The Association Between Serum Trimethylamine N-Oxide and Arterial Stiffness in Chronic Peritoneal Dialysis Patients: A Cross-Sectional Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Study Participants
5.2. Anthropometric and Biochemical Investigations
5.3. High-Performance Liquid Chromatography-Mass Spectrometry for Determining Serum Trimethylamine N-Oxide Concentration
5.4. Measurements of Carotid–Femoral Pulse Wave Velocity as a Marker of Central AS
5.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhatti, N.K.; Karimi Galougahi, K.; Paz, Y.; Nazif, T.; Moses, J.W.; Leon, M.B.; Stone, G.W.; Kirtane, A.J.; Karmpaliotis, D.; Bokhari, S.; et al. Diagnosis and management of cardiovascular disease in advanced and end-stage renal disease. J. Am. Heart Assoc. 2016, 5, e003648. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.J. Cardiovascular mortality in end-stage renal disease. Am. J. Med. Sci. 2003, 325, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Woo, K.; Yi, J.A. Epidemiology of end-stage kidney disease. Semin. Vasc. Surg. 2021, 34, 71–78. [Google Scholar] [CrossRef]
- Hsu, C.C.; Liao, C.T.; Lin, M.Y.; Lin, M.H.; Chen, Y.W.; Zheng, C.M.; Lin, Y.C.; Wu, M.Y.; Chiu, Y.W.; Hwang, S.J.; et al. Summary of the 2021 annual report on kidney disease in Taiwan. Acta Nephrol. 2022, 36, 169–179. [Google Scholar]
- Echefu, G.; Stowe, I.; Burka, S.; Basu-Ray, I.; Kumbala, D. Pathophysiological concepts and screening of cardiovascular disease in dialysis patients. Front. Nephrol. 2023, 3, 1198560. [Google Scholar] [CrossRef]
- Wang, A.Y. Cardiovascular risk factors in peritoneal dialysis patients revisited. Perit. Dial. Int. 2007, 27 (Suppl. 2), S223–S227. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, J.L.; Lima, J.A.; Redheuil, A.; Al-Mallah, M.H. Aortic stiffness: Current understanding and future directions. J. Am. Coll. Cardiol. 2011, 57, 1511–1522. [Google Scholar] [CrossRef]
- Lacolley, P.; Challande, P.; Osborne-Pellegrin, M.; Regnault, V. Genetics and pathophysiology of arterial stiffness. Cardiovasc. Res. 2009, 81, 637–648. [Google Scholar] [CrossRef]
- Zieman, S.J.; Melenovsky, V.; Kass, D.A. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 932–943. [Google Scholar] [CrossRef]
- Chirinos, J.A. Arterial stiffness: Basic concepts and measurement techniques. J. Cardiovasc. Transl. Res. 2012, 5, 243–255. [Google Scholar] [CrossRef]
- Yi, T.; Gao, L.; Fan, F.; Jiang, Y.; Jia, J.; Zhang, Y.; Li, J.; Huo, Y. Association between pulse wave velocity and the 10-year risk of atherosclerotic cardiovascular disease in the Chinese population: A community-based study. J. Clin. Hypertens. 2023, 25, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Sequí-Domínguez, I.; Cavero-Redondo, I.; Álvarez-Bueno, C.; Pozuelo-Carrascosa, D.P.; Nuñez de Arenas-Arroyo, S.; Martínez-Vizcaíno, V. Accuracy of pulse wave velocity predicting cardiovascular and all-cause mortality. A systematic review and meta-analysis. J. Clin. Med. 2020, 9, 2080. [Google Scholar] [CrossRef] [PubMed]
