Comparative Effects of Deoxynivalenol, Zearalenone and Its Modified Forms De-Epoxy-Deoxynivalenol and Hydrolyzed Zearalenone on Boar Semen In Vitro
Abstract
:1. Introduction
2. Results
2.1. Effects of DON and DOM-1 on Boar Semen Characteristics
2.1.1. Computer-Assisted Sperm Analysis System (CASA) Results
2.1.2. Results on Morphology, Viability, Hypoosmotic Swelling Test (HOST) and Nuclear Chromatin Integrity
2.2. Effects of ZEN and HZEN on Boar Semen Characteristics
2.2.1. CASA Results
2.2.2. Results on Morphology, Viability, HOST and Nuclear Integrity
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Samples Origin and Procedures
5.2. Trial Procedures
- (i)
- Evaluation of DON and DOM-1 on boar semen characteristics: (a) Control group (semen without addition of DMSO or mycotoxins); (b) DMSO group (0.7% v/v DMSO); (c) DON group (addition of 50.6 μM DON); (d) DOM-1 group (addition of 50.6 μM DOM1).
- (ii)
- Evaluation of ZEN and HZEN on boar semen characteristics: (a) Control group [similar to the above-mentioned evaluation (i)]; (b) DMSO group [similar to the above-mentioned evaluation (i)]; (c) ZEN group (addition of 62.8 μM ZEN); (d) HZEN group (addition of 62.8 μM HZEN).
- (a)
- Motility/kinetics parameters of sperm (total motility, progressive motility, immotile, rapid, medium, slow spermatozoa, curvilinear velocity (VCL), straight-line velocity (VSL), average path velocity (VAP), lateral head displacement (ALH), beat/cross frequency (BCF), hyperactivation, straightness (STR), linearity (LIN), wobble (WOB)) with the use of CASA (Sperm Class Analyser® v.5.2.0.0., Microptic S.L., Automatic Diagnostic Systems, Barcelona, Spain) and a microscope (X100; AXIO Scope A1, Zeiss, Jena, Germany) accomplished with a heating stage.
- (b)
- The SpermBlue staining method (SpermBlue® 08029, Microptic S.L., Barcelona, Spain) was used for the evaluation of sperm morphology, according to the manufacturer’s instructions.
- (c)
- The double fluorescent stain calcein-AM (C-AM; 1 mmol/L) and propidium iodide (PI; 0.75 mmol/L) was appropriately utilized for sperm viability assessment.
- (d)
- The hypoosmotic swelling test (HOST) was performed as previously demonstrated [46] under slight modification for the assessment of sperm membrane functional status.
- (e)
- The AOT was used to evaluate sperm nuclear chromatin integrity. AOT measures the susceptibility of sperm nuclear DNA to acid-induced denaturation in situ through quantification of the metachromatic shift of acridine orange fluorescence from green (native DNA) to red (denatured DNA).
5.3. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global Mycotoxin Occurrence in Feed: A Ten-Year Survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alm, H.; Greising, T.; Brussow, K.P.; Torner, H.; Tiemann, U. The influence of the mycotoxins deoxynivalenol and zearalenol on in vitro maturation of pig oocytes and in vitro culture of pig zygotes. Toxicol. Vitr. 2002, 16, 643–648. [Google Scholar] [CrossRef]
- Malekinejad, H.; Schoevers, E.J.; Daemen, I.J.J.M.; Zijstra, C.; Colenbrander, B.; Fink-Gremmels, J.; Roelen, B.A. Exposure of oocytes to the Fusarium toxins zearalenone and deoxynivalenol causes aneuploidy and abnormal embryo development in pigs. Biol. Reprod. 2007, 77, 840–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoevers, E.J.; Fink-Gremmels, J.; Colenbrander, B.; Roelen, B.A. Porcine oocytes are most vulnerable to the mycotoxin deoxynivalenol during formation of the meiotic spindle. Theriogenology 2010, 74, 968–978. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Wang, Q.-C.; Zhu, C.-C.; Liu, J.; Zhang, Y.; Cui, X.-S.; Kim, N.-H.; Sun, S.-C. Deoxynivalenol exposure induces autophagy/apoptosis and epigenetic modification changes during porcine oocyte maturation. Toxicol. Appl. Pharmacol. 2016, 300, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Ranzenigo, G.; Caloni, F.; Cremonesi, F.; Aad, P.Y.; Spicer, L.J. Effects of Fusarium mycotoxins on steroid production by porcine granulosa cells. Anim. Reprod. Sci. 2008, 107, 115–130. [Google Scholar] [CrossRef]
- Tassis, P.D.; Tsakmakidis, I.A.; Nagl, V.; Reisinger, N.; Tzika, E.; Gruber-Dorninger, C.; Michos, I.; Mittas, N.; Basioura, A.; Schatzmayr, D. Individual and Combined In Vitro Effects of Deoxynivalenol and Zearalenone on Boar Semen. Toxins 2020, 12, 495. [Google Scholar] [CrossRef]
- Dänicke, S.; Brezina, U. Kinetics and metabolism of the Fusarium toxin deoxynivalenol in farm animals: Consequences for diagnosis of exposure and intoxication and carry over. Food Chem. Toxicol. 2013, 60, 58–75. [Google Scholar] [CrossRef]
- Eriksen, G.S.; Pettersson, H.; Johnsen, K.; Lindberg, J.E. Transformation of trichothecenes in ileal digesta and faeces from pigs. Arch. Anim. Nutr. 2002, 56, 263–274. [Google Scholar] [CrossRef]
- Betina, V. Structure-activity relationships among mycotoxins. Chem. Biol. Interact. 1989, 71, 105–146. [Google Scholar] [CrossRef]
