Six Main Contributing Factors to High Levels of Mycotoxin Contamination in African Foods
Abstract
:1. Introduction
2. Factors Responsible for High Levels of Mycotoxin Contamination in African Foods
2.1. Climatic and Environmental Factors
2.2. Farming Systems, Processing, and Storage Techniques
2.2.1. Farming Systems
Non-Irrigation Farming
Irrigation Farming
2.2.2. Processing Techniques
Pre-Harvest
Post-Harvest
2.2.3. Storage Techniques
2.3. Mycotoxin Detection Techniques
Country | Commodity | Analytical Method | References |
---|---|---|---|
Angola | Maize | HPLC | [113] |
Burkina Faso | Maize | LCMS/MS | [114] |
Maize | HPLC | [115] | |
Infant cereal formula | HPLC | [116] | |
Cameroon | Feed | LC-ESI-MS/MS | [117] |
Feed | Fluorometry | [118] | |
Maize products | ELISA | [119] | |
Côte d’Ivoire | Maize | HPLC | [120] |
Maize | LC-ESI-MS/MS | [121] | |
Maize | UHPLC-MS/MS | [122] | |
Egypt | Feed | HPLC | [123] |
Cereal | TLC | [124] | |
Maize | HPLC/TLC | [125] | |
Ghana | Maize | TLC | [126] |
Maize | Immunoassay | [127] | |
Maize | HPLC | [128] | |
Kenya | Maize | LCMS | [129] |
Maize | ELISA | [130] | |
Feed | HPLC | [123] | |
Maize & its products | TLC | [131] | |
Feed | TLC | [131] | |
Maize | HPLC | [132] | |
Lesotho | Maize | HPLC | [133] |
Malawi | Maize | Immunochromatographic assay | [134] |
Maize | LCMS/MS and HPLC | [38] | |
Maize based beer | LCMS/MS | [135] | |
Mozambique | Maize | LCMS/MS | [114] |
Nigeria | Maize | LCMS/MS | [136,137] |
Maize | LCMS/MS | [138] | |
Rwanda | Maize | Reveal Q+ and Accuscan Gold Reader | [139] |
Maize | ELISA | [140] | |
Feed | ELISA | [140] | |
South Africa | Commercial maize | HPLC, LCMS/MS | [46] |
Feed | LCMS/MS | [44] | |
Feed | HPLC/TLC | [45] | |
Commercial maize | LCMS/MS | [47] | |
Feed | LCMS/MS | [141] | |
Sudan | Feed | HPLC | [123] |
Feed | HPLC | [142] | |
Tanzania | Maize | HPLC | [143] |
Maize | UHPLC-MS/MS | [144] | |
Maize | LCMS/MS/ELISA | [145] | |
Togo | Maize | HPLC-MS/MS | [146] |
Maize | Fluorometry | [147] | |
Tunisia | Cereal | HPLC | [148] |
Cereal | ELISA | [149] | |
Uganda | Maize | Fluorometry | [150] |
Maize | Fluorometry/TLC | [151] | |
Maize | TLC | [152] | |
Zambia | Maize | Immunochromatographic assay | [19] |
Maize | ELISA | [153] | |
Zimbabwe | Maize | HPLC | [154] |
Maize | LCMS/MS | [155] |
2.4. Mycotoxin Regulatory Limits
2.5. Socio-Political Factors
2.6. Awareness
3. Conclusions
4. Research Methodology
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moretti, A.; Pascale, M.; Logrieco, A.F. Mycotoxin risks under a climate change scenario in Europe. Trends Food Sci. Technol. 2019, 84, 38–40. [Google Scholar] [CrossRef]
- Pereira, V.; Fernandes, J.; Cunha, S. Mycotoxins in cereals and related foodstuffs: A review on occurrence and recent methods of analysis. Trends Food Sci. Technol. 2014, 36, 96–136. [Google Scholar] [CrossRef]
- Mannon, J.; Johnson, E. Fungi down on the farm. New Sci. 1985, 105, 12–16. [Google Scholar]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajslova, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2019, 60, 2773–2789. [Google Scholar] [CrossRef]
- Miller, D.A. Allelopathy in Forage Crop Systems. Agron. J. 1996, 88, 854–859. [Google Scholar] [CrossRef]
- Wu, F.; Khlangwiset, P. Health economic impacts and cost-effectiveness of aflatoxin-reduction strategies in Africa: Case studies in biocontrol and post-harvest interventions. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2010, 27, 496–509. [Google Scholar] [CrossRef]
- Vardon, P.; McLaughlin, C.; Nardinelli, C. Council for Agricultural Science and Technology (CAST): Mycotoxins: Risks in Plant, Animal, and Human Systems; Task Force Report No. 139; Council for Agricultural Science and Technology: Ames, IA, USA, 2003. [Google Scholar]
- Human, U. Biomin survey reveals global rise of mycotoxins. AFMA Matrix 2018, 27, 49–53. [Google Scholar]
- Senerwa, D.M.; Mtimet, N.; Sirma, A.J.; Nzuma, J.; Kangethe, E.K.; Lindahl, J.F.; Grace, D. Direct Market Costs of Aflatoxins in Kenyan Dairy Value Chain. In Proceedings of the Agriculture, Nutrition and Health (ANH) Academy Week, Addis Ababa, Ethiopia, 20–24 June 2016; University of Nairobi: Nairobi, Kenya, 2016. [Google Scholar]
- Matumba, L.; Monjerezi, M.; Kankwamba, H.; Njoroge, S.M.C.; Ndilowe, P.; Kabuli, H.; Kambewa, D.; Njapau, H. Knowledge, attitude, and practices concerning presence of molds in foods among members of the general public in Malawi. Mycotoxin Res. 2016, 32, 27–36. [Google Scholar] [CrossRef]
- Anitha, S.; Tsusaka, T.; Njoroge, S.; Kumwenda, N.; Kachulu, L.; Maruwo, J.; Machinjiri, N.; Botha, R.; Msere, H.; Masumba, J.; et al. Knowledge, Attitude and Practice of Malawian Farmers on Pre- and Post-Harvest Crop Management to Mitigate Aflatoxin Contamination in Groundnut, Maize and Sorghum—Implication for Behavioral Change. Toxins 2019, 11, 716. [Google Scholar] [CrossRef] [Green Version]
- Udomkun, P.; Wiredu, A.N.; Nagle, M.; Bandyopadhyay, R.; Müller, J.; Vanlauwe, B. Mycotoxins in Sub-Saharan Africa: Present situation, socio-economic impact, awareness, and outlook. Food Control 2017, 72, 110–122. [Google Scholar] [CrossRef]
- PACA. Strengthening Aflatoxin Control in Malawi: Policy Recommendations. Partnersh. Aflatoxin Control. Afr. 2020. Available online: https://www.aflatoxinpartnership.org/wp-content/uploads/2021/05/Malawi_Aflatoxin_Control_MAY15.pdf (accessed on 28 March 2022).
