Proteinaceous Venom Expression of the Yellow Meadow Ant, Lasius flavus (Hymenoptera: Formicidae)
Abstract
:1. Introduction
2. Results
2.1. Overview of Transcriptome
2.2. Venom Expression Profile Revealed by Transcriptomics
2.3. Expression Pattern of Venom Gene
3. Discussion
4. Material and Methods
4.1. Ants
4.2. Transcriptomic Analysis
4.3. Identification of Venom Protein
4.4. QPCR
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolton, B. An Online Catalog of the Ants of the World. Available online: https://antcat.org (accessed on 5 October 2022).
- Borowiec, M.L.; Moreau, C.S.; Rabeling, C. Ants: Phylogeny and classification. In Encyclopedia of Social Insects; Starr, C., Ed.; Springer: Cham, Switzerland, 2020; pp. 1–18. [Google Scholar]
- Romiguier, J.; Borowiec, M.L.; Weyna, A.; Helleu, Q.; Loire, E.; La Mendola, C.; Rabeling, C.; Fisher, B.L.; Ward, P.S.; Keller, L. Ant phylogenomics reveals a natural selection hotspot preceding the origin of complex eusociality. Curr. Biol. 2022, 32, 2942–2947. [Google Scholar] [CrossRef]
- Aili, S.R.; Touchard, A.; Escoubas, P.; Padula, M.P.; Orivel, J.; Dejean, A.; Nicholson, G.M. Diversity of peptide toxins from stinging ant venoms. Toxicon 2014, 92, 166–178. [Google Scholar] [CrossRef]
- Touchard, A.; Aili, S.R.; Fox, E.G.; Escoubas, P.; Orivel, J.; Nicholson, G.M.; Dejean, A. The biochemical toxin arsenal from ant venoms. Toxins 2016, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Robinson, S.D.; Kambanis, L.; Clayton, D.; Hinneburg, H.; Corcilius, L.; Mueller, A.; Walker, A.A.; Keramidas, A.; Kulkarni, S.S.; Jones, A.; et al. A pain-causing and paralytic ant venom glycopeptide. iScience 2021, 24, 103175. [Google Scholar] [CrossRef] [PubMed]
- Guido-Patiño, J.C.; Plisson, F. Profiling hymenopteran venom toxins: Protein families, structural landscape, biological activities, and pharmacological benefits. Toxicon X 2022, 14, 100119. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos-Pinto, J.; Perez-Riverol, A.; Lasa, A.M.; Palma, M.S. Diversity of peptidic and proteinaceous toxins from social Hymenoptera venoms. Toxicon 2018, 148, 172–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, E.; Adams, R. On the biological diversity of ant alkaloids. Annu. Rev. Entomol. 2022, 67, 367–385. [Google Scholar] [CrossRef]
- Kazuma, K.; Masuko, K.; Konno, K.; Inagaki, H. Combined venom gland transcriptomic and venom peptidomic analysis of the predatory ant Odontomachus monticola. Toxins 2017, 9, 323. [Google Scholar] [CrossRef] [Green Version]
- Robinson, S.D.; Mueller, A.; Clayton, D.; Starobova, H.; Hamilton, B.R.; Payne, R.J.; Vetter, I.; King, G.F.; Undheim, E. A comprehensive portrait of the venom of the giant red bull ant, Myrmecia gulosa, reveals a hyperdiverse hymenopteran toxin gene family. Sci. Adv. 2018, 4, eaau4640. [Google Scholar] [CrossRef] [Green Version]
- Barassé, V.; Touchard, A.; Téné, N.; Tindo, M.; Kenne, M.; Klopp, C.; Dejean, A.; Bonnafé, E.; Treilhou, M. The peptide venom composition of the fierce stinging ant Tetraponera aethiops (Formicidae: Pseudomyrmecinae). Toxins 2019, 11, 732. [Google Scholar] [CrossRef] [Green Version]
- Aili, S.R.; Touchard, A.; Hayward, R.; Robinson, S.D.; Pineda, S.S.; Lalagüe, H.; Mrinalini; Vetter, I.; Undheim, E.; Kini, R.M.; et al. An integrated proteomic and transcriptomic analysis reveals the venom complexity of the bullet ant Paraponera clavata. Toxins 2020, 12, 324. [Google Scholar] [CrossRef] [PubMed]