- Townsend, R.R. Arterial stiffness in CKD: A review. Am. J. Kidney Dis. 2019, 73, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Georgianos, P.I.; Pikilidou, M.I.; Liakopoulos, V.; Balaskas, E.V.; Zebekakis, P.E. Arterial stiffness in end-stage renal disease-pathogenesis, clinical epidemiology, and therapeutic potentials. Hypertens. Res. 2018, 41, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Canyelles, M.; Borràs, C.; Rotllan, N.; Tondo, M.; Escolà-Gil, J.C.; Blanco-Vaca, F. Gut microbiota-derived TMAO: A causal factor promoting atherosclerotic cardiovascular disease? Int. J. Mol. Sci. 2023, 24, 1940. [Google Scholar] [CrossRef]
- Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013, 19, 576–585. [Google Scholar] [CrossRef]
- Andrikopoulos, P.; Aron-Wisnewsky, J.; Chakaroun, R.; Myridakis, A.; Forslund, S.K.; Nielsen, T.; Adriouch, S.; Holmes, B.; Chilloux, J.; Vieira-Silva, S.; et al. Evidence of a causal and modifiable relationship between kidney function and circulating trimethylamine N-oxide. Nat. Commun. 2023, 14, 5843. [Google Scholar] [CrossRef]
- Li, D.; Lu, Y.; Yuan, S.; Cai, X.; He, Y.; Chen, J.; Wu, Q.; He, D.; Fang, A.; Bo, Y.; et al. Gut microbiota-derived metabolite trimethylamine-N-oxide and multiple health outcomes: An umbrella review and updated meta-analysis. Am. J. Clin. Nutr. 2022, 116, 230–243. [Google Scholar] [CrossRef]
- Schiattarella, G.G.; Sannino, A.; Toscano, E.; Giugliano, G.; Gargiulo, G.; Franzone, A.; Trimarco, B.; Esposito, G.; Perrino, C. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: A systematic review and dose-response meta-analysis. Eur. Heart J. 2017, 38, 2948–2956. [Google Scholar] [CrossRef]
- Li, Y.; Lu, H.; Guo, J.; Zhang, M.; Zheng, H.; Liu, Y.; Liu, W. Gut microbiota-derived trimethylamine N-oxide is associated with the risk of all-cause and cardiovascular mortality in patients with chronic kidney disease: A systematic review and dose-response meta-analysis. Ann. Med. 2023, 55, 2215542. [Google Scholar] [CrossRef]
- Chang, D.; Xu, X.; Yang, Z.; Ma, T.; Nie, J.; Dong, J. Trimethylamine-N-oxide (TMAO) and clinical outcomes in patients with end-stage kidney disease receiving peritoneal dialysis. Perit. Dial. Int. 2022, 42, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Spasova, N.; Somleva, D.; Krastev, B.; Ilieva, R.; Borizanova, A.; Svinarov, D.; Kinova, E.; Goudev, A. Association of the trimethylamine N-oxide with cardiovascular risk and vascular alterations in middle-aged patients with risk factors for cardiovascular diseases. Biosci. Rep. 2024, 44, BSR20232090. [Google Scholar] [CrossRef] [PubMed]
- Hsu, B.G.; Wang, C.H.; Lin, Y.L.; Lai, Y.H.; Tsai, J.P. Trimethylamine N-oxide level is associated with peripheral arterial stiffness in advanced non-dialysis chronic kidney disease patients. Toxins 2022, 14, 526. [Google Scholar] [CrossRef]
- Huang, P.Y.; Hsu, B.G.; Lai, Y.H.; Wang, C.H.; Tsai, J.P. Serum trimethylamine N-oxide level is positively associated with aortic stiffness measured by carotid-femoral pulse wave velocity in patients undergoing maintenance hemodialysis. Toxins 2023, 15, 572. [Google Scholar] [CrossRef] [PubMed]