- Eriksen, G.S.; Pettersson, H.; Lundh, T. Comparative cytotoxicity of deoxynivalenol, nivalenol, their acetylated derivatives and de-epoxy metabolites. Food Chem. Toxicol. 2004, 42, 619–624. [Google Scholar] [CrossRef]
- Dänicke, S.; Hegewald, A.K.; Kahlert, S.; Kluess, J.; Rothkötter, H.J.; Breves, G.; Döll, S. Studies on the toxicity of deoxynivalenol (DON), sodium metabisulfite, DON-sulfonate (DONS) and de-epoxy-DON for porcine peripheral bloodmononuclear cells and the Intestinal Porcine Epithelial Cell lines IPEC-1 andIPEC-J2, and on effects of DON and DONS on piglets. Food Chem. Toxicol. 2010, 48, 2154–2162. [Google Scholar] [CrossRef] [PubMed]
- Pierron, A.; Mimoun, S.; Murate, L.S.; Loiseau, N.; Lippi, Y.; Bracarense, A.P.; Schatzmayr, G.; He, J.W.; Zhou, T.; Moll, W.D.; et al. Microbial biotransformation of DON: Molecular basis for reduced toxicity. Sci. Rep. 2016, 6, 29105. [Google Scholar] [CrossRef] [Green Version]
- Springler, A.; Hessenberger, S.; Reisinger, N.; Kern, C.; Nagl, V.; Schatzmayr, G.; Mayer, E. Deoxynivalenol and its metabolite deepoxy-deoxynivalenol: Multi-parameter analysis for the evaluation of cytotoxicity and cellular effects. Mycotoxin Res. 2017, 33, 25–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerrero-Netro, H.M.; Barreta, M.H.; Costa, E.; Goetten, A.; Dupras, R.; Mills, L.; Koch, J.; Portela, V.M.; Price, C.A.; Chorfi, Y. Effects of the mycotoxin metabolite de-epoxy-deoxynivalenol (DOM-1) on embryo development and sperm motility in cattle. J. Appl. Toxicol. 2020, 41, 1180–1187. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Netro, H.M.; Estienne, A.; Chorfi, Y.; Price, C.A. The mycotoxin metabolite deepoxy-deoxynivalenol increases apoptosis and decreases steroidogenesis in bovine ovarian theca cells. Biol. Reprod. 2017, 97, 746–757. [Google Scholar] [CrossRef] [Green Version]
- Pierron, A.; Bracarense, A.P.F.L.; Cossalter, A.-M.; Laffitte, J.; Schwartz-Zimmermann, H.E.; Schatzmayr, G.; Oswald, I.P. Deepoxy deoxynivalenol retains some immune-modulatory properties of the parent molecule deoxynivalenol in piglets. Arch. Toxicol. 2018, 92, 3381–3389. [Google Scholar] [CrossRef]
- Novak, B.; Vatzia, E.; Springler, A.; Pierron, A.; Gerner, W.; Reisinger, N.; Hessenberger, S.; Schatzmayr, G.; Mayer, E. Bovine Peripheral Blood Mononuclear Cells Are More Sensitive to Deoxynivalenol Than Those Derived from Poultry and Swine. Toxins 2018, 10, 152. [Google Scholar] [CrossRef] [Green Version]
- Dänicke, S.; Winkler, J. Invited review: Diagnosis of zearalenone (ZEN) exposure of farm animals and transfer of its residues into edible tissues (carry over). Food Chem. Toxicol. 2015, 84, 225–249. [Google Scholar] [CrossRef]
- Binder, S.B.; Schwartz-Zimmermann, H.E.; Varga, E.; Bichl, G.; Michlmayr, H.; Adam, G.; Berthiller, F. Metabolism of zearalenone and its major modified forms in pigs. Toxins 2017, 9, 56. [Google Scholar] [CrossRef] [Green Version]
- Berthiller, F.; Schuhmacher, R.; Adam, G.; Krska, R. Formation, determination and significance of masked and other conjugated mycotoxins. Anal. Bioanal. Chem. 2009, 395, 1243–1252. [Google Scholar] [CrossRef] [PubMed]
- Ueberschär, K.-H.; Brezina, U.; Dänicke, S. Zearalenone (ZEN) and ZEN metabolites in feed, urine and bile of sows: Analysis, determination of the metabolic profile and evaluation of the binding forms. Appl. Agric. For. Res. 2016, 1, 21–28. [Google Scholar]
- Bertero, A.; Moretti, A.; Spicer, L.J.; Caloni, F. Fusarium Molds and Mycotoxins: Potential Species-Specific Effects. Toxins 2018, 10, 244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinkellner, H.; Binaglia, M.; Dall’Asta, C.; Gutleb, A.C.; Metzler, M.; Oswald, I.P.; Parent-Massin, D.; Alexander, J. Combined hazard assessment of mycotoxins and their modified forms applying relative potency factors: Zearalenone and T2/HT2 toxin. Food Chem. Toxicol. 2019, 131, 110599. [Google Scholar] [CrossRef]
- Zinedine, A.; Soriano, J.M.; Molto, J.C.; Mañes, J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food Chem. Toxicol. 2007, 45, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Fink-Gremmels, J.; Malekinejad, H. Clinical effects and biochemical mechanisms associated with exposure to the mycoestrogen zearalenone. Anim. Feed Sci. Technol. 2007, 137, 326–341. [Google Scholar] [CrossRef]
- Berger, T.; Esbenshade, K.L.; Diekman, M.A.; Hoagland, T.; Tuite, J. Influence of prepubertal consumption of zearalenone on sexual development of boars. J. Anim. Sci. 1981, 53, 1559–1564. [Google Scholar] [CrossRef]
- Christensen, C.M.; Mirocha, C.J.; Nelson, G.H.; Quast, J.F. Effect of young swine of consumption of rations containing corn invaded by Fusarium roseum. Appl. Microbiol. 1972, 23, 202. [Google Scholar] [CrossRef]
- Young, L.G.; King, G.J. Low concentrations of zearalenone in diets of boars for a prolonged period of time. J. Anim. Sci. 1986, 63, 1197–1200. [Google Scholar] [CrossRef] [Green Version]
- Tsakmakidis, I.A.; Lymberopoulos, A.G.; Alexopoulos, C.; Boscos, C.M.; Kyriakis, S.C. In vitro effect of zearalenone and alpha-zearalenol on boar sperm characteristics and acrosome reaction. Reprod. Domest. Anim. 2006, 41, 394–401. [Google Scholar] [CrossRef]