- Hurka, S.; Brinkrolf, K.; Özbek, R.; Förster, F.; Billion, A.; Heep, J.; Timm, T.; Lochnit, G.; Vilcinskas, A.; Lüddecke, T. Venomics of the central european myrmicine ants Myrmica rubra and Myrmica ruginodis. Toxins 2022, 14, 358. [Google Scholar] [CrossRef]
- Leutert, W. Phenotypic variability in worker ants of Lasius flavus De Geer and their progeny (Hym., Formicidae). J. Entomol. Soc. Aust. 1965, 2, 40–42. [Google Scholar]
- Touchard, A.; Aili, S.R.; Téné, N.; Barassé, V.; Klopp, C.; Dejean, A.; Kini, R.M.; Mrinalini; Coquet, L.; Jouenne, T.; et al. Venom peptide repertoire of the European myrmicine ant Manica rubida: Identification of insecticidal toxins. J. Proteome Res. 2020, 19, 1800–1811. [Google Scholar] [CrossRef]
- Barassé, V.; Téné, N.; Klopp, C.; Paquet, F.; Tysklind, N.; Troispoux, V.; Lalägue, H.; Orivel, J.; Lefranc, B.; Leprince, J.; et al. Venomics survey of six myrmicine ants provides insights into the molecular and structural diversity of their peptide toxins. Insect Biochem. Mol. Biol. 2022, 151, 103876. [Google Scholar] [CrossRef]
- Moen, S.; Mueller, A.; Walker, A.A.; McKinnon, N.; Neely, G.G.; Vetter, I.; King, G.F.; Undheim, E.A.B. Intra-colony venom diversity contributes to maintaining eusociality in a cooperatively breeding ant. BMC Biol. 2023, 21, 5. [Google Scholar]
- Véle, A.; Holuša, J. Microclimatic conditions of Lasius flavus ant mounds. Int. J. Biometeorol. 2017, 61, 957–961. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.P.; Games, P.D.; Azevedo, D.O.; Barros, E.; de Oliveira, L.L.; de Oliveira Ramos, H.J.; Baracat-Pereira, M.C.; Serrão, J.E. Proteomic analysis of the venom of the predatory ant Pachycondyla striata (Hymenoptera: Formicidae). Arch. Insect Biochem. Physiol. 2017, 96, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, L.; Yang, F.; Wang, Y.; Yang, J.; Zhu, Y.; Ma, X.; Höfer, J.; Wang, Y.; Ma, Y.; Xiao, L. A combined protein toxin screening based on the transcriptome and proteome of Solenopsis invicta. Proteome Sci. 2022, 20, 15. [Google Scholar] [CrossRef]
- King, T.P.; Kochoumian, L.; Joslyn, A. Wasp venom proteins: Phospholipase A1 and B. Arch. Biochem. Biophys. 1984, 230, 1–12. [Google Scholar] [CrossRef]
- Takasaki, C.; Fukumoto, M. Phospholipases B from Japanese yellow hornet (Vespa xanthoptera) venom. Toxicon 1989, 27, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Matuszek, M.A.; Hodgson, W.C.; King, R.G.; Sutherland, S.K. Some enzymic activities of two Australian ant venoms: A jumper ant Myrmecia pilosula and a bulldog ant Myrmecia pyriformis. Toxicon 1994, 32, 1543–1549. [Google Scholar] [CrossRef]
- Guimarães, D.O.; Ferro, M.; Santos, T.S.; Costa, T.R.; Yoneyama, K.A.G.; Rodrigues, V.M.; Henrique-Silva, F.; Rodrigues, R.S. Transcriptomic and biochemical analysis from the venom gland of the neotropical ant Odontomachus chelifer. Toxicon 2022, 223, 107006. [Google Scholar] [CrossRef]
- Coronado, M.A.; da Silva Olivier, D.; Eberle, R.J.; do Amaral, M.S.; Arni, R.K. Modeling and molecular dynamics indicate that snake venom phospholipase B-like enzymes are Ntn-hydrolases. Toxicon 2018, 153, 106–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullah, A.; Masood, R. The sequence and three-dimensional structure characterization of snake venom phospholipases B. Front. Mol. Biosci. 2020, 7, 175. [Google Scholar] [CrossRef]
