Real-Time Observation of Clickable Cyanotoxin Synthesis in Bloom-Forming Cyanobacteria Microcystis aeruginosa and Planktothrix agardhii
Abstract
:1. Introduction
2. Results
2.1. Growth of Cyanobacteria in Strain Cultures During Time-Lapse Experiments Using Pulsed Feeding of Non-AAs
2.2. Observation of Clickable Peptide Synthesis in Cyanobacteria Strains During Time-Lapse Build Up and Decline Experiments
2.3. Dissolved Fraction of Clickable and Natural MC/AP Peptides
2.4. Relationship of Clickable MC/AP Peptide Synthesis to Growth in Cyanobacteria Strains During Time-Lapse Experiments
2.5. Relationship of Clickable MC/AP Peptide Content Decline and Growth in Cyanobacteria Strains During Time-Lapse Experiments
2.6. Fate of Non-Natural Amino Acids (Non-AAs) During Build Up and Decline
3. Discussion
3.1. Variable Efficiency of Clickable MC/AP Production Using Different Non-AAs
3.2. Effects of Non-AAs on Cell Division or Growth in Study Organisms
3.3. Decrease in Targeted MC/AP Content During Time-Lapse Experiment
4. Conclusions
5. Materials and Methods
5.1. Study Organisms and Growth Conditions
5.2. Cell Harvesting and Fixation
5.3. Peptide Extraction and HPLC-MS Analysis
5.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chorus, I.; Welker, M. (Eds.) Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management; Taylor & Francis: Boca Raton, FL, USA; World Health Organization: Geneva, Switzerland, 2021; ISBN 9781003081449. [Google Scholar]
- Fastner, J.; Humpage, A.R. 2.1 Hepatotoxic cyclic peptides—Microcystins and nodularins. In Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management; Chorus, I., Welker, M., Eds.; Taylor & Francis: Boca Raton, FL, USA; World Health Organization: Geneva, Switzerland, 2021; pp. 21–52. ISBN 9781003081449. [Google Scholar]
- Kosol, S.; Schmidt, J.; Kurmayer, R. Variation in peptide net production and growth among strains of the toxic cyanobacterium Planktothrix spp. Eur. J. Phycol. 2009, 44, 49–62. [Google Scholar] [CrossRef]
- Kurmayer, R.; Deng, L.; Entfellner, E. Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix. Harmful Algae 2016, 54, 69–86. [Google Scholar] [CrossRef]
- Rohrlack, T.; Hyenstrand, P. Fate of intracellular microcystins in the cyanobacterium Microcystis aeruginosa (Chroococcales, Cyanophyceae). Phycologia 2007, 46, 277–283. [Google Scholar] [CrossRef]
- Orr, P.T.; Jones, G.J. Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnol. Oceanogr. 1998, 43, 1604–1614. [Google Scholar] [CrossRef]
- Long, B.M.; Jones, G.J.; Orr, P.T. Cellular microcystin content in N-limited Microcystis aeruginosa can be predicted from growth rate. Appl. Environ. Microbiol. 2001, 67, 278–283. [Google Scholar] [CrossRef]
- Wiedner, C.; Visser, P.M.; Fastner, J.; Metcalf, J.S.; Codd, G.A.; Mur, L.R. Effects of light on the microcystin content of Microcystis strain PCC 7806. Appl. Environ. Microbiol. 2003, 69, 1475–1481. [Google Scholar] [CrossRef] [PubMed]
- Kurmayer, R.; Entfellner, E.; Weisse, T.; Offterdinger, M.; Rentmeister, A.; Deng, L. Chemically labeled toxins or bioactive peptides show a heterogeneous intracellular distribution and low spatial overlap with autofluorescence in bloom-forming cyanobacteria. Sci. Rep. 2020, 10, 2781. [Google Scholar] [CrossRef]