- Achaglinkame, M.A.; Opoku, N.; Amagloh, F.K. Aflatoxin contamination in cereals and legumes to reconsider usage as complementary food ingredients for Ghanaian infants: A review. J. Nutr. Intermed. Metab. 2017, 10, 1–7. [Google Scholar] [CrossRef]
- Nleya, N.; Ngoma, L.; Mwanza, M. Aflatoxin occurrence in dairy feeds: A case of Bulawayo, Zimbabwe. In Aflatoxin B1 Occurrence, Detection and Toxicological Effects; Book Series: Biochemistry, Volume 14; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Perrone, G.; Ferrara, M.; Medina, A.; Pascale, M.; Magan, N. Toxigenic Fungi and Mycotoxins in a Climate Change Scenario: Ecology, Genomics, Distribution, Prediction and Prevention of the Risk. Microorganisms 2020, 8, 1496. [Google Scholar] [CrossRef]
- Ojiambo, P.S.; Battilani, P.; Cary, J.W.; Blum, B.H.; Carbone, I. Cultural and Genetic Approaches to Manage Aflatoxin Contamination: Recent Insights Provide Opportunities for Improved Control. Phytopathology 2018, 108, 1024–1037. [Google Scholar] [CrossRef] [Green Version]
- Nleya, N.; Adetunji, M.C.; Mwanza, M. Current Status of Mycotoxin Contamination of Food Commodities in Zimbabwe. Toxins 2018, 10, 89. [Google Scholar] [CrossRef] [Green Version]
- Kachapulula, P.; Akello, J.; Bandyopadhyay, R.; Cotty, P. Aflatoxin contamination of groundnut and maize in Zambia: Observed and potential concentrations. J. Appl. Microbiol. 2017, 122, 1471–1482. [Google Scholar] [CrossRef] [Green Version]
- Medina, A.; Akbar, A.; Baazeem, A.; Rodriguez, A.; Magan, N. Climate change, food security and mycotoxins: Do we know enough? Fungal Biol. Rev. 2017, 31, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Dövényi-Nagy, T.; Rácz, C.; Molnár, K.; Bakó, K.; Szláma, Z.; Jóźwiak, A.; Farkas, Z.; Pócsi, I.; Dobos, A.C. Pre-Harvest Modelling and Mitigation of Aflatoxins in Maize in a Changing Climatic Environment—A Review. Toxins 2020, 12, 768. [Google Scholar] [CrossRef]
- Chagwiza, C.; Mapfumo, P.; Antwi, M. Impact of Climate Change on Maize Yield. J. Agribus. Rural. Dev. 2020, 58, 359–367. [Google Scholar] [CrossRef]
- Zuma-Netshiukhwi, G.; Hlazo, O.; Motholo, S. Evaluating the Effect of Climate Variability on Zea Mays Productivity over Glen Research Station: South Africa. Eur. J. Agric. Food Sci. 2021, 3, 110–120. [Google Scholar]
- Adisa, O.M.; Botai, J.O.; Adeola, A.M.; Hassen, A.; Botai, C.M.; Darkey, D.; Tesfamariam, E. Application of Artificial Neural Network for Predicting Maize Production in South Africa. Sustainability 2019, 11, 1145. [Google Scholar] [CrossRef] [Green Version]
- Jain, L.K.; Parewa, H.P.; Ratnoo, S. Impact of frontline demonstration on productivity and profitability analysis of cluster bean in Barmer district of Rajasthan. Forage Res. 2019, 44, 283–286. [Google Scholar]
- Trnka, M.; Olesen, J.E.; Kersebaum, K.C.; Skjelvåg, A.O.; Eitzinger, J.; Seguin, B.; Peltonen-Sainio, P.; Rötter, R.; Iglesias, A.; Orlandini, S.; et al. Agroclimatic conditions in Europe under climate change. Glob. Chang. Biol. 2011, 17, 2298–2318. [Google Scholar] [CrossRef] [Green Version]
- Jury, M.R. Climate trends in southern Africa. South Afr. J. Sci. 2013, 109, 111. [Google Scholar] [CrossRef] [Green Version]
- Boko, M.; Niang, I.; Nyong, A.; Vogel, C.; Githeko, A.; Medany, M.; Osman-Elasha, B.; Tabo, R.; Yanda, P. Africa. In Climate Change: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC); Parry, M.L., Canziani, O.F., Palutikof, J.P., Linden, P.J., van der Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 433–467. [Google Scholar]
- Hajnal, E.J.; Kos, J.; Krulj, J.; Krstović, S.; Jajić, I.; Pezo, L.; Šarić, B.; Nedeljković, N. Aflatoxins contamination of maize in Serbia: The impact of weather conditions in 2015. Food Addit. Contam. Part A 2017, 34, 1999–2010. [Google Scholar] [CrossRef]
- Bebber, D.P.; Gurr, S.J. Crop-destroying fungal and oomycete pathogens challenge food security. Fungal Genet. Biol. 2015, 74, 62–64. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Jones, P.D.; Ambenje, P.; Bojariu, R.; Easterling, D.; Klein Tank, A.; Parker, D.; Rahimzadeh, F.; Renwick, J.A.; Rusticucci, M.; et al. Observations: Surface and Atmospheric Climate Change. In Chapter 3 Climate Change: The Physical Science Basis. Contribution of Working Group 1 to the 4th Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Magan, N.; Medina, A.; Aldred, D. Possible climate-change effects on mycotoxin contamination of food crops pre-and postharvest. Plant Pathol. 2011, 60, 150–163. [Google Scholar] [CrossRef]
- Battilani, P.; Toscano, P.; Van Der Fels-Klerx, H.J.; Moretti, A.; Leggieri, M.C.; Brera, C.; Rortais, A.; Goumperis, T.; Robinson, T. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci. Rep. 2016, 6, 24328. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Liu, C.; Dudaš, T.N.; Loc, M.C.; Bagi, F.F.; van der Fels-Klerx, H.J. Improved aflatoxin and fumonisin forecasting models for maize (PREMA and PREFUM), using combined mechanistic and Bayesian network modelling–Serbia as a case study. Front. Microbiol. 2021, 12, 630. [Google Scholar]
- Hui, Y.; Zhu, Z.; Atkinson, J.F. Mass balance analysis and calculation of wind effects on heat fluxes and water temperature in a large lake. J. Great Lakes Res. 2018, 44, 1293–1305. [Google Scholar] [CrossRef]
- Kotir, J.H. Climate change and variability in Sub-Saharan Africa: A review of current and future trends and impacts on agriculture and food security. Environ. Dev. Sustain. A Multidiscip. Approach Theory Pract. Sustain. Dev. 2010, 13, 587–605. [Google Scholar] [CrossRef]
- Sirma, A. Aflatoxin B1 occurrence in millet, sorghum and maize from four agro-ecological zones in Kenya. Afr. J. Food Agric. Nutr. Dev. 2016, 16, 10991–11003. [Google Scholar] [CrossRef]
- Matumba, L.; Sulyok, M.; Monjerezi, M.; Biswick, T.; Krska, R. Fungal metabolites diversity in maize and associated human dietary exposures relate to micro-climatic patterns in Malawi. World Mycotoxin J. 2015, 8, 269–282. [Google Scholar] [CrossRef]
- Shephard, G.S.; Burger, H.-M.; Gambacorta, L.; Gong, Y.Y.; Krska, R.; Rheeder, J.P.; Solfrizzo, M.; Srey, C.; Sulyok, M.; Visconti, A.; et al. Multiple mycotoxin exposure determined by urinary biomarkers in rural subsistence farmers in the former Transkei, South Africa. Food Chem. Toxicol. 2013, 62, 217–225. [Google Scholar] [CrossRef]
- Kos, J.; Janić Hajnal, E.; Šarić, B.; Jovanov, P.; Mandić, A.; Đuragić, O.; Kokić, B. Aflatoxins in maize harvested in the Republic of Serbia over the period 2012–2016. Food Addit. Contam. Part B 2018, 11, 246–255. [Google Scholar] [CrossRef]
- Lakhraj-Govender, R.; Grab, S.W. Assessing the impact of El Niño-Southern Oscillation on South African temperatures during austral summer. Int. J. Clim. 2019, 39, 143–156. [Google Scholar] [CrossRef] [Green Version]
- Botai, C.M.; Botai, J.O.; De Wit, J.P.; Ncongwane, K.P.; Adeola, A.M. Drought Characteristics over the Western Cape Province, South Africa. Water 2017, 9, 876. [Google Scholar] [CrossRef] [Green Version]
- Masupha, T.E.; Moeletsi, M.E. Use of standardized precipitation evapotranspiration index to investigate drought relative to maize, in the Luvuvhu River catchment area, South Africa. Phys. Chem. Earth, Parts A/B/C 2017, 102, 1–9. [Google Scholar] [CrossRef]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Multi-mycotoxin screening of feed and feed raw materials from Africa. World Mycotoxin J. 2018, 11, 369–383. [Google Scholar] [CrossRef]