- Tsakmakidis, I.A.; Lymberopoulos, A.G.; Vainas, E.; Boscos, C.M.; Kyriakis, S.C.; Alexopoulos, C. Study on the in vitro effect of zearalenone and alpha-zearalenol on boar sperm-zona pellucida interaction by hemizona assay application. J. Appl. Toxicol. 2007, 27, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Tsakmakidis, I.A.; Lymberopoulos, A.G.; Khalifa, T.A.; Boscos, C.M.; Saratsi, A.; Alexopoulos, C. Evaluation of zearalenone and alpha zearalenol toxicity on boar sperm DNA integrity. J. Appl. Toxicol. 2008, 28, 68. [Google Scholar] [CrossRef]
- Benzoni, E.; Minervini, F.; Giannoccaro, A.; Fornelli, F.; Vigo, D.; Visconti, A. Influence of in vitro exposure to mycotoxin zearalenone and its derivatives on swine sperm quality. Reprod. Toxicol. 2008, 25, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Fruhauf, S.; Novak, B.; Nagl, V.; Hackl, M.; Hartinger, D.; Rainer, V.; Labudová, S.; Adam, G.; Aleschko, M.; Moll, W.-D.; et al. Biotransformation of the Mycotoxin Zearalenone to its Metabolites Hydrolyzed Zearalenone (HZEN) and Decarboxylated Hydrolyzed Zearalenone (DHZEN) Diminishes its Estrogenicity In Vitro and In Vivo. Toxins 2019, 11, 481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonet, S.; Garcia, E.; Sepúlveda, L. The Boar Reproductive System. In Boar Reproduction, 1st ed.; Bonet, S., Casas, I., Holt, W.V., Yeste, M., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2013; pp. 65–107. [Google Scholar] [CrossRef]
- Pinton, P.; Braicu, C.; Nougayrede, J.-P.; Laffitte, J.; Taranu, I.; Oswald, I.P. Deoxynivalenol Impairs Porcine Intestinal Barrier Function and Decreases the Protein Expression of Claudin-4 through a Mitogen-Activated Protein Kinase-Dependent Mechanism. J. Nutr. 2010, 140, 1956–1962. [Google Scholar] [CrossRef] [Green Version]
- Mayer, E.; Novak, B.; Springler, A.; Schwartz-Zimmermann, H.E.; Nagl, V.; Reisinger, N.; Hessenberger, S.; Schatzmayr, G. Effects of deoxynivalenol (DON) and its microbial biotransformation product deepoxy-deoxynivalenol (DOM-1) on a trout, pig, mouse, and human cell line. Mycotoxin Res. 2017, 33, 297–308. [Google Scholar] [CrossRef] [Green Version]
- Vekiru, E.; Frühauf, S.; Hametner, C.; Schatzmayr, G.; Krska, R.; Moll, W.; Schuhmacher, R. Isolation and characterisation of enzymatic zearalenone hydrolysis reaction products. World Mycotoxin J. 2016, 9, 353–363. [Google Scholar] [CrossRef]
- Broekhuijse, M.L.W.J.; Šoštarić, E.; Feitsma, H.; Gadella, B.M. Application of computer-assisted semen analysis to explain variations in pig fertility. J. Anim. Sci. 2012, 90, 779–789. [Google Scholar] [CrossRef]
- El Khoury, D.; Fayjaloun, S.; Nassar, M.; Sahakian, J.; Aad, P.Y. Updates on the Effect of Mycotoxins on Male Reproductive Efficiency in Mammals. Toxins 2019, 11, 515. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, B.; Huang, K.; He, X.; Luo, Y.; Liang, R.; Luo, H.; Shen, X.L.; Xu, W. Mitochondrial proteomic analysis reveals the molecular mechanisms underlying reproductive toxicity of zearalenone in MLTC-1 cells. Toxicology 2014, 324, 55–67. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, Y.; Shao, S.; Cai, Z.; Feng, L.; Pan, H.; Wang, Z. Simultaneous determination of multi-component mycotoxin contaminants in foods and feeds by ultra-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2007, 1143, 48–64. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Herrman, T.J.; Dai, S.Y. Rapid determination of fumonisins in corn-based products by liquid chromatography/tandem mass spectrometry. J. AOAC Int. 2010, 93, 1472–1481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz-Zimmermann, H.E.; Fruhmann, P.; Dänicke, S.; Wiesenberger, G.; Caha, S.; Weber, J.; Berthiller, F. Metabolism of deoxynivalenol and deepoxy-deoxynivalenol in broiler chickens, pullets, roosters and turkeys. Toxins 2015, 7, 4706–4729. [Google Scholar] [CrossRef]
- Schwartz-Zimmermann, H.E.; Hametner, C.; Nagl, V.; Slavik, V.; Moll, W.-D.; Berthiller, F. Deoxynivalenol (DON) sulfonates as major DON metabolites in rats: From identification to biomarker method development, validation and application. Anal. Bioanal. Chem. 2014, 406, 7911–7924. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, J.M.; Martinez, E.A.; Martinez, P.; Garcia-Artiga, C.; Roca, J. Hypoosmotic swelling of boar spermatozoa compared to other methods for analysing the sperm membrane. Theriogenology 1997, 47, 913–922. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988; pp. 407–466. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D. Mixed-Effects Models in S and S-PLUS; Springer Science & Business Media: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Zuur, A.; Ieno, E.N.; Walker, N.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R, Statistics for Biology and Health; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2013; Available online: http://www.R-project.org/ (accessed on 21 May 2021).