- Sletten, E.M.; Bertozzi, C.R. Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 2009, 48, 6974–6998. [Google Scholar] [CrossRef]
- Zotina, T.; Köster, O.; Jüttner, F. Photoheterotrophy and light-dependent uptake of organic and organic nitrogenous compounds by Planktothrix rubescens under low irradiance. Freshw. Biol. 2003, 48, 1859–1872. [Google Scholar] [CrossRef]
- Kurmayer, R.; Dittmann, E.; Fastner, J.; Chorus, I. Diversity of microcystin genes within a population of the toxic cyanobacterium Microcystis spp. in Lake Wannsee (Berlin, Germany). Microb. Ecol. 2002, 43, 107–118. [Google Scholar] [CrossRef]
- Mikalsen, B.; Boison, G.; Skulberg, O.M.; Fastner, J.; Davies, W.; Gabrielsen, T.M.; Rudi, K.; Jakobsen, K.S. Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in Microcystis strains. J. Bacteriol. 2003, 185, 2774–2785. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, G.; Philmus, B.; Hemscheidt, T.; Kurmayer, R. Genetic variation of adenylation domains of the anabaenopeptin synthesis operon and evolution of substrate promiscuity. J. Bacteriol. 2011, 193, 3822–3831. [Google Scholar] [CrossRef] [PubMed]
- Entfellner, E.; Frei, M.; Christiansen, G.; Deng, L.; Blom, J.; Kurmayer, R. Evolution of anabaenopeptin peptide structural variability in the cyanobacterium Planktothrix. Front. Microbiol. 2017, 8, 219. [Google Scholar] [CrossRef] [PubMed]
- Morón-Asensio, R.; Schuler, D.; Wiedlroither, A.; Offterdinger, M.; Kurmayer, R. Differential labeling of chemically modified peptides and lipids among cyanobacteria Planktothrix and Microcystis. Microorganisms 2021, 9, 1578. [Google Scholar] [CrossRef]
- Kries, H.; Wachtel, R.; Pabst, A.; Wanner, B.; Niquille, D.; Hilvert, D. Reprogramming nonribosomal peptide synthetases for “clickable” amino acids. Angew. Chem. Int. Ed. 2014, 53, 10105–10108. [Google Scholar] [CrossRef]
- Kaljunen, H.; Schiefelbein, S.H.H.; Stummer, D.; Kozak, S.; Meijers, R.; Christiansen, G.; Rentmeister, A. Structural elucidation of the bispecificity of A domains as a basis for activating non-natural amino acids. Angew. Chem. Int. Ed. 2015, 54, 8833–8836. [Google Scholar] [CrossRef] [PubMed]
- Lautru, S.; Challis, G.L. Substrate recognition by nonribosomal peptide synthetase multi-enzymes. Microbiology 2004, 150, 1629–1636. [Google Scholar] [CrossRef]
- Yeh, E.; Kohli, R.M.; Bruner, S.D.; Walsh, C.T. Type II thioesterase restores activity of a NRPS module stalled with an aminoacyl-S-enzyme that cannot be elongated. Chembiochem 2004, 5, 1290–1293. [Google Scholar] [CrossRef]
- Lang, K.; Chin, J.W. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem. Rev. 2014, 114, 4764–4806. [Google Scholar] [CrossRef]
- Richardson, M.B.; Brown, D.B.; Vasquez, C.A.; Ziller, J.W.; Johnston, K.M.; Weiss, G.A. Synthesis and explosion hazards of 4-Azido-l-phenylalanine. J. Org. Chem. 2018, 83, 4525–4536. [Google Scholar] [CrossRef]
- Schock, M.; Bräse, S. Reactive & efficient: Organic azides as cross-linkers in Material Sciences. Molecules 2020, 25, 1009. [Google Scholar] [CrossRef] [PubMed]
- Kurmayer, R. The toxic cyanobacterium Nostoc sp. strain 152 produces highest amounts of microcystin and nostophycin under stress conditions. J. Phycol. 2011, 47, 200–207. [Google Scholar] [CrossRef]