- Chilaka, C.A.; De Kock, S.; Phoku, J.Z.; Mwanza, M.; Egbuta, M.A.; Dutton, M.F. Fungal and mycotoxin contamination of South African commercial maize. J. Food Agric. Environ. 2012, 10, 296–303. [Google Scholar]
- Nji, N.Q.; Christianah, A.M.; Njie, A.C.; Mulunda, M. Biodiversity and Distribution of Aspergillus and Their Toxins in Maize from Western and Eastern Regions of South Africa. Adv. Microbiol. 2022, 12, 121–149. [Google Scholar] [CrossRef]
- Meyer, H.; Skhosana, Z.D.; Motlanthe, M.; Louw, W.; Rohwer, E. Long Term Monitoring (2014–2018) of Multi-Mycotoxins in South African Commercial Maize and Wheat with a Locally Developed and Validated LC-MS/MS Method. Toxins 2019, 11, 271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chauhan, Y.S.; Wright, G.C.; Rachaputi, N.C. Modelling climatic risks of aflatoxin contamination in maize. Aust. J. Exp. Agric. 2008, 48, 358–366. [Google Scholar] [CrossRef]
- Chauhan, Y.S.; Wright, G.C.; Rachaputi, R.C.N.; Holzworth, D.; Broome, A.; Krosch, S.; Robertson, M.J. Application of a model to assess aflatoxin risk in peanuts. J. Agric. Sci. 2010, 148, 341–351. [Google Scholar] [CrossRef] [Green Version]
- FAOStat. Statistical Yearbooks—World Food and Agriculture; FAOStat: Rome, Italy, 2021. [Google Scholar]
- FAO. The State of Food Insecurity in the World; Food and Agriculture Organization of the United Nations: Rome, Italy, 2001. [Google Scholar]
- Fischer, G.; Sun, L. Model based analysis of future land-use development in China. Agric. Ecosyst. Environ. 2001, 85, 163–176. [Google Scholar] [CrossRef]
- Nyang’Au, J.O.; Mohamed, J.H.; Mango, N.; Makate, C.; Wangeci, A.N. Smallholder farmers’ perception of climate change and adoption of climate smart agriculture practices in Masaba South Sub-county, Kisii, Kenya. Heliyon 2021, 7, e06789. [Google Scholar] [CrossRef]
- Xu, F.; Baker, R.; Whitaker, T.; Luo, H.; Zhao, Y.; Stevenson, A.; Boesch, C.; Zhang, G. Review of good agricultural practices for smallholder maize farmers to minimise aflatoxin contamination. World Mycotoxin J. 2021, 15, 171–186. [Google Scholar] [CrossRef]
- Inocencio, A. Costs and Performance of Irrigation Projects: A Comparison of Sub-Saharan Africa and Other Developing Regions; IWMI: Anand, India, 2007; Volume 109. [Google Scholar]
- Kikuchi, M.; Mano, Y.; Njagi, T.N.; Merrey, D.; Otsuka, K. Economic Viability of Large-scale Irrigation Construction in Sub-Saharan Africa: What if Mwea Irrigation Scheme Were Constructed as a Brand-new Scheme? J. Dev. Stud. 2021, 57, 772–789. [Google Scholar] [CrossRef]
- Logrieco, A.; Battilani, P.; Leggieri, M.C.; Jiang, Y.; Haesaert, G.; Lanubile, A.; Mahuku, G.; Mesterházy, A.; Ortega-Beltran, A.; Pasti, M.; et al. Perspectives on Global Mycotoxin Issues and Management from the MycoKey Maize Working Group. Plant Dis. 2021, 105, 525–537. [Google Scholar] [CrossRef]
- BIOMIN. Science and Solution; BIOMIN: Herzogenburg, Austria, 2015. [Google Scholar]
- Abbas, H.K.; Bruns, H.A.; Shier, W.T. Effect of Planting Density, Irrigation Regimes, and Maize Hybrids with Varying Ear Size on Yield, and Aflatoxin and Fumonisin Contamination Levels. Am. J. Plant Sci. 2012, 3, 1341–1354. [Google Scholar] [CrossRef] [Green Version]
- Mutiga, S.K.; Were, V.; Hoffmann, V.; Harvey, J.W.; Milgroom, M.G.; Nelson, R.J. Extent and Drivers of Mycotoxin Contamination: Inferences from a Survey of Kenyan Maize Mills. Phytopathology 2014, 104, 1221–1231. [Google Scholar] [CrossRef] [Green Version]
- Hell, K.; Mutegi, C. Aflatoxin control and prevention strategies in key crops of Sub-Saharan Africa. Afr. J. Microbiol. Res. 2011, 5, 459–466. [Google Scholar]
- Blandino, M.; Reyneri, A.; Vanara, F. Influence of nitrogen fertilization on mycotoxin contamination of maize kernels. Crop Prot. 2008, 27, 222–230. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, G.; Zhang, Y.; Jin, Q.; Zhao, J.; Li, J. Factors controlling mycotoxin contamination in maize and food in the Hebei province, China. Agron. Sustain. Dev. 2016, 36, 39. [Google Scholar] [CrossRef] [Green Version]
- Monda, E.; Masanga, J.; Alakonya, A. Variation in Occurrence and Aflatoxigenicity of Aspergillus flavus from Two Climatically Varied Regions in Kenya. Toxins 2020, 12, 34. [Google Scholar] [CrossRef] [Green Version]
- Negash, D. A review of aflatoxin: Occurrence, prevention, and gaps in both food and feed safety. J. Appl. Microbiol. Res. 2018, 1, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Mutunga, E.J.; Charles, K.; Patricia, M. Smallholder farmers perceptions and adaptations to climate change and variability in Kitui county, Kenya. J. Earth Sci. Clim. Change 2017, 8, 389. [Google Scholar]
- Suleiman, R.A.; Rosentrater, K.A.; Chove, B. Understanding postharvest practices, knowledge, and actual mycotoxin levels in maize in three agro-ecological zones in Tanzania. J. Stored Prod. Postharvest Res. 2017, 8, 73–84. [Google Scholar]
- Osodo, B.; Nyaanga, D.; Kiplagat, J. Simulation of Grain Quantity, Fan and Solar Collector Sizes for an Experimental Forced Convection Grain Dryer. Agric. Food Sci. Res. 2019, 6, 98–108. [Google Scholar] [CrossRef]
- Niyibituronsa, M.; Nkundanyirazo, E. Assessment of aflatoxin and fumonisin contamination levels in maize and mycotoxins awareness and risk factors in Rwanda. Afr. J. Food Agric. Nutr. Dev. 2020, 20, 16420–16446. [Google Scholar] [CrossRef]
- Tonui, A.J.C. Financial Factors Influencing Growth of Horticultural Sector in Nakuru County, Kenya. Ph.D. Thesis, COPAS-JKUAT, Juja, Kenya, 2017. [Google Scholar]
- Manu, N.; Opit, G.; Osekre, E.; Arthur, F.; Mbata, G.; Armstrong, P.; Danso, J.; McNeill, S.; Campbell, J. Moisture content, insect pest infestation and mycotoxin levels of maize in markets in the northern region of Ghana. J. Stored Prod. Res. 2019, 80, 10–20. [Google Scholar] [CrossRef]
- Sumner, P.E.; Lee, R.D. Reducing Aflatoxin in Corn during Harvest and Storage; University of Georgia: Athens, Georgia, 2009. [Google Scholar]
- Shee, A.; Mayanja, S.; Simba, E.; Stathers, T.; Bechoff, A.; Bennett, B. Determinants of postharvest losses along smallholder producers maize and Sweetpotato value chains: An ordered Probit analysis. Food Secur. 2019, 11, 1101–1120. [Google Scholar] [CrossRef] [Green Version]
- Mutiga, S.K.; Mushongi, A.A.; Kangéthe, E.K. Enhancing Food Safety through Adoption of Long-Term Technical Advisory, Financial, and Storage Support Services in Maize Growing Areas of East Africa. Sustainability 2019, 11, 2827. [Google Scholar] [CrossRef] [Green Version]
- Massomo, S.M. Aspergillus flavus and aflatoxin contamination in the maize value chain and what needs to be done in Tanzania. Sci. Afr. 2020, 10, e00606. [Google Scholar] [CrossRef]
- Udomkun, P.; Romuli, S.; Schock, S.; Mahayothee, B.; Sartas, M.; Wossen, T.; Njukwe, E.; Vanlauwe, B.; Müller, J. Review of solar dryers for agricultural products in Asia and Africa: An innovation landscape approach. J. Environ. Manag. 2020, 268, 110730. [Google Scholar] [CrossRef]
- Lanyasunya, T.; Wamae, L.W.; Musa, H.H.; Olowofeso, O.; Lokwaleput, I.K. The risk of mycotoxins contamination of dairy feed and milk on smallholder dairy farms in Kenya. Pak. J. Nutr. 2005, 4, 162–169. [Google Scholar]