- Briet, M.; Boutouyrie, P.; Laurent, S.; London, G.M. Arterial stiffness and pulse pressure in CKD and ESRD. Kidney Int. 2012, 82, 388–400. [Google Scholar] [CrossRef] [PubMed]
- Harlacher, E.; Wollenhaupt, J.; Baaten, C.C.F.M.J.; Noels, H. Impact of uremic toxins on endothelial dysfunction in chronic kidney disease: A systematic review. Int. J. Mol. Sci. 2022, 23, 531. [Google Scholar] [CrossRef]
- Inserra, F.; Forcada, P.; Castellaro, A.; Castellaro, C. Chronic kidney disease and arterial stiffness: A two-way path. Front. Med. 2021, 8, 765924. [Google Scholar] [CrossRef] [PubMed]
- Vervloet, M.G. Can we reverse arterial stiffness by intervening on CKD-MBD biomarkers? Clin. Kidney J. 2023, 16, 1766–1775. [Google Scholar] [CrossRef]
- Al Samarraie, A.; Pichette, M.; Rousseau, G. Role of the gut microbiome in the development of atherosclerotic cardiovascular disease. Int. J. Mol. Sci. 2023, 24, 5420. [Google Scholar] [CrossRef]
- Yoo, J.Y.; Sniffen, S.; McGill Percy, K.C.; Pallaval, V.B.; Chidipi, B. Gut dysbiosis and immune system in atherosclerotic cardiovascular disease (ACVD). Microorganisms 2022, 10, 108. [Google Scholar] [CrossRef]
- Oktaviono, Y.H.; Dyah Lamara, A.; Saputra, P.B.T.; Arnindita, J.N.; Pasahari, D.; Saputra, M.E.; Suasti, N.M.A. The roles of trimethylamine-N-oxide in atherosclerosis and its potential therapeutic aspect: A literature review. Biomol. Biomed. 2023, 23, 936–948. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Dai, M. Trimethylamine N-oxide generated by the gut microbiota is associated with vascular inflammation: New insights into atherosclerosis. Mediators Inflamm. 2020, 2020, 4634172. [Google Scholar] [CrossRef]
- Shanmugham, M.; Devasia, A.G.; Chin, Y.L.; Cheong, K.H.; Ong, E.S.; Bellanger, S.; Ramasamy, A.; Leo, C.H. Time-dependent specific molecular signatures of inflammation and remodelling are associated with trimethylamine-N-oxide (TMAO)-induced endothelial cell dysfunction. Sci. Rep. 2023, 13, 20303. [Google Scholar] [CrossRef]
- Seldin, M.M.; Meng, Y.; Qi, H.; Zhu, W.; Wang, Z.; Hazen, S.L.; Lusis, A.J.; Shih, D.M. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB. J. Am. Heart Assoc. 2016, 5, e002767. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Gregory, J.C.; Org, E.; Buffa, J.A.; Gupta, N.; Wang, Z.; Li, L.; Fu, X.; Wu, Y.; Mehrabian, M.; et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 2016, 165, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Qiu, X.; Liu, Y.; Yuan, C.; Yang, X. Trimethylamine N-oxide promotes tissue factor expression and activity in vascular endothelial cells: A new link between trimethylamine N-oxide and atherosclerotic thrombosis. Thromb. Res. 2019, 177, 110–116. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Yang, P.; Liu, X.; Lu, L.; Chen, Y.; Zhong, X.; Li, Z.; Liu, H.; Ou, C.; et al. Trimethylamine-N-oxide promotes vascular calcification through activation of NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) inflammasome and NF-κB (nuclear factor κb) signals. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 751–765. [Google Scholar] [CrossRef]