- Kohl, J.-G.; Nicklisch, A. Ökophysiologie der Algen: Wachstum und Ressourcennutzung; Akademie-Verlag: Berlin, Germany, 1988; ISBN 9783055003158. [Google Scholar]
- Rzymski, P.; Klimaszyk, P.; Jurczak, T.; Poniedziałek, B. Oxidative stress, programmed cell death and microcystin release in Microcystis aeruginosa in response to Daphnia grazers. Front. Microbiol. 2020, 11, 1201. [Google Scholar] [CrossRef] [PubMed]
- Rippka, R. Isolation and purification of cyanobacteria. In Methods in Enzymology; Packer, L., Glazer, A.N., Eds.; Elsevier: Amsterdam, The Netherlands, 1988; Volume 167, pp. 3–27. ISBN 978-0-12-182068-8. [Google Scholar]
- Dean, J.R. Extraction Methods for Environmental Analysis; John Wiley: Chichester, NY, USA, 1998; ISBN 0-471-98287-3. [Google Scholar]
- Fastner, J.; Erhard, M.; Döhren, H. von. Determination of oligopeptide diversity within a natural population of Microcystis spp. (cyanobacteria) by typing single colonies by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl. Environ. Microbiol. 2001, 67, 5069–5076. [Google Scholar] [CrossRef]
- Welker, M.; Fastner, J.; Erhard, M.; von Döhren, H. Applications of MALDI-TOF MS analysis in cyanotoxin research. Environ. Toxicol. 2002, 17, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Spoof, L.; Błaszczyk, A.; Meriluoto, J.; Cegłowska, M.; Mazur-Marzec, H. Structures and activity of new anabaenopeptins produced by Baltic Sea cyanobacteria. Mar. Drugs 2016, 14, 8. [Google Scholar] [CrossRef]
- Okumura, H.S.; Philmus, B.; Portmann, C.; Hemscheidt, T.K. Homotyrosine-containing cyanopeptolins 880 and 960 and anabaenopeptins 908 and 915 from Planktothrix agardhii CYA 126/8. J. Nat. Prod. 2009, 72, 172–176. [Google Scholar] [CrossRef]
- Sarkans, U.; Gostev, M.; Athar, A.; Behrangi, E.; Melnichuk, O.; Ali, A.; Minguet, J.; Rada, J.C.; Snow, C.; Tikhonov, A.; et al. The BioStudies database-one stop shop for all data supporting a life sciences study. Nucleic Acids Res. 2018, 46, D1266–D1270. [Google Scholar] [CrossRef]
Strain | Experiment | Control | Phe-Az | Prop-Lys | Prop-Tyr | p-Value 1 |
---|---|---|---|---|---|---|
Optical density | ||||||
M. aeruginosa | build up | 0.06 ± 0.02 a | 0.02 ± 0.002 b | 0.06 ± 0.02 a | 0.06 ± 0.02 a | <0.001 |
decline | 0.09 ± 0.01 a | 0.04 ± 0.002 b | 0.1 ± 0.02 a | 0.1 ± 0.02 a | <0.001 | |
P. agardhii | build up | 0.09 ± 0.03 a | 0.06 ± 0.01 b | 0.09 ± 0.03 a | 0.09 ± 0.03 a | <0.001 |
decline | 0.34 ± 0.05 a | 0.29 ± 0.05 b | 0.37 ± 0.06 a | 0.36 ± 0.06 a | <0.001 | |
Growth rates (day−1) | ||||||
M. aeruginosa | build up | 0.58 ± 0.13 ab | 0.38 ± 0.15 a | 0.62 ± 0.12 b | 0.59 ± 0.13 ab | 0.023 |
decline | 0.35 ± 0.05 ab | −0.04 ± 0.07 b | 0.34 ± 0.06 ab | 0.36 ± 0.1 a | 0.021 | |
P. agardhii | build up | 0.47 ± 0.1 | 0.52 ± 0.27 | 0.53 ± 0.15 | 0.53 ± 0.1 | 0.93 |
decline | 0.22 ± 0.07 | 0.2 ± 0.04 | 0.2 ± 0.03 | 0.21 ± 0.03 | 0.19 |
Strain | Experiment | Control | Phe-Az | Prop-Lys | Prop-Tyr | p-Value 1 |
---|---|---|---|---|---|---|
Dry weight (mg/mL) | ||||||
M. aeruginosa | build up | 0.03 ± 0.005 a | 0.02 ± 0.001 b | 0.03 ± 0.006 a | 0.03 ± 0.005 a | 0.001 |
decline | 0.06 ± 0.007 | 0.05 ± 0.004 | 0.05 ± 0.005 | 0.06 ± 0.007 | 0.11 | |