- Azziz-Baumgartner, E.; Lindblade, K.; Gieseker, K.; Rogers, H.S.; Kieszak, S.; Njapau, H. Case–Control Study of an Acute Aflatoxicosis Outbreak, Kenya, 2004. Environ. Health Perspect. 2005, 113, 1779–1783. [Google Scholar] [CrossRef]
- Turner, P.; Sylla, A.; Gong, Y.Y.; Diallo, M.; Sutcliffe, A.; Hall, A.; Wild, C. Reduction in exposure to carcinogenic aflatoxins by postharvest intervention measures in west Africa: A community-based intervention study. Lancet 2005, 365, 1950–1956. [Google Scholar] [CrossRef]
- Awuah, R.T.; Ellis, W.O. Effects of some groundnut packaging methods and protection with Ocimum and Syzygium powders on kernel infection by fungi. Mycopathologia 2002, 154, 29–36. [Google Scholar] [CrossRef]
- Taye, W.; Ayalew, A.; Dejene, M.; Chala, A. Fungal invasion and mycotoxin contamination of stored sorghum grain as influenced by threshing methods. Int. J. Pest Manag. 2018, 64, 66–76. [Google Scholar] [CrossRef]
- Seetha, A.; Munthali, W.; Msere, H.W.; Swai, E.; Muzanila, Y.; Sichone, E.; Tsusaka, T.; Rathore, A.; Okori, P. Occurrence of aflatoxins and its management in diverse cropping systems of central Tanzania. Mycotoxin Res. 2017, 33, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Kalita, P. Reducing Postharvest Losses during Storage of Grain Crops to Strengthen Food Security in Developing Countries. Foods 2017, 6, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kagot, V.; Okoth, S.; De Boevre, M.; De Saeger, S. Biocontrol of Aspergillus and Fusarium Mycotoxins in Africa: Benefits and Limitations. Toxins 2019, 11, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matumba, L.; Van Poucke, C.; Njumbe Ediage, E.; De Saeger, S. Keeping mycotoxins away from the food: Does the existence of regulations have any impact in Africa? Crit. Rev. Food Sci. Nutr. 2017, 57, 1584–1592. [Google Scholar] [CrossRef] [PubMed]
- Okeke, C.A.; Ezekiel, C.N.; Nwangburuka, C.C.; Sulyok, M.; Ezeamagu, C.; Adeleke, R.; Dike, K.; Krska, R. Bacterial Diversity and Mycotoxin Reduction During Maize Fermentation (Steeping) for Ogi Production. Front. Microbiol. 2015, 6, 1402. [Google Scholar] [CrossRef] [Green Version]
- Nyamete, F.; Bennink, M.; Mugula, J. Potential of lactic acid fermentation in reducing aflatoxin B1 in Tanzania maize-based gruel. Afr. J. Food Agric. Nutr. Dev. 2016, 16, 11139–11151. [Google Scholar] [CrossRef]
- Sahab, M.G.; Toropov, V.V.; Gandomi, A.H. A review on traditional and modern structural optimization: Problems and techniques. In Metaheuristic applications in structures and infrastructures; Elsevier: Amsterdam, The Netherlands, 2013; pp. 25–47. ISBN 9780123983794. [Google Scholar]
- European Food Safety Authority (EFSA); Maggiore, A.; Afonso, A.; Barrucci, F.; Sanctis, G.D. Climate Change as a Driver of Emerging Risks for Food and Feed Safety, Plant, Animal Health and Nutritional Quality; EFSA Supporting Publications: Parma, Italy, 2020; Volume 17, p. 1881E. [Google Scholar] [CrossRef]
- Chilaka, C.A.; De Boevre, M.; Atanda, O.O.; De Saeger, S. Stability of fumonisin B1, deoxynivalenol, zearalenone, and T-2 toxin during processing of traditional Nigerian beer and spices. Mycotoxin Res. 2018, 34, 229–239. [Google Scholar] [CrossRef]
- Chilaka, C.A.; De Boevre, M.; Atanda, O.O.; De Saeger, S. Fate of Fusarium mycotoxins during processing of Nigerian traditional infant foods (ogi and soybean powder). Food Res. Int. 2019, 116, 408–418. [Google Scholar] [CrossRef]
- Midega, C.A.; Murage, A.W.; Pittchar, J.O.; Khan, Z.R. Managing storage pests of maize: Farmers’ knowledge, perceptions and practices in western Kenya. Crop Prot. 2016, 90, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Ricker-Gilbert, J.; Jones, M. Does storage technology affect adoption of improved maize varieties in Africa? Insights from Malawi’s input subsidy program. Food Policy 2015, 50, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Shabani, B.; Biju, M. Theoretical Modelling Methods for Thermal Management of Batteries. Energies 2015, 8, 10153–10177. [Google Scholar] [CrossRef]
- Mugabi, R.; Driscoll, R. Study of Maize Drying in Uganda Using an in-Store Dryer Weather Data Simulation Software. Int. J. Food Process. Technol. 2016, 3, 18–26. [Google Scholar] [CrossRef]
- Maina, A.W.; Wagacha, J.M.; Mwaura, F.B.; Muthomi, J.W.; Woloshuk, C.P. Postharvest Practices of Maize Farmers in Kaiti District, Kenya and the Impact of Hermetic Storage on Populations of Aspergillus Spp. and Aflatoxin Contamination. J. Food Res. 2016, 5, 53. [Google Scholar] [CrossRef]
- Gitonga, Z.; De Groote, H.; Tefera, T. Metal silo grain storage technology and household food security in Kenya. J. Dev. Agric. Econ. 2015, 7, 222–230. [Google Scholar]
- Phokane, S.; Flett, B.C.; Ncube, E. Agricultural practices and their potential role in mycotoxin contamination of maize and groundnut subsistence farming. South Afr. J. Sci. 2019, 115, 1–6. [Google Scholar]
- Tibaingana, A.; Kele, T.; Makombe, G. Storage practices and their bearing on smallholder farmers: Postharvest analysis in Uganda. South Afr. J. Agric. Ext. 2018, 46, 45–56. [Google Scholar] [CrossRef]
- Magembe, K.S.; Mwatawala, M.W.; Mamiro, D.P.; Chingonikaya, E.E. Assessment of awareness of mycotoxins infections in stored maize (Zea mays L.) and groundnut (arachis hypogea L.) in Kilosa District, Tanzania. Int. J. Food Contam. 2016, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Ndisio, B.; Peter, W.; Victor, K.; Sheila, O.; Boaz, N.; Wachira, P.; Kagot, V.; Okoth, S. Susceptibility of locally cultivated groundnut (Arachis hypogaea) varieties to aflatoxin accumulation in Homa Bay County, Kenya. Afr. J. Microbiol. Res. 2017, 11, 1329–1337. [Google Scholar] [CrossRef] [Green Version]
- Walker, S.; Jaime, R.; Kagot, V.; Probst, C. Comparative effects of hermetic and traditional storage devices on maize grain: Mycotoxin development, insect infestation and grain quality. J. Stored Prod. Res. 2018, 77, 34–44. [Google Scholar] [CrossRef]
- Siame, B.A.; Mpuchane, S.F.; Gashe, B.A.; Allotey, J.; Teffera, G. Occurrence of Aflatoxins, Fumonisin B1, and Zearalenone in Foods and Feeds in Botswana. J. Food Prot. 1998, 61, 1670–1673. [Google Scholar] [CrossRef]
- Nkwe, D.O.; Taylor, J.E.; Siame, B.A. Fungi, Aflatoxins, Fumonisin Bl and Zearalenone Contaminating Sorghum-based Traditional Malt, Wort and Beer in Botswana. Mycopathologia 2005, 160, 177–186. [Google Scholar] [CrossRef]
- Bankole, S.; Schollenberger, M.; Drochner, W. Mycotoxins in food systems in Sub Saharan Africa: A review. Mycotoxin Res. 2006, 22, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Robens, J.; Cardwell, K. The Costs of Mycotoxin Management to the USA: Management of Aflatoxins in the United States. J. Toxicol. Toxin Rev. 2003, 22, 139–152. [Google Scholar] [CrossRef]
- Chauhan, N.M.; Washe, A.P.; Minota, T. Fungal infection and aflatoxin contamination in maize collected from Gedeo zone, Ethiopia. SpringerPlus 2016, 5, 753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pimpitak, U.; Rengpipat, S.; Phutong, S.; Buakeaw, A.; Komolpis, K. Development and validation of a lateral flow immunoassay for the detection of aflatoxin M1 in raw and commercialised milks. Int. J. Dairy Technol. 2020, 73, 695–705. [Google Scholar] [CrossRef]
- Chiaradia, L.D.; Mascarello, A.; Purificação, M.; Vernal, J.; Cordeiro, M.N.S.; Zenteno, M.E.; Villarino, A.; Nunes, R.J.; Yunes, R.A.; Terenzi, H. Synthetic chalcones as efficient inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase PtpA. Bioorganic Med. Chem. Lett. 2008, 18, 6227–6230. [Google Scholar] [CrossRef]