- Saethang, T.; Somparn, P.; Payungporn, S.; Sriswasdi, S.; Yee, K.T.; Hodge, K.; Knepper, M.A.; Chanhome, L.; Khow, O.; Chaiyabutr, N.; et al. Identification of Daboia siamensis venome using integrated multi-omics data. Sci. Rep. 2022, 12, 13140. [Google Scholar] [CrossRef]
- Watala, C.; Kowalczyk, J.K. Hemolytic potency and phospholipase activity of some bee and wasp venoms. Comp. Biochem. Physiol. Part C 1990, 97, 187–194. [Google Scholar] [CrossRef]
- Brito, N.F.; Moreira, M.F.; Melo, A.C. A look inside odorant-binding proteins in insect chemoreception. J. Insect Physiol. 2016, 95, 51–65. [Google Scholar] [CrossRef]
- Sun, J.S.; Xiao, S.; Carlson, J.R. The diverse small proteins called odorant-binding proteins. Open Biol. 2018, 8, 180208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rihani, K.; Ferveur, J.F.; Briand, L. The 40-year mystery of insect odorant-binding proteins. Biomolecules 2021, 11, 509. [Google Scholar] [CrossRef] [PubMed]
- Heavner, M.E.; Gueguen, G.; Rajwani, R.; Pagan, P.E.; Small, C.; Govind, S. Partial venom gland transcriptome of a Drosophila parasitoid wasp, Leptopilina heterotoma, reveals novel and shared bioactive profiles with stinging Hymenoptera. Gene 2013, 526, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhu, J.Y.; Qian, C.; Fang, Q.; Ye, G.Y. Venom of the parasitoid wasp Pteromalus puparum contains an odorant binding protein. Arch. Insect Biochem. Physiol. 2015, 88, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Walker, A.A.; Madio, B.; Jin, J.; Undheim, E.A.; Fry, B.G.; King, G.F. Melt with this kiss: Paralyzing and liquefying venom of the assassin bug Pristhesancus plagipennis (Hemiptera: Reduviidae). Mol. Cell. Proteom. 2017, 16, 552–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, D.; Hao, C.; Cui, X.; Wang, Y.; Liu, Z.; Xu, B.; Guo, X. Molecular and functional characaterization of the novel odorant-binding protein gene AccOBP10 from Apis cerana cerana. J. Biochem. 2021, 169, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.A.; Kim, W.J.; Lee, S.H. Expression profiles of venom components in some social hymenopteran species over different post-capture periods. Comp. Biochem. Physiol. 2022, 253, 109247. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.A.; Kim, W.J.; Lee, S.; Yang, H.S.; Lee, B.H.; Lee, S.H. Comparative analyses of the venom components in the salivary gland transcriptomes and saliva proteomes of some heteropteran insects. Insect Sci. 2022, 29, 411–429. [Google Scholar] [CrossRef]
- Sanchez, D.; López-Arias, B.; Torroja, L.; Canal, I.; Wang, X.; Bastiani, M.J.; Ganfornina, M.D. Loss of glial lazarillo, a homolog of apolipoprotein D, reduces lifespan and stress resistance in Drosophila. Curr. Biol. 2006, 16, 680–686. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, M.; Sanchez, D.; Correnti, C.; Strong, R.K.; Ganfornina, M.D. Lipid-binding properties of human ApoD and Lazarillo-related lipocalins: Functional implications for cell differentiation. FEBS J. 2013, 280, 3928–3943. [Google Scholar] [CrossRef] [Green Version]
- Qiao, J.W.; Fan, Y.L.; Wu, B.J.; Wang, D.; Liu, T.X. Involvement of apolipoprotein D in desiccation tolerance and adult fecundity of Acyrthosiphon pisum. J. Insect Physiol. 2020, 127, 104160. [Google Scholar] [CrossRef]