- Stubbs, J.R.; House, J.A.; Ocque, A.J.; Zhang, S.; Johnson, C.; Kimber, C.; Schmidt, K.; Gupta, A.; Wetmore, J.B.; Nolin, T.D.; et al. Serum trimethylamine-N-oxide is elevated in CKD and correlates with coronary atherosclerosis burden. J. Am. Soc. Nephrol. 2016, 27, 305–513. [Google Scholar] [CrossRef]
- He, L.; Yang, W.; Yang, P.; Zhang, X.; Zhang, A. Higher serum trimethylamine-N-oxide levels are associated with increased abdominal aortic calcification in hemodialysis patients. Ren. Fail. 2022, 44, 2019–2027. [Google Scholar] [CrossRef]
- Zixin, Y.; Lulu, C.; Xiangchang, Z.; Qing, F.; Binjie, Z.; Chunyang, L.; Tai, R.; Dongsheng, O. TMAO as a potential biomarker and therapeutic target for chronic kidney disease: A review. Front. Pharmacol. 2022, 13, 929262. [Google Scholar] [CrossRef]
- Bain, M.A.; Faull, R.; Fornasini, G.; Milne, R.W.; Evans, A.M. Accumulation of trimethylamine and trimethylamine-N-oxide in end-stage renal disease patients undergoing haemodialysis. Nephrol. Dial. Transplant. 2006, 21, 1300–1304. [Google Scholar] [CrossRef]
- Staef, M.; Ott, C.; Kannenkeril, D.; Striepe, K.; Schiffer, M.; Schmieder, R.E.; Bosch, A. Determinants of arterial stiffness in patients with type 2 diabetes mellitus: A cross sectional analysis. Sci. Rep. 2023, 13, 8944. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, G.F. Arterial stiffness in aging: Does it have a place in clinical practice? Recent advances in hypertension. Hypertension 2021, 77, 768–780. [Google Scholar] [CrossRef]
- Oh, Y.S. Arterial stiffness and hypertension. Clin. Hypertens. 2018, 24, 17. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.L.; Ahn, D.W.; Kim, S.H.; Lee, D.S.; Yoon, S.H.; Zo, J.H.; Kim, M.A.; Jeong, J.B. Association between body fat parameters and arterial stiffness. Sci. Rep. 2021, 11, 20536. [Google Scholar] [CrossRef] [PubMed]
- Recio-Rodriguez, J.I.; Gomez-Marcos, M.A.; Patino-Alonso, M.C.; Agudo-Conde, C.; Rodriguez-Sanchez, E.; Garcia-Ortiz, L. Abdominal obesity vs general obesity for identifying arterial stiffness, subclinical atherosclerosis and wave reflection in healthy, diabetics and hypertensive. BMC Cardiovasc. Disord. 2012, 12, 3. [Google Scholar] [CrossRef]
- Wildman, R.P.; Mackey, R.H.; Bostom, A.; Thompson, T.; Sutton-Tyrrell, K. Measures of obesity are associated with vascular stiffness in young and older adults. Hypertension 2003, 42, 468–473. [Google Scholar] [CrossRef]
- Neeland, I.J.; Ross, R.; Després, J.P.; Matsuzawa, Y.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: A position statement. Lancet Diabetes Endocrinol. 2019, 7, 715–725. [Google Scholar] [CrossRef]
- Heusch, G. Obesity and inflammatory vasculopathy: A surgical solution as ultima ratio? Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1953–1954. [Google Scholar] [CrossRef]
- Van Bortel, L.M.; Laurent, S.; Boutouyrie, P.; Chowienczyk, P.; Cruickshank, J.K.; De Backer, T.; Filipovsky, J.; Huybrechts, S.; Mattace-Raso, F.U.; Protogerou, A.D.; et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J. Hypertens. 2012, 30, 445–448. [Google Scholar] [CrossRef]