- Al-Jaal, B.; Salama, S.; Al-Qasmi, N.; Jaganjac, M. Mycotoxin contamination of food and feed in the Gulf Cooperation Council countries and its detection. Toxicon 2019, 171, 43–50. [Google Scholar] [CrossRef]
- Owen, L.J.; Monaghan, P.J.; Armstrong, A.; Keevil, B.G.; Higham, C.; Salih, Z.; Howell, S. Oestradiol measurement during fulvestrant treatment for breast cancer. Br. J. Cancer 2019, 120, 404–406. [Google Scholar] [CrossRef] [Green Version]
- Mwanza, M.; Abdel-Hadi, A.; Ali, A.M.; Egbuta, M. Evaluation of analytical assays efficiency to detect aflatoxin M1 in milk from selected areas in Egypt and South Africa. J. Dairy Sci. 2015, 98, 6660–6667. [Google Scholar] [CrossRef] [Green Version]
- Panzo, J.D. The Incidence of Fungi and their Mycotoxins in Angolan Food and Crops with Particular Reference to Maize; University of Johannesburg: Johannesburg, South Africa, 2012. [Google Scholar]
- Warth, B.; Parich, A.; Atehnkeng, J.; Bandyopadhyay, R.; Schuhmacher, R.; Sulyok, M.; Krska, R. Quantitation of Mycotoxins in Food and Feed from Burkina Faso and Mozambique Using a Modern LC-MS/MS Multitoxin Method. J. Agric. Food Chem. 2012, 60, 9352–9363. [Google Scholar] [CrossRef]
- COMPAORE, H.; Samandoulougou, S.; Tapsoba, F.W.; Bambara, A.; Ratongue, H.; Sawadogo, I.; Kabore, D.; Ouattara-Sourabie, P.B.; Sawadogo-Lingani, H.E. Aflatoxigenic potential of Aspergillus section Flavi isolated from maize seeds, in Burkina Faso. Afr. J. Microbiol. Res. 2021, 15, 420–428. [Google Scholar]
- Ware, L.Y.; Durand, N.; Nikiema, P.A.; Alter, P.; Fontana, A.; Montet, D.; Barro, N. Occurrence of mycotoxins in commercial infant formulas locally produced in Ouagadougou (Burkina Faso). Food Control 2017, 73, 518–523. [Google Scholar] [CrossRef]
- Abia, W.A.; Warth, B.; Sulyok, M.; Krska, R.; Tchana, A.N.; Njobeh, P.; Dutton, M.F.; Moundipa, P.F. Determination of multi-mycotoxin occurrence in cereals, nuts and their products in Cameroon by liquid chromatography tandem mass spectrometry (LC-MS/MS). Food Control 2013, 31, 438–453. [Google Scholar] [CrossRef]
- Kana, J.R.; Gnonlonfin, B.G.J.; Harvey, J.; Wainaina, J.; Wanjuki, I.; Skilton, R.A.; Teguia, A. Assessment of Aflatoxin Contamination of Maize, Peanut Meal and Poultry Feed Mixtures from Different Agroecological Zones in Cameroon. Toxins 2013, 5, 884–894. [Google Scholar] [CrossRef] [PubMed]
- Nguegwouo, E.; Tchuenchieu, A.; Tene, H.M.; Fokou, E.; Nama, G.M.; De Saeger, S.; Etoa, F.-X. Mycotoxin Contamination of Food and Associated Health Risk in Cameroon: A 25-years Review (1993–2018). Eur. J. Nutr. Food Saf. 2019, 9, 52–65. [Google Scholar] [CrossRef]
- Bamba, S.; Biego, H.M.G.; Coulibaly, A.; Yves, N.B.; Daouda, S. Determination of the Level of Aflatoxins Contamination in Maize (Zea mays L.) Produced in Five Regions of Côte d’Ivoire. Asian Res. J. Agric. 2021, 21–31. [Google Scholar] [CrossRef]
- Kouadio, J.; Kouakou, B.; Lattanzio, V.; Ouattara, D.; Visconti, A. Assessment of mycotoxin exposure in CÔte D′ivoire (Ivory Coast) through multi-biomarker analysis and possible correlation with food consumption patterns. Toxicol. Int. 2014, 21, 248–257. [Google Scholar] [CrossRef] [Green Version]
- Campbell, K.; Cavalcante, A.L.F.; Galvin-King, P.; Oplatowska-Stachowiak, M.; Brabet, C.; Metayer, I.; Montet, D.; Haughey, S.A.; Elliott, C.T. Evaluation of an alternative spectroscopic approach for aflatoxin analysis: Comparative analysis of food and feed samples with UPLC–MS/MS. Sens. Actuators B Chem. 2017, 239, 1087–1097. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, I.; Handl, J.; Binder, E. Mycotoxin occurrence in commodities, feeds and feed ingredients sourced in the Middle East and Africa Part B Surveillance. Food Addit. Contam. Part B 2011, 4, 168–179. [Google Scholar] [CrossRef] [Green Version]
- El-Shanshoury, A.E.-R.R. Occurrence of moulds, toxicogenic capability of Aspergillus flavus and levels of aflatoxins in maize, wheat, rice and. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 852–865. [Google Scholar]
- Nooh, A.; Amra, H.; Youssef, M.M.; El-Banna, A.A. Mycotoxins and toxigenic fungi occurrence in Egyptian maize. Int. J. Adv. Res. 2014, 2, 521–532. [Google Scholar]
- Agbetiameh, D.; Ortega-Beltran, A.; Awuah, R.T.; Atehnkeng, J.; Cotty, P.J.; Bandyopadhyay, R. Prevalence of Aflatoxin Contamination in Maize and Groundnut in Ghana: Population Structure, Distribution, and Toxigenicity of the Causal Agents. Plant Dis. 2018, 102, 764–772. [Google Scholar] [CrossRef] [Green Version]
- Aklaku, E.; Sowley, E.; Ofosu, M. Incidence of fungi and aflatoxin contamination of maize in Tolon-Kumbungu district of Ghana. Afr. Crop Sci. J. 2020, 28, 195–202. [Google Scholar] [CrossRef]
- Kortei, N.K.; Annan, T.; Akonor, P.T.; Richard, S.A.; Annan, H.A.; Kyei-Baffour, V.; Akuamoa, F.; Akpaloo, P.G.; Esua-Amoafo, P. The occurrence of aflatoxins and human health risk estimations in randomly obtained maize from some markets in Ghana. Sci. Rep. 2021, 11, 4295. [Google Scholar] [CrossRef] [PubMed]
- Wangia, R.N.; Githanga, D.P.; Xue, K.S.; Tang, L.; Anzala, O.A.; Wang, J.-S. Validation of urinary sphingolipid metabolites as biomarker of effect for fumonisins exposure in Kenyan children. Biomarkers 2019, 24, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Mutiga, S.K.; Morales, L.; Angwenyi, S.; Wainaina, J.; Harvey, J.; Das, B.; Nelson, R.J. Association between agronomic traits and aflatoxin accumulation in diverse maize lines grown under two soil nitrogen levels in Eastern Kenya. Field Crop. Res. 2017, 205, 124–134. [Google Scholar] [CrossRef]
- Okoth, S.A.; Kola, M.A. Market samples as a source of chronic aflatoxin exposure in Kenya. Afr. J. Health Sci. 2012, 20, 56–61. [Google Scholar]
- Menza, N.C.; Margaret, M.W.; Lucy, K.M. Incidence, Types and Levels of Aflatoxin in Different Peanuts Varieties Produced in Busia and Kisii Central Districts, Kenya. Open J. Med. Microbiol. 2015, 5, 209–221. [Google Scholar] [CrossRef] [Green Version]
- Mohale, S.; Medina, A.; Rodríguez, A.; Sulyok, M.; Magan, N. Mycotoxigenic fungi and mycotoxins associated with stored maize from different regions of Lesotho. Mycotoxin Res. 2013, 29, 209–219. [Google Scholar] [CrossRef]
- Mwalwayo, D.S.; Thole, B. Prevalence of aflatoxin and fumonisins (B1 + B2) in maize consumed in rural Malawi. Toxicol. Rep. 2016, 3, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Matumba, L.; Monjerezi, M.; Biswick, T.; Mwatseteza, J.; Makumba, W.; Kamangira, D.; Mtukuso, A. A survey of the incidence and level of aflatoxin contamination in a range of locally and imported processed foods on Malawian retail market. Food Control 2014, 39, 87–91. [Google Scholar] [CrossRef]
- Adetunji, M.; Atanda, O.; Ezekiel, C.N.; Sulyok, M.; Warth, B.; Beltran, E.; Krska, R.; Obadina, O.; Bakare, A.; Chilaka, C.A. Fungal and bacterial metabolites of stored maize (Zea mays L.) from five agro-ecological zones of Nigeria. Mycotoxin Res. 2014, 30, 89–102. [Google Scholar] [CrossRef]
- Adetunji, M.C.; Atanda, O.O.; Ezekiel, C.N. Risk Assessment of Mycotoxins in Stored Maize Grains Consumed by Infants and Young Children in Nigeria. Children 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed]