- Du, E.; Wang, S.; Luan, Y.X.; Zhou, C.; Li, Z.; Li, N.; Zhou, S.; Zhang, T.; Ma, W.; Cui, Y.; et al. Convergent adaptation of ootheca formation as a reproductive strategy in Polyneoptera. Mol. Biol. Evol. 2022, 39, msac042. [Google Scholar] [CrossRef]
- Hamiaux, C.; Stanley, D.; Greenwood, D.R.; Baker, E.N.; Newcomb, R.D. Crystal structure of Epiphyas postvittana takeout 1 with bound ubiquinone supports a role as ligand carriers for takeout proteins in insects. J. Biol. Chem. 2009, 284, 3496–3503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamseddin, K.H.; Khan, S.Q.; Nguyen, M.L.; Antosh, M.; Morris, S.N.; Kolli, S.; Neretti, N.; Helfand, S.L.; Bauer, J.H. takeout-dependent longevity is associated with altered juvenile hormone signaling. Mech. Ageing Dev. 2012, 133, 637–646. [Google Scholar] [CrossRef] [Green Version]
- Saurabh, S.; Vanaphan, N.; Wen, W.; Dauwalder, B. High functional conservation of takeout family members in a courtship model system. PLoS ONE 2018, 13, e0204615. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.; Wang, S.; Huang, L.; Su, S.; Chen, M. Characterization of Rhopalosiphum padi takeout-like genes and their role in insecticide susceptibility. Pestic. Biochem. Physiol. 2021, 171, 104725. [Google Scholar] [CrossRef] [PubMed]
- Linser, P.J.; Smith, K.E.; Seron, T.J.; Neira Oviedo, M. Carbonic anhydrases and anion transport in mosquito midgut pH regulation. J. Exp. Biol. 2009, 212, 1662–1671. [Google Scholar] [CrossRef] [Green Version]
- Soydan, E.; Olcay, A.C.; Bilir, G.; Taş, Ö.; Şentürk, M.; Ekinci, D.; Supuran, C.T. Investigation of pesticides on honey bee carbonic anhydrase inhibition. J. Enzym. Inhib. Med. Chem. 2020, 35, 1923–1927. [Google Scholar] [CrossRef] [PubMed]
- Dzitoyeva, S.; Dimitrijevic, N.; Manev, H. Identification of a novel Drosophila gene, beltless, using injectable embryonic and adult RNA interference (RNAi). BMC Genom. 2003, 4, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.Y.; Jang, W.; Lee, H.W.; Park, E.; Kim, C. Neurodegeneration of Drosophila drop-dead mutants is associated with hypoxia in the brain. Genes Brain Behav. 2012, 11, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Alsina, B.; Corominas, M.; Berry, M.J.; Baguñà, J.; Serras, F. Disruption of selenoprotein biosynthesis affects cell proliferation in the imaginal discs and brain of Drosophila melanogaster. J. Cell Sci. 1999, 112, 2875–2884. [Google Scholar] [CrossRef]
- Kwon, S.Y.; Badenhorst, P.; Martin-Romero, F.J.; Carlson, B.A.; Paterson, B.M.; Gladyshev, V.N.; Lee, B.J.; Hatfield, D.L. The Drosophila selenoprotein BthD is required for survival and has a role in salivary gland development. Mol. Cell. Biol. 2003, 23, 8495–8504. [Google Scholar] [CrossRef] [Green Version]
- Hirosawa-Takamori, M.; Chung, H.R.; Jäckle, H. Conserved selenoprotein synthesis is not critical for oxidative stress defence and the lifespan of Drosophila. EMBO Rep. 2004, 5, 317–322. [Google Scholar] [CrossRef] [Green Version]
- Alburaki, M.; Smith, K.D.; Adamczyk, J.; Karim, S. Interplay between Selenium, selenoprotein genes, and oxidative stress in honey bee Apis mellifera L. J. Insect Physiol. 2019, 117, 103891. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, L.; Zhou, W.; Cai, Q.; Huang, Q. Roles of selenoprotein T and transglutaminase in active immunization against entomopathogenic fungi in the termite Reticulitermes chinensis. J. Insect Physiol. 2020, 125, 104085. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Davidson, N.M.; Oshlack, A. Corset: Enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biol. 2014, 15, 410. [Google Scholar]