- Kuznetsova, A.; Brockho, P.; Christensen, R. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Kenward, M.G.; Roger, J.H. Small Sample Inference for Fixed Effects from Restricted Maximum Likelihood. Biometrics 1997, 53, 983–997. [Google Scholar] [CrossRef] [Green Version]
Treatments # | 0 h | 1 h | 2 h | 3 h | 4 h |
---|---|---|---|---|---|
Immotile spermatozoa (%)* | |||||
DMSO | 5.42 ± 4.19 | 5.06 ± 2.06 | 7.87 ± 3.65 | 9.83 ± 6.82 | 10.76 ± 6.34 |
DON | 6.65 ± 3.76 | 7.22 ± 5.22 | 11.54 ± 3.71 | 12.40 ± 6.10 | 14.01 ± 6.74 |
DOM-1 | 7.11 ± 6.03 | 6.18 ± 3.52 | 10.30 ± 3.36 | 11.51 ± 8.02 | 11.99 ± 4.81 |
DON effect on immotile spermatozoa without treatment X time interaction: p = 0.004 DON vs. DMSO | |||||
Nonprogressive motile spermatozoa (%)ǁ | |||||
DMSO | 25.37 ± 6.75 | 19.65 ± 4.30 | 18.79 ± 3.58 | 17.72 ± 4.56 | 17.35 ± 3.19 |
DON | 25.09 ± 7.47 | 19.84 ± 3.48 | 19.35 ± 4.71 | 19.26 ± 4.65 | 19.58 ± 5.11 |
DOM-1 | 24.31 ± 5.11 | 20.34 ± 2.76 | 19.88 ± 4.90 | 17.39 ± 3.76 | 17.79 ± 4.20 |
Progressive motile spermatozoa (%)* | |||||
DMSO | 69.21 ± 10.04 | 75.29 ± 5.23 | 73.34 ± 5.36 | 72.45 ± 8.78 | 71.89 ± 7.43 |
DON | 68.26 ± 10.24 | 72.94 ± 6.36 | 69.11 ± 5.24 | 68.34 ± 8.58 | 66.41 ± 6.31 |
DOM-1 | 68.59 ± 9.57 | 73.47 ± 5.22 | 69.82 ± 5.15 | 71.10 ± 7.72 | 70.22 ± 6.45 |
DON effect on progressive motile spermatozoa without treatment X time interaction: p = 0.016 DON vs. DMSO | |||||
Rapid (%) ǁ | |||||
DMSO | 69.23 ± 11.08 | 53.31 ± 10.19 | 51.05 ± 11.41 | 46.15 ± 13.15 | 43.88 ± 15.38 |
DON | 67.63 ± 9.83 | 50.89 ± 14.57 | 42.74 ± 10.44 | 42.22 ± 12.42 | 39.90 ± 8.33 |
DOM-1 | 66.17± 12.78 | 53.01 ± 12.85 | 44.90 ± 10.55 | 43.35 ± 10.78 | 44.51 ± 12.20 |
Medium (%)ǁ | |||||
DMSO | 16.02 ± 10.04 | 27.45 ± 7.73 | 27.95 ± 6.53 | 30.98 ± 9.03 | 32.96 ± 11.24 |
DON | 16.64 ± 9.64 | 27.97 ± 10.34 | 30.56 ± 9.4 | 30.46 ± 8.71 | 32.24 ± 6.98 |
DOM-1 | 16.62 ± 8.47 | 27.09 ± 8.35 | 29.22 ± 7.04 | 31.94 ± 9.33 | 30.72 ± 8.32 |
Slow (%)ǁ | |||||
DMSO | 9.32 ± 3.53 | 14.19 ± 4.10 | 13.13 ± 4.92 | 13.03 ± 5.28 | 12.40 ± 3.15 |
DON | 9.09 ± 3.51 | 13.93 ± 5.15 | 15.17 ± 4.21 | 14.92 ± 5.01 | 13.85 ± 2.88 |
DOM-1 | 10.10 ± 4.59 | 13.72 ± 4.24 | 15.58 ± 4.55 | 13.20 ± 3.98 | 12.79 ± 3.25 |
Treatments # | 0 h | 1 h | 2 h | 3 h | 4 h |
---|---|---|---|---|---|
VCL (Curvilinear velocity; μm/s)ǁ | |||||
DMSO | 74.31 ± 17.82 | 51.14 ± 6.41 | 50.50 ± 6.00 | 47.75 ± 6.53 | 47.61 ± 7.03 |
DON | 72.91 ± 16.84 | 51.88 ± 8.65 | 46.97 ± 6.56 | 46.36 ± 8.70 | 45.70 ± 4.68 |
DOM-1 | 70.89 ± 13.93 | 52.46 ± 9.14 | 46.67 ± 5.35 | 46.59 ± 6.22 | 47.66 ± 6.88 |
VSL (Straight-line velocity; μm/s)ǁ | |||||
DMSO | 32.02 ± 2.01 | 35.32 ± 3.63 | 36.69 ± 3.53 | 36.13 ± 5.42 | 36.37 ± 5.88 |