- Ezekiel, C.N.; Ayeni, K.I.; Akinyemi, M.O.; Sulyok, M.; Oyedele, O.A.; Babalola, D.A.; Ogara, I.M.; Krska, R. Dietary Risk Assessment and Consumer Awareness of Mycotoxins among Household Consumers of Cereals, Nuts and Legumes in North-Central Nigeria. Toxins 2021, 13, 635. [Google Scholar] [CrossRef] [PubMed]
- Niyibituronsa, M.; Shingiro, J.B.; Nzamwita, M.; Ndilu, L.; Nyirahanganyamunsi, G.; Hagenimana, G.; Nyirahorana, C.; Ntivuguruzwa, S.; Gasana, P.; Kamaraba, I.; et al. Chemical Characterization and Acceptability of Eight Cassava Varieties Introduced in Rwanda. J. Food Res. 2021, 10, 1. [Google Scholar] [CrossRef]
- Nishimwe, K.; Wanjuki, I.; Karangwa, C.; Darnell, R.; Harvey, J. An initial characterization of aflatoxin B1 contamination of maize sold in the principal retail markets of Kigali, Rwanda. Food Control 2017, 73, 574–580. [Google Scholar] [CrossRef] [Green Version]
- Njobeh, P.B.; Dutton, M.F.; Åberg, A.T.; Haggblom, P. Estimation of Multi-Mycotoxin Contamination in South African Compound Feeds. Toxins 2012, 4, 836–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elzupir, A.O.; Makawi, S.Z.; Elhussein, A.M. Determination of Aflatoxins and Ochratoxin a in Dairy Cattle Feed and. J. Anim. Vet. Adv. 2009, 8, 2508–2511. [Google Scholar]
- Boni, S.; Beed, F.; Kimanya, M.; Koyano, E.; Mponda, O.; Mamiro, D.; Kaoneka, B.; Bandyopadhyay, R.; Korie, S.; Mahuku, G. Aflatoxin contamination in Tanzania: Quantifying the problem in maize and groundnuts from rural households. World Mycotoxin J. 2021, 14, 553–564. [Google Scholar] [CrossRef]
- Temba, M.; Njobeh, P.; Kayitesi, E. Storage stability of maize-groundnut composite flours and an assessment of aflatoxin B1 and ochratoxin A contamination in flours and porridges. Food Control 2017, 71, 178–186. [Google Scholar] [CrossRef]
- Sasamalo, M.M.; Mugula, J.K.; Nyangi, C.J. Aflatoxins contamination of maize at harvest and during storage in Dodoma, Tanzania. Int. J. Innov. Res. Dev. 2018, 7, 11–15. [Google Scholar]
- Hanvi, D.M.; Lawson-Evi, P.; De Boevre, M.; Goto, C.E.; De Saeger, S.; Eklu-Gadegbeku, K. Natural occurrence of mycotoxins in maize and sorghum in Togo. Mycotoxin Res. 2019, 35, 321–327. [Google Scholar] [CrossRef]
- Baglo, D.E.; Faye, A.; Fall, M. Determination of Aflatoxin in Maize Produced in Two Regions of Togo. Adv. Food Technol. Nutr. Sci. Open J. 2020, 6, 42–46. [Google Scholar] [CrossRef]
- Ghali, R.; Khlifa, K.H.; Ghorbel, H.; Maaroufi, K.; Hedilli, A. Aflatoxin determination in commonly consumed foods in Tunisia. J. Sci. Food Agric. 2010, 90, 2347–2351. [Google Scholar] [CrossRef] [PubMed]
- Ghali, R.; Hmaissia-Khlifa, K.; Ghorbel, H.; Maaroufi, K.; Hedili, A. Incidence of aflatoxins, ochratoxin A and zearalenone in tunisian foods. Food Control 2008, 19, 921–924. [Google Scholar] [CrossRef]
- Kaaya, N.; Warren, H. Review of past and present research on Aflatoxin in Uganda. Afr. J. Food Agric. Nutr. Dev. 2005, 5. [Google Scholar] [CrossRef]
- Kaaya, A.N.; Kyamuhangire, W. The effect of storage time and agroecological zone on mould incidence and aflatoxin contamination of maize from traders in Uganda. Int. J. Food Microbiol. 2006, 110, 217–223. [Google Scholar] [CrossRef]
- Sserumaga, J.P.; Ortega-Beltran, A.; Wagacha, J.M.; Mutegi, C.K.; Bandyopadhyay, R. Aflatoxin-producing fungi associated with pre-harvest maize contamination in Uganda. Int. J. Food Microbiol. 2020, 313, 108376. [Google Scholar] [CrossRef]
- Mukanga, M.; Derera, J.; Tongoona, P.; Laing, M. A survey of pre-harvest ear rot diseases of maize and associated mycotoxins in south and central Zambia. Int. J. Food Microbiol. 2010, 141, 213–221. [Google Scholar] [CrossRef]
- Akello, J.; Ortega-Beltran, A.; Katati, B.; Atehnkeng, J.; Augusto, J.; Mwila, C.; Mahuku, G.; Chikoye, D.; Bandyopadhyay, R. Prevalence of Aflatoxin- and Fumonisin-Producing Fungi Associated with Cereal Crops Grown in Zimbabwe and Their Associated Risks in a Climate Change Scenario. Foods 2021, 10, 287. [Google Scholar] [CrossRef]
- Hove, M.; De Boevre, M.; Lachat, C.; Jacxsens, L.; Nyanga, L.; De Saeger, S. Occurrence and risk assessment of mycotoxins in subsistence farmed maize from Zimbabwe. Food Control 2016, 69, 36–44. [Google Scholar] [CrossRef]
- Assunção, R.; Martins, C.; Viegas, S.; Viegas, C.; Jakobsen, L.S.; Pires, S.; Alvito, P. Climate change and the health impact of aflatoxins exposure in Portugal—An overview. Food Addit. Contam. Part A 2018, 35, 1610–1621. [Google Scholar] [CrossRef] [Green Version]
- FAO. Food and Agricultural Policy Research Institute, U.S. and World Agricultural Outlook; University of Iowa: Iowa City, IA, USA; University of Missouri: Columbia, MO, USA, 2003. [Google Scholar]
- Sirma, A.; Lindahl, J.; Makita, K.; Senerwa, D.; Mtimet, N.; Kang’Ethe, E.; Grace, D. The impacts of aflatoxin standards on health and nutrition in sub-Saharan Africa: The case of Kenya. Glob. Food Secur. 2018, 18, 57–61. [Google Scholar] [CrossRef]
- Sarkanj, B.; Ezekiel, C.N.; Turner, P.C.; Abia, W.A.; Rychlik, M.; Krska, R.; Sulyok, M. Ultra-sensitive, stable isotope assisted quantification of multiple urinary mycotoxin exposure biomarkers. Anal. Chim. Acta 2018, 1019, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Gratz, S.W. Do plant-bound masked mycotoxins contribute to toxicity? Toxins 2017, 9, 85. [Google Scholar] [CrossRef] [PubMed]
- Ajandouz, E.H.; Berdah, S.; Moutardier, V.; Bege, T.; Birnbaum, D.J.; Perrier, J.; Di Pasquale, E.; Maresca, M. Hydrolytic fate of 3/15-acetyldeoxynivalenol in humans: Specific deacetylation by the small intestine and liver revealed using in vitro and ex vivo approaches. Toxins 2016, 8, 232. [Google Scholar] [CrossRef] [PubMed]
- Ekwomadu, T.I.; Dada, T.A.; Nleya, N.; Gopane, R.; Sulyok, M.; Mwanza, M. Variation of Fusarium Free, Masked, and Emerging Mycotoxin Metabolites in Maize from Agriculture Regions of South Africa. Toxins 2020, 12, 149. [Google Scholar] [CrossRef] [Green Version]
- Van Egmond, H.; Jonker, M. Worldwide Regulations for Mycotoxins in Food and Feed in 2003; Food and Agriculture Organization of the United Nations by the Laboratory for Food and Residue Analyses of the National Institute for Public Health and the Environment, the Netherlands: Rome, Italy, 2005. [Google Scholar]
- FAO. Human energy requirements, report of a joint FAO/WHO/UNO expert consultation. In FAO Food and Nutrition Technical Report; FAO: Rome, Italy, 2004. [Google Scholar]
- EAS. East African Standard EAS 44: 2011 Milled Maize (Corn) Products—Specification; East Africa Community: Arusha, Tanzania, 2011; pp. 1–11. [Google Scholar]
- Ankwasa, E.M.; Francis, I.; Ahmad, T. Update on mycotoxin contamination of maize and peanuts in East African Community Countries. J. Food Sci. Nutr. Ther. 2021, 7, 1–10. [Google Scholar]
- Imade, F.; Ankwasa, E.M.; Geng, H.; Ullah, S.; Ahmad, T.; Wang, G.; Zhang, C.; Dada, O.; Xing, F.; Zheng, Y.; et al. Updates on food and feed mycotoxin contamination and safety in Africa with special reference to Nigeria. Mycology 2021, 12, 245–260. [Google Scholar] [CrossRef]
- Van Deventer, M.M. Mycotoxin Prevalence and Heavy Metal Contamination of South African Red Meat. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2018. [Google Scholar]
- European Commission. Commission Regulation (EC) No1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs (Text with EEA Relevance). 2006. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:PDF (accessed on 23 March 2014).