P. agardhii | build up | 0.04 ± 0.008 a | 0.03 ± 0.004 b | 0.04 ± 0.007 a | 0.04 ± 0.008 a | <0.001 |
decline | 0.15 ± 0.03 | 0.11 ± 0.02 | 0.14 ± 0.02 | 0.16 ± 0.03 | 0.099 | |
Growth rates (day−1) | ||||||
M. aeruginosa | build up | 0.17 ± 0.15 | 0.28 ± 0.3 | 0.52 ± 0.3 | 0.21 ± 0.21 | 0.19 |
decline | 0.26 ± 0.09 | 0.18 ± 0.1 | 0.21 ± 0.13 | 0.28 ± 0.12 | 0.85 | |
P. agardhii | build up | 0.37 ± 0.06 | 0.22 ± 0.09 | 0.28 ± 0.17 | 0.31 ± 0.12 | 0.63 |
decline | 0.21 ± 0.09 | 0.18 ± 0.06 | 0.2 ± 0.05 | 0.24 ± 0.07 | 0.60 |
Strain | Experiment | Control | Phe-Az | Prop-Lys | Prop-Tyr | p-Value 1 |
---|---|---|---|---|---|---|
Intracellular total peptide content (ng/mg DW) | ||||||
M. aeruginosa | build up (MC) | 558 ± 49 a | 823 ± 120 b | 766 ± 117 ab | 677 ± 64 ab | 0.023 |
decline (MC) | 530 ± 39 ab | 367 ± 38 b | 757 ± 67 ab | 811 ± 119 a | 0.026 | |
P. agardhii | build up (AP) | 337 ± 39 ab | 267 ± 20 a | 299 ± 38 a | 418 ± 59 b | 0.003 |
decline (AP) | 258 ± 35 | 245 ± 25 | 247 ± 26 | 249 ± 34 | 0.965 | |
Percentage of extracellular peptide from total | ||||||
M. aeruginosa | build up (MC) | 22 ± 1.7 a | 21 ± 1.6 a | 20 ± 1.3 a | 26 ± 2.5 b | <0.001 |
decline (MC) | 7.2 ± 1.2 a | 12.8 ± 2.2 b | 11.6 ± 1.4 ab | 10.5 ± 1.2 ab | 0.009 | |
P. agardhii | build up (AP) | 7.6 ± 0.9 | 6.6 ± 0.3 | 9.3 ± 1.6 | 6.2 ± 0.8 | 0.055 |
decline (AP) | 3.9 ± 0.3 | 5 ± 0.7 | 4.8 ± 0.9 | 4.4 ± 0.5 | 0.482 | |
Percentage of clickable intracellular peptide | ||||||
M. aeruginosa | build up (MC) | 0 ± 0 a | 14.1 ± 1.6 b | 2.2 ± 0.3 c | 43.2 ± 7 d | <0.001 |
decline (MC) | 0 ± 0 a | 11 ± 1 b | 1.5 ± 0.2 c | 24.6 ± 3.6 d | <0.001 | |
P. agardhii | build up (AP) | 0 ± 0 ad | 12.5 ± 1.7 ac | 50 ± 6.8 b | 6.4 ± 2.5 ac | <0.001 |
decline (AP) | 0 ± 0 a | 7.3 ± 1.7 c | 55.4 ± 2.1 d | 1.4 ± 0.4 ab | <0.001 | |
Percentage of clickable extracellular peptide | ||||||
M. aeruginosa | build up (MC) | 0 ± 0 a | 19.6 ± 3.1 b | 1.5 ± 0.6 a | 67.1 ± 9 c | <0.001 |
decline (MC) | 0 ± 0 a | 10.7 ± 2.3 ab | 0.2 ± 0.1 a | 28.2 ± 7.5 b | 0.01 | |
P. agardhii | build up (AP) | 0 ± 0 a | 9.7 ± 2.3 b | 38.9 ± 6.6 b | 10.9 ± 3.2 b | <0.001 |
decline (AP) | 0 ± 0 a | 8.7 ± 4.9 a | 56.2 ± 8.8 b | 10.4 ± 5.9 ab | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurmayer, R.; Morón Asensio, R. Real-Time Observation of Clickable Cyanotoxin Synthesis in Bloom-Forming Cyanobacteria Microcystis aeruginosa and Planktothrix agardhii. Toxins 2024, 16, 526. https://doi.org/10.3390/toxins16120526
Kurmayer R, Morón Asensio R. Real-Time Observation of Clickable Cyanotoxin Synthesis in Bloom-Forming Cyanobacteria Microcystis aeruginosa and Planktothrix agardhii. Toxins. 2024; 16(12):526. https://doi.org/10.3390/toxins16120526
Chicago/Turabian StyleKurmayer, Rainer, and Rubén Morón Asensio. 2024. "Real-Time Observation of Clickable Cyanotoxin Synthesis in Bloom-Forming Cyanobacteria Microcystis aeruginosa and Planktothrix agardhii" Toxins 16, no. 12: 526. https://doi.org/10.3390/toxins16120526
APA StyleKurmayer, R., & Morón Asensio, R. (2024). Real-Time Observation of Clickable Cyanotoxin Synthesis in Bloom-Forming Cyanobacteria Microcystis aeruginosa and Planktothrix agardhii. Toxins, 16(12), 526. https://doi.org/10.3390/toxins16120526