DON | 31.44 ± 2.23 | 35.53 ± 3.24 | 35.46 ± 5.38 | 35.86 ± 7.64 | 34.75 ± 4.12 |
DOM-1 | 31.45 ± 2.82 | 34.71 ± 3.30 | 34.91 ± 4.72 | 35.81 ± 5.51 | 36.55 ± 5.84 |
VAP (Average path velocity; μm/s)ǁ | |||||
DMSO | 49.74 ± 6.48 | 42.92 ± 4.20 | 44.08 ± 4.40 | 42.66 ± 5.98 | 42.76 ± 6.35 |
DON | 48.96 ± 6.36 | 43.37 ± 4.81 | 41.55 ± 5.76 | 41.72 ± 8.17 | 40.77 ± 4.25 |
DOM-1 | 47.21 ± 6.16 | 43.03 ± 4.85 | 40.98 ± 4.87 | 41.80 ± 5.83 | 42.77 ± 6.18 |
LIN (Linearity; %)ǁ | |||||
DMSO | 45.78 ± 12.67 | 69.29 ± 3.74 | 72.90 ± 4.07 | 75.60 ± 3.09 | 76.31 ± 2.88 |
DON | 45.68 ± 12.56 | 69.29 ± 6.14 | 75.47 ± 3.24 | 77.20 ± 3.49 | 76.05 ± 3.91 |
DOM-1 | 45.74 ± 8.78 | 67.15 ± 7.93 | 74.76 ± 3.85 | 76.77 ± 3.76 | 76.63 ± 3.52 |
STR (Straightness; %)ǁ | |||||
DMSO | 65.49 ± 10.19 | 82.25 ± 1.13 | 83.30 ± 2.68 | 84.64 ± 2.65 | 84.92 ± 2.01 |
DON | 65.33 ± 10.45 | 82.11 ± 3.19 | 85.23 ± 1.44 | 85.81 ± 2.30 | 85.19 ± 2.75 |
DOM-1 | 67.31 ± 7.74 | 80.87 ± 4.34 | 85.08 ± 2.42 | 85.55 ± 2.31 | 85.32 ± 2.60 |
Wobble (WOB; %)ǁ | |||||
DMSO | 68.83 ± 9.41 | 84.22 ± 3.94 | 87.46 ± 2.56 | 89.30 ± 1.25 | 89.83 ± 1.42 |
DON | 68.84 ± 8.61 | 84.25 ± 4.72 | 88.52 ± 2.73 | 89.93 ± 1.87 | 89.22 ± 2.01 |
DOM-1 | 67.63 ± 7.37 | 82.78 ± 5.66 | 87.85 ± 3.40 | 89.71 ± 2.65 | 89.78 ± 1.95 |
ALH (Amplitude of lateral head displacement; μm)ǁ | |||||
DMSO | 2.15 ± 0.48 | 1.51 ± 0.12 | 1.44 ± 0.14 | 1.34 ± 0.09 | 1.32 ± 0.09 |
DON | 2.04 ± 0.39 | 1.52 ± 0.19 | 1.35 ± 0.08 | 1.29 ± 0.13 | 1.30 ± 0.07 |
DOM-1 | 1.98 ± 0.33 | 1.56 ± 0.21 | 1.35 ± 0.06 | 1.31 ± 0.09 | 1.31 ± 0.10 |
BCF (Beat/Cross Frequency; Hz)ǁ | |||||
DMSO | 12.53 ± 2.51 | 10.02 ± 1.33 | 9.24 ± 0.74 | 8.85 ± 0.54 | 8.89 ± 0.62 |
DON | 12.88 ± 2.39 | 9.88 ± 1.42 | 9.00 ± 0.72 | 8.59 ± 0.73 | 8.94 ± 0.25 |
DOM-1 | 13.04 ± 2.55 | 9.99 ± 1.55 | 9.38 ± 1.14 | 9.06 ± 0.67 | 9.05 ± 0.64 |
Hyperactive (%)ǁ | |||||
DMSO | 2.33 ± 0.88 | 0.88 ± 0.63 | 0.70 ± 0.57 | 0.46 ± 0.53 | 0.18 ± 0.13 |
DON | 1.93 ± 0.72 | 0.97 ± 1.07 | 0.27 ± 0.20 | 0.19 ± 0.25 | 0.19 ± 0.21 |
DOM-1 | 2.05 ± 1.09 | 1.07 ± 0.81 | 0.39 ± 0.39 | 0.25 ± 0.26 | 0.36 ± 0.44 |
Morphology (% Spermatozoa without Abnormalities) ǁ | |||||
---|---|---|---|---|---|
Treatments # | 0 h | 1 h | 2 h | 3 h | 4 h |
DMSO | 94.95 ± 2.76 | 93.65 ± 4.90 | 89.95 ± 5.28 | 86.20 ± 7.68 | 84.25 ± 7.87 |
DON | 95.35 ± 3.15 | 92.90 ± 4.55 | 86.75 ± 6.80 | 82.60 ± 10.20 | 82.75 ± 9.14 |
DOM-1 | 95.50 ± 2.35 | 92.70 ± 6.19 | 88.90 ± 5.88 | 87.05 ± 7.83 | 84.20 ± 7.80 |
Morphology (% spermatozoa with head abnormalities)ǁ | |||||
DMSO | 3.65 ± 2.56 | 4.85 ± 4.22 | 8.40 ± 4.80 | 12.30 ± 7.57 | 14.65 ± 7.69 |
DON | 2.85 ± 3.03 | 5.70 ± 4.52 | 11.35 ± 6.75 | 16.35 ± 10.27 | 16.15 ± 9.13 |
DOM-1 | 3.40 ± 2.57 | 6.10 ± 6.02 | 9.70 ± 5.35 | 12.15 ± 7.76 | 14.65 ± 7.88 |