- European Commission. European Commision Recommendation (EU) 2016/1319 of 29 July 2016 Amending Recommendation 2006/576/EC as Regards Deoxynivalenol, Zearalenone and Ochratoxin A in Pet Food. Off. J. Eur. Union 2016, 208, 58–60. [Google Scholar]
- European Commission. European Commision Recommendation (EC) No 401/2006 of 23 February 2006 Laying Down the Methods of Sampling and Analysis for Official Control of the Levels of Mycotoxins in Foodstuffs; European Commission: Brussels, Belgium, 2006. [Google Scholar]
- FDA. Food and Drug Administration; Docket No. FDA-2021-D-0242 for “Compliance Policy Guide Sec. 555.400 Aflatoxins in Human Food USA”; FDA: Silver Spring, MD, USA, 2021. [Google Scholar]
- FDA. Mycotoxin Regulatory Guidance. A Guide for Grain Elevators, Feed Manufacturers, Grain Processors and Exporters; FDA: Silver Spring, MD, USA, 2011. [Google Scholar]
- Ayalew, A.; Hoffmann, V.; Lindahl, J.F.; Ezekiel, C.N. The role of mycotoxin contamination in nutrition: The aflatoxin story. In Achieving a Nutrition Revolution for Africa: The Road to Healthier Diets and Optimal Nutrition; Covic, N., Hendriks, S.L., Eds.; ReSAKSS Annual Trends and Outlook Report 2015; IFPRI: Washington, DC, USA, 2016; pp. 98–114. [Google Scholar]
- Stepman, F. Scaling-Up the Impact of Aflatoxin Research in Africa. The Role of Social Sciences. Toxins 2018, 10, 136. [Google Scholar] [CrossRef] [Green Version]
- Ambler, K.; De Brauw, A.; Godlonton, S. Measuring postharvest losses at the farm level in Malawi. Aust. J. Agric. Resour. Econ. 2018, 62, 139–160. [Google Scholar] [CrossRef]
- Wild, C.P.; Miller, J.D.; Groopman, J.D. Mycotoxin Control in Low-and Middle-Income Countries; Group Rep 9; IARC Work: Lyon, France, 2015; pp. 1–53. [Google Scholar]
- Edelman, B.; Aberman, N.-L. Promoting Exports of Low-Aflatoxin Groundnut from Malawi; MaSSP Policy Note; International Food Policy Research Institute, IFPRI: Washington, DC, USA, 2015. [Google Scholar]
- Falade, T. Aflatoxin Management Strategies in Sub-Saharan Africa, in Mycotoxins- Socio-Economic and Health Impact as Well as Pre- and Postharvest Management Strategies; Njobeh, P.N., Ed.; IntechOpen: London, UK, 2018. [Google Scholar]
- Okoth, S. Improving the Evidence Base on Aflatoxin Contamination and Exposure in Africa: Agriculture and Nutrition; PACA: Marseille, France, 2016. [Google Scholar]
- Jelliffe, J.L.; Bravo-Ureta, B.; Deom, C.M.; Okello, D.K. The Sustainability of Farmer-Led Multiplication and Dissemination of High-Yield and Disease Resistant Groundnut Varieties; No. 2231-2019-2212; College of Agriculture and Natural Resources: Storrs, CT, USA, 2016. [Google Scholar]
- Chilaka, C.A.; De Boevre, M.; Atanda, O.O.; De Saeger, S. The Status of Fusarium Mycotoxins in Sub-Saharan Africa: A Review of Emerging Trends and Post-Harvest Mitigation Strategies towards Food Control. Toxins 2017, 9, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, M.; Liang, J.; Yang, D.; Yang, X.; Cao, P.; Wang, X.; Ma, N.; Zhang, L. Spatial analysis of dietary exposure of aflatoxins in peanuts and peanut oil in different areas of China. Food Res. Int. 2021, 140, 109899. [Google Scholar] [CrossRef] [PubMed]
- Kamala, A.; Shirima, C.; Jani, B.; Bakari, M.; Sillo, H.; Rusibamayila, N.; De Saeger, S.; Kimanya, M.; Gong, Y.; Simba, A.; et al. Outbreak of an acute aflatoxicosis in Tanzania during 2016. World Mycotoxin J. 2018, 11, 311–320. [Google Scholar] [CrossRef]
- Omotayo, O.P.; Omotayo, A.O.; Mwanza, M.; Babalola, O.O. Prevalence of Mycotoxins and Their Consequences on Human Health. Toxicol. Res. 2019, 35, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Egbuta, M.A.; Mwanza, M.; Babalola, O.O. A Review of the Ubiquity of Ascomycetes Filamentous Fungi in Relation to Their Economic and Medical Importance. Adv. Microbiol. 2016, 6, 1140–1158. [Google Scholar] [CrossRef] [Green Version]
- Egbuta, M.; Mwanza, M.; Babalola, O.O. Health Risks associated with exposure to filamentous fungi. Int. J. Environ. Res. Public Health 2017, 14, 719. [Google Scholar] [CrossRef] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 339, b2700. [Google Scholar] [CrossRef] [Green Version]
Climate Change in South Africa | |||
---|---|---|---|
Year | Production of Maize/Tons | Annual Rainfall/mm | Temperature Change/°C |
2005 | 11,715,948 | 395 | 0.9604 |
2006 | 6,935,056 | 566 | 0.5105 |
2007 | 7,125,000 | 424 | 0.7655 |
2008 | 12,700,000 | 437 | 0.8384 |
2009 | 12,050,000 | 472 | 0.7332 |
2010 | 12,815,000 | 474 | 1.2107 |
2011 | 10,360,000 | 540 | 0.5503 |
2012 | 12,120,656 | 462 | 0.6957 |
2013 | 11,810,600 | 420 | 0.7135 |
2014 | 14,250,000 | 449 | 0.9467 |
2015 | 9,955,000 | 368 | 1.5954 |
2016 | 7,778,500 | 423 | 1.6038 |
2017 | 16,820,000 | 424 | 1.0127 |
2018 | 12,510,000 | 383 | 1.1953 |
2019 | 11,275,500 | 382 | 1.7086 |
2020 | - | 460 | 0.9330 |
Country | Commodities | Mycotoxin | Maximum Acceptable Level | References |
---|---|---|---|---|
Algeria | Peanuts, nuts, and cereals | Aflatoxin B1 | 300 µg/kg | [163,164] |
Cattle feed | Aflatoxin B1,G1,B2,G2 | 20 µg/kg | ||
Côte d’lvoire | Straight feedstuffs | Aflatoxin B1,G1,B2,G2 | 100 µg/kg | [163,164] |
Complete feedstuffs | Aflatoxin B1,G1,B2,G2 | 10 µg/kg | ||
Complete feedstuffs for pigs/poultry | Aflatoxin B1,G1,B2,G2 | 38 µg/kg | ||
Complete feedstuffs for cattle/sheep/goats | Aflatoxin B1,G1,B2,G2 | 75 µg/kg | ||
Complete feedstuffs for dairy cattle | Aflatoxin B1,G1,B2,G2 | 50 µg/kg | ||
Egypt | Peanuts, oil seeds, and cereals | Aflatoxin B1 | 5 µg/kg | [163,164] |
Aflatoxin B1,G1,B2,G2 | 10 µg/kg | |||
Corn | Aflatoxin B1 | 10 µg/kg | ||
Aflatoxin B1,G1,B2,G2 | 20 µg/kg | |||
Animal and poultry fodder | Aflatoxin B1 | 10 µg/kg | ||
Aflatoxin B1,G1,B2,G2 | 20 µg/kg | |||
Kenya | All foods | Aflatoxin B1 | 5 µg/kg | [9,37,163,165,166] |
Milk and milk products | Aflatoxin M1 | 0.05 µg/kg | ||
Peanuts, products, and vegetable oils | Aflatoxin B1,G1,B2,G2 | 20 µg/kg | ||
All foods | Fumonisins | 2000 µg/kg | ||
Malawi | All foods | Aflatoxin B1,G1,B2,G2 | 10 µg/kg | [164,165] |
All foods | Aflatoxin B1 | 5 µg/kg | ||
Peanuts for export | Aflatoxin B1 | 5 µg/kg | ||
All foods | Fumonisins | 2000 µg/kg | ||