Characteristic | All Participants (n = 160) | Control Group (n = 122) | Arterial Stiffness Group (n = 38) | p Value |
---|---|---|---|---|
Age (years) | 56.51 ± 13.59 | 54.84 ± 13.97 | 61.87 ± 10.77 | 0.005 * |
Peritoneal dialysis vintage (months) | 46.34 (21.03–84.78) | 43.30 (20.07–84.42) | 51.96 (25.89–104.31) | 0.337 |
Body mass index (kg/m2) | 24.92 ± 4.15 | 24.68 ± 4.20 | 25.68 ± 3.96 | 0.194 |
Waist circumference (cm) | 91.30 ± 11.09 | 89.95 ± 11.33 | 95.63 ± 9.11 | 0.005 * |
Carotid–femoral PWV (m/s) | 9.02 ± 1.61 | 8.34 ± 1.02 | 11.23 ± 1.09 | <0.001 * |
Systolic blood pressure (mmHg) | 146.58 ± 20.97 | 144.48 ± 21.04 | 153.32 ± 19.54 | 0.023 * |
Diastolic blood pressure (mmHg) | 85.88 ± 14.08 | 85.82 ± 14.26 | 86.05 ± 13.66 | 0.929 |
Hemoglobin (g/dL) | 9.62 ± 1.48 | 9.64 ± 1.42 | 9.57 ± 1.69 | 0.817 |
Total cholesterol (mg/dL) | 165.89 ± 36.88 | 167.08 ± 37.55 | 162.11 ± 34.85 | 0.470 |
Fasting glucose (mg/dL) | 101.00 (91.00–118.50) | 99.50 (89.00–113.00) | 108.00 (95.00–147.25) | 0.006 * |
Albumin (mg/dL) | 3.60 ± 0.35 | 3.61 ± 0.34 | 3.57 ± 0.36 | 0.538 |
Blood urea nitrogen (mg/dL) | 62.95 ± 20.38 | 62.26 ± 20.18 | 65.16 ± 21.12 | 0.446 |
Creatinine (mg/dL) | 11.01 ± 3.04 | 11.02 ± 3.05 | 10.98 ± 3.04 | 0.952 |
Total calcium (mg/dL) | 9.60 ± 0.74 | 9.57 ± 0.79 | 9.70 ± 0.55 | 0.350 |
Phosphorus (mg/dL) | 5.27 ± 1.35 | 5.37 ± 1.40 | 4.94 ± 1.13 | 0.085 |
Intact parathyroid hormone (pg/mL) | 257.11 (89.43–529.03) | 257.11 (106.45–523.99) | 241.65 (81.51–530.33) | 0.754 |
TMAO (μg/L) | 111.74 (72.04–165.20) | 102.73 (68.87–144.91) | 168.73 (121.43–246.18) | <0.001 * |
Weekly Kt/V | 2.09 ± 0.44 | 2.13 ± 0.46 | 1.96 ± 0.37 | 0.045 * |
Peritoneal Kt/V | 1.86 ± 0.48 | 1.89 ± 0.50 | 1.77 ± 0.40 | 0.175 |
Total Clcr (L/week) | 56.45 (48.13–69.45) | 56.35 (47.70–69.58) | 56.60 (50.95–67.08) | 0.645 |
Peritoneal Clcr (L/week) | 47.58 ± 13.42 | 46.95 ± 13.67 | 49.61 ± 12.54 | 0.288 |
Urine Clcr (L/week) | 2.75 (0.00–19.82) | 3.02 (0.00–20.86) | 1.33 (0.00–18.39) | 0.659 |
Female, n (%) | 88 (55.0) | 70 (57.4) | 18 (47.4) | 0.279 |
Diabetes, n (%) | 62 (38.8) | 39 (32.0) | 23 (60.5) | 0.002 * |
Hypertension, n (%) | 119 (74.4) | 88 (72.1) | 31 (81.6) | 0.244 |
CAPD, n (%) | 61 (38.1) | 47 (38.5) | 14 (36.8) | 0.852 |
ARB use, n (%) | 109 (68.1) | 81 (66.4) | 28 (73.7) | 0.400 |
β-blocker use, n (%) | 77 (48.1) | 58 (47.5) | 19 (50.0) | 0.791 |
CCB use, n (%) | 99 (61.9) | 75 (61.5) | 24 (63.2) | 0.852 |
Statin use, n (%) | 48 (30.0) | 38 (31.1) | 10 (26.3) | 0.570 |
Fibrate use, n (%) | 18 (18.0) | 12 (17.1) | 6 (20.0) | 0.733 |
Etiology of ESKD | ||||
Diabetes mellitus, n (%) | 61 (38.1) | 39 (32.0) | 22 (57.9) | |
Chronic glomerulonephritis, n (%) | 54 (33.8) | 43 (35.2) | 11 (28.9) | |
Hypertensive nephrosclerosis, n (%) | 22 (13.7) | 19 (15.6) | 3 (7.9) | |
Others, n (%) | 23 (14.4) | 21 (17.2) | 2 (5.3) |
Variables | Odds Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|
TMAO, 1 μg/L | 1.011 | 1.005–1.017 | <0.001 * |