Viability (% live spermatozoa)ǁ | |||||
DMSO | 90.15 ± 2.81 | 85.85 ± 4.47 | 84.45 ± 3.50 | 83.90 ± 3.45 | 84.60 ± 3.71 |
DON | 90.65 ± 3.10 | 84.00 ± 5.73 | 84.50 ± 5.32 | 82.25 ± 5.34 | 81.10 ± 5.40 |
DOM-1 | 90.20 ± 1.92 | 85.85 ± 3.69 | 85.30 ± 5.39 | 85.30 ± 3.60 | 85.50 ± 4.87 |
Hypoosmotic Swelling Test (HOST, % spermatozoa with swollen tails)ǁ | |||||
0 h | 1 h | 4 h | |||
DMSO | 17.70 ± 5.29 | 11.40 ± 5.63 | 8.10 ± 4.08 | ||
DON | 18.65 ± 6.42 | 10.50 ± 5.46 | 7.65 ± 5.30 | ||
DOM-1 | 16.75 ± 5.60 | 10.75 ± 5.86 | 7.65 ± 4.42 |
Treatments # | 0 h | 1 h | 2 h | 3 h | 4 h | p * (DMSO vs. Mycotoxin Treatment) |
---|---|---|---|---|---|---|
Immotile spermatozoa (%) | ||||||
DMSO | 7.15 ± 5.82 ab | 6.66 ± 4.03 b | 7.98 ± 3.56 b | 13.87 ± 5.87 b | 15.07 ± 4.86 b | |
ZEN | 19.02 ± 11.33 a | 31.12 ± 16.72 a | 37.19 ± 16.44 a | 37.11 ± 14.21 a | 39.09 ± 11.75 a | 1–4 h: <0.001 ** |
HZEN | 4.64 ± 3.06 b | 8.06 ± 4.76 b | 12.65 ± 7.86 b | 14.95 ± 6.23 b | 16.90 ± 5.60 b | |
Nonprogressive motile spermatozoa (%) | ||||||
DMSO | 25.47 ± 8.00 | 19.00 ± 3.58 | 20.57 ± 5.53 | 20.41 ± 9.46 | 19.75 ± 4.32 | |
ZEN | 32.69 ± 4.22 | 29.75 ± 7.96 | 30.40 ± 7.79 | 33.95 ± 8.22 | 36.49 ± 10.27 | <0.001 |
HZEN | 24.75 ± 7.71 | 19.93 ± 4.22 | 20.97 ± 4.33 | 23.82 ± 7.78 | 20.27 ± 5.46 | |
Progressive motile spermatozoa (%) | ||||||
DMSO | 67.38 ± 12.34 b | 74.33 ± 5.62 b | 71.45 ± 6.26 b | 65.72 ± 12.81 b | 65.19 ± 6.05 b | |
ZEN | 48.29 ± 13.72 a | 39.13 ± 22.23 a | 32.40 ± 21.80 a | 28.93 ± 17.76 a | 24.42 ± 14.10 a | 0 h = 0.024; 1–4 h: <0.001 ** |
HZEN | 70.62 ± 9.34 b | 72.01 ± 5.69 b | 66.38 ± 8.93 b | 61.24 ± 12.34 b | 62.83 ± 7.78 b | |
Rapid (%) | ||||||
DMSO | 65.44 ± 9.94 | 54.44 ± 10.59 | 50.13 ± 13.73 | 42.53 ± 17.10 | 38.54 ± 10.21 | |
ZEN | 42.40 ± 13.74 | 24.65 ± 16.92 | 20.18 ± 18.12 | 13.53 ± 12.12 | 10.36± 8.27 | <0.001 |
HZEN | 72.16 ± 6.10 | 52.36 ± 10.42 | 41.21 ± 11.36 | 35.19 ± 15.85 | 35.25 ± 9.42 | |
Medium (%) | ||||||
DMSO | 17.59 ± 9.60 a | 25.51 ± 7.87 a | 26.68 ± 10.41 b | 26.87 ± 7.76 ab | 30.13 ± 9.42 a | |
ZEN | 17.89 ± 4.83 a | 18.46 ± 8.70 a | 15.69 ± 5.98 a | 18.80 ± 8.70 b | 16.76 ± 7.66 b | 2 h = 0.019, 4 h = 0.001 ** |
HZEN | 14.93 ± 6.32 a | 25.49 ± 8.05 a | 29.92 ± 10.24 b | 31.03 ± 10.41 a | 31.31 ± 9.64 a | |
Slow (%) | ||||||
DMSO | 9.81 ± 3.34 | 13.39 ± 3.64 | 15.21 ± 6.10 | 16.73 ± 10.51 | 16.27 ± 4.48 | |
ZEN | 20.69 ± 6.12 | 25.76 ± 9.34 | 26.93 ± 9.01 | 30.56 ± 8.49 | 33.79 ± 10.06 | <0.001 |
HZEN | 8.28 ± 3.22 | 14.10 ± 4.65 | 16.23 ± 4.30 | 18.84 ± 7.90 | 16.54 ± 5.61 |
Treatments # | 0 h | 1 h | 2 h | 3 h | 4 h | p * (DMSO vs. Mycotoxin Treatment) |
---|---|---|---|---|---|---|
VCL (Curvilinear velocity; μm/s) | ||||||