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013, 8, 1494–1512. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Martinson, E.O.; Kelkar, Y.D.; Chang, C.H.; Werren, J.H. The evolution of venom by co-option of single-copy genes. Curr. Biol. 2017, 27, 2007–2013. [Google Scholar] [CrossRef] [Green Version]
- Teufel, F.; Almagro Armenteros, J.J.; Johansen, A.R.; Gíslason, M.H.; Pihl, S.I.; Tsirigos, K.D.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 2022, 40, 1023–1025. [Google Scholar] [CrossRef]
- Muller, P.Y.; Janovjak, H.; Miserez, A.R.; Dobbie, Z. Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 2002, 32, 1372–1379. [Google Scholar]
- Simon, P. Q-Gene: Processing quantitative real-time RT-PCR data. Bioinformatics 2003, 19, 1439–1440. [Google Scholar] [CrossRef] [Green Version]
Total raw reads from venom gland | 41,335,556 |
Total raw reads from carcass | 21,846,927 |
Total clean reads from venom gland | 40,450,976 |
Total clean reads from carcass | 21,100,589 |
Average Q20 (%) | 97.62 |
Average Q30 (%) | 92.65 |
Total number of transcripts | 164,806 |
Total number of unigenes | 51,015 |
Average length of transcripts (bp) | 1083.76 |
Average length of unigenes (bp) | 895.17 |
N50 length of transcripts (bp) | 219 |
N50 length of unigenes (bp) | 263 |
Protein Name | Read Count-Vg | Read Count-Ca | Log2 Fold Change (Vg/Ca) | p Value |
---|---|---|---|---|
Phospholipase B | 25,763 | 7835 | 3.70 | 6.44 × 10−5 |
Odorant binding protein | 10,438 | 5572 | 2.88 | 1.24 × 10−3 |
Apolipoprotein D | 34,783 | 38,031 | 1.85 | 3.13 × 10−2 |
Takeout protein | 32,836 | 718 | 7.49 | 1.01 × 10−11 |
Carbonic anhydrase | 2062 | 1797 | 2.18 | 1.23 × 10−2 |
Nose resistant to fluoxetine protein | 57,637 | 1774 | 7.00 | 8.12 × 10−11 |
Thioredoxin reductase | 4508 | 1882 | 3.24 | 3.54 × 10−4 |
UN1 | 30,970 | 4755 | 4.68 | 1.32 × 10−6 |
UN2 | 4466 | 1997 | 3.14 | 5.06 × 10−4 |
UN3 | 5387 | 227 | 6.55 | 6.53 × 10−10 |
UN4 | 16,412 | 1944 | 5.06 | 2.87 × 10−7 |
UN5 | 3539 | 115 | 6.92 | 1.47 × 10−10 |
UN6 | 5728 | 1493 | 3.92 | 2.79 × 10−5 |
UN7 | 41 | 0 | 9.66 | 1.21 × 10−6 |
UN8 | 7539 | 225 | 7.04 | 7.84 × 10−11 |
UN9 | 754 | 317 | 3.23 | 4.00 × 10−4 |
UN10 | 5213 | 2998 | 2.78 | 1.79 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Xiao, Q.; Li, X.; Wang, J.; Zhu, J. Proteinaceous Venom Expression of the Yellow Meadow Ant, Lasius flavus (Hymenoptera: Formicidae). Toxins 2023, 15, 106. https://doi.org/10.3390/toxins15020106
Wang B, Xiao Q, Li X, Wang J, Zhu J. Proteinaceous Venom Expression of the Yellow Meadow Ant, Lasius flavus (Hymenoptera: Formicidae). Toxins. 2023; 15(2):106. https://doi.org/10.3390/toxins15020106
Chicago/Turabian StyleWang, Binwei, Qiaoli Xiao, Xun Li, Jun Wang, and Jiaying Zhu. 2023. "Proteinaceous Venom Expression of the Yellow Meadow Ant, Lasius flavus (Hymenoptera: Formicidae)" Toxins 15, no. 2: 106. https://doi.org/10.3390/toxins15020106
APA StyleWang, B., Xiao, Q., Li, X., Wang, J., & Zhu, J. (2023). Proteinaceous Venom Expression of the Yellow Meadow Ant, Lasius flavus (Hymenoptera: Formicidae). Toxins, 15(2), 106. https://doi.org/10.3390/toxins15020106