | |
C1ITQ5 | Cytochrome c oxidase subunit 1 (Fragment) | 1 | - | Sicarius rugosus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arán-Sekul, T.; San Francisco, J.; Rojas, J.; Moon, K.-M.; Foster, L.; Catalán, A. Proteome Analysis of the Six-Eyed Sand-Spider Sicarius thomisoides Venom. Toxins 2025, 17, 486. https://doi.org/10.3390/toxins17100486
Arán-Sekul T, San Francisco J, Rojas J, Moon K-M, Foster L, Catalán A. Proteome Analysis of the Six-Eyed Sand-Spider Sicarius thomisoides Venom. Toxins. 2025; 17(10):486. https://doi.org/10.3390/toxins17100486
Chicago/Turabian StyleArán-Sekul, Tomás, Juan San Francisco, José Rojas, Kyung-Mee Moon, Leonard Foster, and Alejandro Catalán. 2025. "Proteome Analysis of the Six-Eyed Sand-Spider Sicarius thomisoides Venom" Toxins 17, no. 10: 486. https://doi.org/10.3390/toxins17100486
APA StyleArán-Sekul, T., San Francisco, J., Rojas, J., Moon, K.-M., Foster, L., & Catalán, A. (2025). Proteome Analysis of the Six-Eyed Sand-Spider Sicarius thomisoides Venom. Toxins, 17(10), 486. https://doi.org/10.3390/toxins17100486