DMSO | 70.90 ± 15.23 | 52.74 ± 7.18 | 51.39 ± 9.14 | 46.33 ± 9.81 | 44.94 ± 5.93 | |
ZEN | 52.55 ± 8.96 | 36.49 ± 11.99 | 33.35 ± 13.25 | 29.68 ± 9.24 | 27.72 ± 6.46 | <0.001 |
HZEN | 73.30 ± 12.20 | 52.15 ± 6.70 | 46.85 ± 7.84 | 43.62 ± 8.35 | 44.07 ± 6.36 | |
VSL (Straight-line velocity; μm/s) | ||||||
DMSO | 29.84 ± 2.95 a | 35.79 ± 4.89 a | 35.75 ± 5.00 a | 34.93 ± 7.67 a | 33.82 ± 4.17 a | |
ZEN | 20.83 ± 4.91 a | 20.34 ± 9.83 b | 18.45 ± 9.41 b | 16.77 ± 8.18 b | 15.43 ± 7.10 b | 1–4 h: <0.001 ** |
HZEN | 32.28 ± 3.63 a | 34.10 ± 3.00 a | 32.84 ± 6.22 a | 31.20 ± 6.26 a | 32.43 ± 5.57 a | |
VAP (Average path velocity; μm/s) | ||||||
DMSO | 46.38 ± 4.59 | 43.63 ± 5.56 | 43.08 ± 6.07 | 40.81 ± 8.46 | 39.62 ± 4.60 | |
ZEN | 32.47 ± 6.48 | 26.42 ± 11.48 | 24.00 ± 11.38 | 21.76 ± 9.12 | 20.13 ± 7.51 | <0.001 |
HZEN | 49.01 ± 3.59 | 42.14 ± 3.21 | 39.48 ± 6.67 | 37.26 ± 7.09 | 38.22 ± 5.96 | |
LIN (Linearity; %) | ||||||
DMSO | 46.38 ± 4.59 a | 43.63 ± 5.56 a | 43.08 ± 6.07 a | 40.81 ± 8.46 a | 39.62 ± 4.60 a | |
ZEN | 32.47 ± 6.48 a | 26.42 ± 11.48 b | 24.00 ± 11.38 b | 21.76 ± 9.12 b | 20.13 ± 7.51 b | 1–4 h: <0.001 ** |
HZEN | 49.01 ± 3.59 a | 42.14 ± 3.21 a | 39.48 ± 6.67 a | 37.26 ± 7.09 a | 38.22 ± 5.96 a | |
STR (Straightness; %) | ||||||
DMSO | 64.99 ± 9.52 | 81.94 ± 2.46 | 83.04 ± 2.35 | 85.39 ± 2.66 | 85.32 ± 1.61 | |
ZEN | 63.90 ± 5.39 | 75.10 ± 5.34 | 76.02 ± 3.07 | 74.98 ± 6.42 | 74.86 ± 6.03 | <0.001 |
HZEN | 66.03 ± 7.41 | 80.91 ± 2.87 | 82.98 ± 2.91 | 83.63 ± 2.30 | 84.68 ± 2.78 | |
Wobble (WOB; %) | ||||||
DMSO | 67.01 ± 8.60 a | 82.89 ± 3.88 a | 84.35 ± 4.19 a | 88.16 ± 2.16 a | 88.31 ± 2.12 a | |
ZEN | 68.84 ± 8.61 a | 84.25 ± 4.72 b | 88.52 ± 2.73 b | 89.93 ± 1.87 b | 89.22 ± 2.01 b | 1–4 h = <0.001 ** |
HZEN | 68.04 ± 8.40 a | 81.42 ± 6.11 a | 84.44 ± 5.92 a | 85.47 ± 4.04 a | 86.72 ± 5.16 a | |
ALH (Amplitude of lateral head displacement; μm)ǁ | ||||||
DMSO | 2.08 ± 0.49 | 1.53 ± 0.13 | 1.49 ± 0.18 | 1.35 ± 0.11 | 1.32 ± 0.10 | |
ZEN | 2.07 ± 0.31 | 1.60 ± 0.11 | 1.46 ± 0.26 | 1.41 ± 0.18 | 1.42 ± 0.14 | |
HZEN | 2.18 ± 0.46 | 1.56 ± 0.13 | 1.43 ± 0.12 | 1.35 ± 0.13 | 1.33 ± 0.14 | |
BCF (Beat/Cross Frequency; Hz) | ||||||
DMSO | 12.57 ± 1.76 | 10.48 ± 1.36 | 10.11 ± 1.60 | 9.31 ± 1.00 | 9.26 ± 0.93 | |
ZEN | 10.25 ± 1.19 | 8.11 ± 2.02 | 7.76 ± 1.61 | 7.52 ± 1.14 | 7.88 ± 0.76 | <0.001 |
HZEN | 12.52 ± 1.56 | 10.45 ± 1.83 | 9.51 ± 1.33 | 9.19 ± 1.12 | 9.21 ± 0.80 | |
Hyperactive (%) | ||||||
DMSO | 1.78 ± 0.82 | 0.95 ± 0.82 | 1.03 ± 0.79 | 0.42 ± 0.51 | 0.31 ± 0.32 | |
ZEN | 1.16 ± 0.76 | 0.62 ± 0.57 | 0.79 ± 1.59 | 0.36 ± 0.49 | 0.12 ± 0.19 | 0.022 |
HZEN | 2.63 ± 1.00 | 0.96 ± 0.64 | 0.72 ± 0.60 | 0.49 ± 0.53 | 0.49 ± 0.62 |
Morphology (% Spermatozoa without Abnormalities) | ||||||
---|---|---|---|---|---|---|