Age, 1 year | 1.053 | 1.013–1.095 | 0.009 * |
Waist circumference, 1 cm | 1.047 | 1.003–1.094 | 0.038 * |
Systolic blood pressure, 1 mmHg | 1.020 | 0.997–1.044 | 0.084 |
Diabetes, present | 1.233 | 0.415–3.660 | 0.707 |
Glucose, 1 mg/dL | 0.996 | 0.981–1.012 | 0.651 |
Weekly Kt/V | 0.449 | 0.152–1.321 | 0.146 |
Variables | Carotid–Femoral Pulse Wave Velocity (m/s) | ||||
---|---|---|---|---|---|
Simple Linear Regression | Multivariate Linear Regression | ||||
r | p-Value | Beta | Adjusted R2 Change | p-Value | |
Female | −0.144 | 0.070 | - | - | - |
Diabetes | 0.368 | <0.001 * | 0.163 | 0.130 | 0.022 * |
Hypertension | 0.037 | 0.358 | - | - | - |
Age (years) | 0.347 | <0.001 * | 0.218 | 0.071 | <0.001 * |
Log-PD vintage (months) | 0.065 | 0.411 | - | - | - |
Body mass index (kg/m2) | 0.240 | 0.002 * | - | - | - |
Waist circumference (cm) | 0.330 | <0.001 * | 0.256 | 0.058 | <0.001 * |
Systolic blood pressure (mmHg) | 0.295 | <0.001 * | 0.208 | 0.047 | 0.002 * |
Diastolic blood pressure (mmHg) | 0.062 | 0.434 | - | - | - |
Hemoglobin (g/dL) | 0.069 | 0.386 | |||
Total cholesterol (mg/dl) | −0.130 | 0.101 | - | - | - |
Log-Glucose (mg/dL) | 0.299 | <0.001 * | - | - | - |
Albumin (mg/dL) | −0.042 | 0.595 | - | - | - |
Blood urea nitrogen (mg/dL) | 0.011 | 0.888 | - | - | - |
Creatinine (mg/dL) | 0.005 | 0.954 | - | - | - |
Total calcium (mg/dL) | 0.147 | 0.063 | - | - | - |
Phosphorus (mg/dL) | −0.124 | 0.120 | - | - | - |
Log-iPTH (pg/mL) | −0.045 | 0.570 | - | - | - |
Log-TMAO (μg/L) | 0.346 | <0.001 * | 0.213 | 0.038 | 0.002 * |
Weekly Kt/V | −0.157 | 0.648 | - | - | - |
Peritoneal Kt/V | −0.054 | 0.494 | - | - | - |
Log-Total Clcr (L/week) | 0.076 | 0.339 | - | - | - |
Peritoneal Clcr (L/week) | 0.115 | 0.147 | - | - | - |
Urine Clcr (L/week) | −0.044 | 0.580 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, P.-Y.; Lin, Y.-L.; Chen, Y.-H.; Hung, S.-C.; Liou, H.-H.; Tsai, J.-P.; Hsu, B.-G. The Association Between Serum Trimethylamine N-Oxide and Arterial Stiffness in Chronic Peritoneal Dialysis Patients: A Cross-Sectional Study. Toxins 2024, 16, 523. https://doi.org/10.3390/toxins16120523
Huang P-Y, Lin Y-L, Chen Y-H, Hung S-C, Liou H-H, Tsai J-P, Hsu B-G. The Association Between Serum Trimethylamine N-Oxide and Arterial Stiffness in Chronic Peritoneal Dialysis Patients: A Cross-Sectional Study. Toxins. 2024; 16(12):523. https://doi.org/10.3390/toxins16120523
Chicago/Turabian StyleHuang, Po-Yu, Yu-Li Lin, Yi-Hsin Chen, Szu-Chun Hung, Hung-Hsiang Liou, Jen-Pi Tsai, and Bang-Gee Hsu. 2024. "The Association Between Serum Trimethylamine N-Oxide and Arterial Stiffness in Chronic Peritoneal Dialysis Patients: A Cross-Sectional Study" Toxins 16, no. 12: 523. https://doi.org/10.3390/toxins16120523
APA StyleHuang, P.-Y., Lin, Y.-L., Chen, Y.-H., Hung, S.-C., Liou, H.-H., Tsai, J.-P., & Hsu, B.-G. (2024). The Association Between Serum Trimethylamine N-Oxide and Arterial Stiffness in Chronic Peritoneal Dialysis Patients: A Cross-Sectional Study. Toxins, 16(12), 523. https://doi.org/10.3390/toxins16120523