Mauritius | All foods | Aflatoxin B1 | 5 µg/kg | [163,164] |
Aflatoxin B1,G1,B2,G2 | 10 µg/kg | |||
Groundnuts | Aflatoxin B1 | 5 µg/kg | ||
Aflatoxin B1,G1,B2,G2 | 15 µg/kg | |||
Mozambique | Peanuts, peanut milk | Aflatoxin B1,G1,B2,G2 | 10 µg/kg | [164] |
Peanuts, maize, peanut butter, cereals and feedstuffs | Aflatoxin B1,G1,B2,G2 | 10 µg/kg | ||
Nigeria | Cereals and cereal products | Aflatoxin B1,G1,B2,G2 | 4 µg/kg | [164,167] |
Aflatoxin B1 | 2 µg/kg | |||
Feedstuffs | Aflatoxin B1 | 50 µg/kg | ||
Nuts, peanuts, and almonds | Aflatoxin B1,G1, B2, G2 | 4–5 µg/kg | ||
Peanut products as straight feedstuffs | Aflatoxin B1,G1,B2,G2 | 50 µg/kg | ||
Melon | Aflatoxin B1 | 2 µg/kg | ||
Aflatoxin B1,G1,B2,G2 | 4 µg/kg | |||
Infant foods | Aflatoxin B1,G1,B2,G2 | 1–2 µg/kg | ||
Fluid milk and its products | Aflatoxin M1 | 0.5 µg/kg | ||
Unprocessed cereals | Fumonisins | <1000 µg/kg | ||
Unprocessed maize | 1000 µg/kg | |||
Maize for human consumption | 4000 µg/kg | |||
Raw cereals | Ochratoxin A | 0.5 µg/kg | ||
Wine and juice | 2 µg/kg | |||
Unprocessed cereals | 5 µg/kg | |||
Spices | 20 µg/kg | |||
Processed cereal-based foods | Deoxynivalenol | 200 µg/kg | ||
Cereal grains | 2000 µg/kg | |||
Unprocessed cereals | 1750 µg/kg | |||
Unprocessed cereals for human consumption | Zearalenone | 100 µg/kg | ||
Unprocessed maize | 350 µg/kg | |||
Cereals intended for human consumption | 75 µg/kg | |||
Senegal | Peanut products as feedstuff | Aflatoxin B1 | 300 µg/kg | [163] |
All foods | Aflatoxin B1,G1,B2,G2 | 20 µg/kg | ||
South Africa | All foods | Aflatoxin B1,G1,B2,G2 | 10 µg/kg | [164,168] |
All foods | Aflatoxin B1 | 5 µg/kg | ||
Milk and milk products | Aflatoxin M1 | 0.05 µg/kg | ||
Corns and corn products | Fumonisin | 100–200 µg/kg | ||
All foods | Zearalenone | 3000–5000 µg/kg | ||
Patulin | 50 µg/kg | |||
Deoxynivalenol | 2000 µg/kg | |||
Fumonisin B1 & B2 | 4000 µg/kg | |||
Sudan | Oil seeds | Aflatoxin B1,G1,B2,G2 | 10 µg/kg | [164,165] |
Wheat | Ochratoxin A | 15 µg/kg | ||
All foods | Fumonisin | 2000 µg/kg | ||
Tanzania | Cereals, oil seeds | Aflatoxin B1 | 5 µg/kg | [164,165,166] |
Aflatoxin B1,G1,B2,G2 | 10 µg/kg | |||
Feeds | Aflatoxin B1 | 5 µg/kg | ||
Aflatoxin B1,G1,B2,G2 | 10 µg/kg | |||
All foods | Fumonisin | 2000 µg/kg | ||
Tunisia | All products | Aflatoxin B1 | 2 µg/kg | [164] |
Aflatoxin B1,G1,B2,G2 | 4 µg/kg | |||
Milk | Aflatoxin M1 | 0.05 µg/kg | ||
Zimbabwe | All foods | Aflatoxin B1 | 5 µg/kg | [163] |
All foods | Aflatoxin B1,G1,B2,G2 | 10 µg/kg | ||
Poultry | Aflatoxin B1,G1 | 10 µg/kg | ||
European Union | Cereals and processed products, groundnuts, nuts, and dried fruits and processed products intended for direct human consumption | Aflatoxin B1 | 2 µg/kg | [166,169,170,171] |
Aflatoxin B1,G1,B2,G2 | 4 µg/kg | |||
Groundnuts, maize to be subjected to sorting, or other physical treatment, before human consumption | Aflatoxin B1 | 8 µg/kg | ||
Aflatoxin B1,G1,B2,G2 | 15 µg/kg | |||
Milk and its products | Aflatoxin M1 | 0.05 µg/kg | ||
Baby and infant food | Aflatoxin B1 | 1–2 µg/kg | ||
Complete feedstuffs for cattle and sheep, excluding young ones | Aflatoxin B1 | 20 µg/kg | ||
Complete feedstuffs for calves and lambs | Aflatoxin B1 | 50 µg/kg | ||
Raw cereal grains (including raw rice and buckwheat) | Ochratoxin A | 5 µg/kg | ||
All products derived from cereals (including processed cereal products and cereal grains intended for direct human consumption) | 3 µg/kg | |||
Dried vine fruits (currants, raisins, and sultanas) | 10 µg/kg | |||
Fruit juices and fruit nectar, in particular, apple juice and fruit juice ingredients in other beverages | Patulin | 50 µg/kg | ||
Concentrated fruit juice after reconstitution as instructed by the manufacturer | 50 µg/kg | |||
Spirit drinks, cider, and other fermented drinks derived from apples or containing apple juice | 50 µg/kg | |||
Solid apple products, including apple compote, apple puree intended for direct consumption | 25 µg/kg | |||
Apple juice and solid apple products, including apple compote and apple puree, for infants and young children and labelled and sold as intended for infants and young children | 10 µg/kg | |||
Other baby food | 10 µg/kg | |||
Cereal products as consumed and other cereal products at retail stage | Deoxynivalenol | 500 µg/kg | ||
Flour used as raw material in food products | 750 µg/kg | |||
All feedstuffs containing unground cereals | Rye ergot | 1,000,000 µg/kg | ||
All foods | Fumonisins | 1000 µg/kg | ||
United states of America | Feedstuff ingredients | Aflatoxin B1,G1,B2,G2 | 20 µg/kg | [166,172,173] |
Cottonseed meal intended for beef cattle swine and poultry feedstuffs | Aflatoxin B1,G1,B2,G2 | 300 µg/kg | ||
Maize and peanut products for beef cattle swine or poultry | Aflatoxin B1,G1,B2,G2 | 100–300 µg/kg | ||
Whole milk, low fat milk, and skim milk | Aflatoxin M1 | 0.5 µg/kg | ||
Finished wheat products | Deoxynivalenol | 1000 µg/kg | ||
Grains and grain by-products | 10 000 µg/kg | |||
Grains and grain by-products for swine | 5000 µg/kg | |||
All foods | Fumonisins | 2 000 µg/kg | ||
Feed for horses | 500 µg/kg | |||
Feed for swine | 10 000 µg/kg | |||
Feed for beef cattle and poultry | 50 000 µg/kg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nji, Q.N.; Babalola, O.O.; Ekwomadu, T.I.; Nleya, N.; Mwanza, M. Six Main Contributing Factors to High Levels of Mycotoxin Contamination in African Foods. Toxins 2022, 14, 318. https://doi.org/10.3390/toxins14050318
Nji QN, Babalola OO, Ekwomadu TI, Nleya N, Mwanza M. Six Main Contributing Factors to High Levels of Mycotoxin Contamination in African Foods. Toxins. 2022; 14(5):318. https://doi.org/10.3390/toxins14050318
Chicago/Turabian StyleNji, Queenta Ngum, Olubukola Oluranti Babalola, Theodora Ijeoma Ekwomadu, Nancy Nleya, and Mulunda Mwanza. 2022. "Six Main Contributing Factors to High Levels of Mycotoxin Contamination in African Foods" Toxins 14, no. 5: 318. https://doi.org/10.3390/toxins14050318
APA StyleNji, Q. N., Babalola, O. O., Ekwomadu, T. I., Nleya, N., & Mwanza, M. (2022). Six Main Contributing Factors to High Levels of Mycotoxin Contamination in African Foods. Toxins, 14(5), 318. https://doi.org/10.3390/toxins14050318