Treatments # | 0 h | 1 h | 2 h | 3 h | 4 h | p * (DMSO vs. Mycotoxin Treatment) |
DMSO | 87.70 ± 8.10 | 83.60 ± 11.90 | 79.60 ± 13.30 | 75.60 ± 11.82 | 75.20 ± 14.57 | |
ZEN | 77.40 ± 18.19 | 71.60 ± 21.58 | 69.00 ± 20.52 | 68.00 ± 21.29 | 63.10 ± 21.15 | 0.002 |
HZEN | 87.10 ± 5.90 | 81.60 ± 13.13 | 77.10 ± 16.05 | 69.40 ± 15.94 | 68.30 ± 16.26 | |
Morphology (% spermatozoa with head abnormalities) | ||||||
DMSO | 9.20 ± 8.32 | 15.50 ± 11.75 | 17.80 ± 14.27 | 21.80 ± 13.74 | 23.40 ± 15.25 | |
ZEN | 20.60 ± 18.95 | 27.10 ± 22.11 | 28.70 ± 21.64 | 29.80 ± 22.57 | 34.60 ± 21.91 | 0.046 |
HZEN | 11.40 ± 6.87 | 16.60 ± 14.07 | 21.70 ± 15.60 | 30.40 ± 17.24 | 31.10 ± 16.72 | |
Viability (% live spermatozoa) | ||||||
DMSO | 85.50 ± 7.17 a | 79.90 ± 12.18 a | 76.70 ± 13.57 a | 72.60 ± 11.12 a | 71.50 ± 12.72 a | |
ZEN | 65.10 ± 17.44 b | 49.10 ± 19.36 b | 39.60 ± 17.73 b | 36.20 ± 14.83 b | 32.30 ± 13.54 b | 0–4 h: <0.001 ** |
HZEN | 85.40 ± 7.09 a | 78.90 ± 9.97 a | 75.10 ± 11.55 a | 67.00 ± 15.78 a | 58.90 ± 18.05 a | |
Hypoosmotic Swelling Test (HOST, % spermatozoa with swollen/coiled tails)ǁ | ||||||
0 h | 1 h | 4 h | ||||
DMSO | 20.70 ± 8.81 | 10.70 ± 4.95 | 9.50 ± 4.67 | |||
ZEN | 15.60 ± 6.70 | 11.00 ± 4.35 | 7.00 ± 4.29 | |||
HZEN | 16.20 ± 7.18 | 10.20 ± 5.22 | 7.20 ± 3.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tassis, P.D.; Reisinger, N.; Nagl, V.; Tzika, E.; Schatzmayr, D.; Mittas, N.; Basioura, A.; Michos, I.; Tsakmakidis, I.A. Comparative Effects of Deoxynivalenol, Zearalenone and Its Modified Forms De-Epoxy-Deoxynivalenol and Hydrolyzed Zearalenone on Boar Semen In Vitro. Toxins 2022, 14, 497. https://doi.org/10.3390/toxins14070497
Tassis PD, Reisinger N, Nagl V, Tzika E, Schatzmayr D, Mittas N, Basioura A, Michos I, Tsakmakidis IA. Comparative Effects of Deoxynivalenol, Zearalenone and Its Modified Forms De-Epoxy-Deoxynivalenol and Hydrolyzed Zearalenone on Boar Semen In Vitro. Toxins. 2022; 14(7):497. https://doi.org/10.3390/toxins14070497
Chicago/Turabian StyleTassis, Panagiotis D., Nicole Reisinger, Veronika Nagl, Eleni Tzika, Dian Schatzmayr, Nikolaos Mittas, Athina Basioura, Ilias Michos, and Ioannis A. Tsakmakidis. 2022. "Comparative Effects of Deoxynivalenol, Zearalenone and Its Modified Forms De-Epoxy-Deoxynivalenol and Hydrolyzed Zearalenone on Boar Semen In Vitro" Toxins 14, no. 7: 497. https://doi.org/10.3390/toxins14070497
APA StyleTassis, P. D., Reisinger, N., Nagl, V., Tzika, E., Schatzmayr, D., Mittas, N., Basioura, A., Michos, I., & Tsakmakidis, I. A. (2022). Comparative Effects of Deoxynivalenol, Zearalenone and Its Modified Forms De-Epoxy-Deoxynivalenol and Hydrolyzed Zearalenone on Boar Semen In Vitro. Toxins, 14(7), 497. https://doi.org/10.3390/toxins14070497