Progress in Immunoassays of Toxic Alkaloids in Plant-Derived Medicines: A Review
Abstract
:1. Introduction
2. Synthesis and Identification of Antigen
2.1. Selection of Hapten
2.2. Coupling and Identification of Hapten
3. Types and Preparation of Antibodies
3.1. Polyclonal Antibody
3.2. Monoclonal Antibody
3.3. Genetically Engineered Antibody
4. Detection Assay
4.1. Radioimmunoassay (RIA)
4.2. Enzyme-Linked Immunosorbent Assay (ELISA)
4.3. Immunochromatography Assay (ICA)
4.4. Fluoroimmunoassay (FIA)
5. Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Newman, D.J.; Cragg, G.M.; Snader, K.M. The influence of natural products upon drug discovery. Nat. Prod. Rep. 2000, 17, 215–234. [Google Scholar] [PubMed] [Green Version]
- Berlin, C. Herbal medicine. Clin. Pediatr. 2001, 40, 271–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiseman, N. Traditional Chinese medicine: A brief outline. J. Chem. Inf. Comput. Sci. 2002, 42, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Licciardi, P.V.; Underwood, J.R. Plant-derived medicines: A novel class of immunological adjuvants. Int. Immunopharmacol. 2011, 11, 390–398. [Google Scholar] [CrossRef]
- Magryś, A.; Olender, A.; Tchórzewska, D. Antibacterial properties of Allium sativum L. against the most emerging multidrug-resistant bacteria and its synergy with antibiotics. Arch. Microbiol. 2021, 203, 2257–2268. [Google Scholar] [CrossRef]
- Ndhlala, A.R.; Ncube, B.; Okem, A.; Mulaudzi, R.B.; Van Staden, J. Toxicology of some important medicinal plants in southern Africa. Food Chem. Toxicol. 2013, 62, 609–621. [Google Scholar] [CrossRef]
- Borchers, A.T.; Hackman, R.M.; Keen, C.L.; Stern, J.S.; Gershwin, M.E. Complementary medicine: A review of immunomodulatory effects of Chinese herbal medicines. Am. J. Clin. Nutr. 1997, 66, 1303–1312. [Google Scholar] [CrossRef] [Green Version]
- Cragg, G.M.; Newman, D.J.; Snader, K.M. Natural products in drug discovery and development. J. Nat. Prod. 1997, 60, 52–60. [Google Scholar] [CrossRef]
- McKay, D.L.; Blumberg, J.B. A review of the bioactivity of South African herbal teas: Rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia). Phytother. Res. 2007, 21, 1–16. [Google Scholar] [CrossRef]
- Ozorio, P. World Health Organization encourages traditional medicine in the third world. Dev. Dir. 1979, 2, 16. [Google Scholar]
- Fennell, C.W.; Lindsey, K.L.; McGaw, L.J.; Sparg, S.G.; Stafford, G.I.; Elgorashi, E.E.; Grace, O.M.; van Staden, J. Assessing African medicinal plants for efficacy and safety: Pharmacological screening and toxicology. J. Ethnopharmacol. 2004, 94, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Matthews, H.B.; Lucier, G.W.; Fisher, K.D. Medicinal herbs in the United States: Research needs. Environ. Health Perspect. 1999, 107, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Talalay, P.; Talalay, P. The importance of using scientific principles in the development of medicinal agents from plants. Acad. Med. 2001, 76, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Wohlmuth, H.; Oliver, C.; Nathan, P.J. A review of the status of Western herbal medicine in Australia. J. Herb. Pharmacother. 2002, 2, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.J. Research on the Problems and Strategies of the Internationalization of Chinese Medicine; Shandong University of Traditional Chinese Medicine: Jinan, China, 2018. [Google Scholar]
- Kallon, S.; Li, X.; Ji, J.; Chen, C.; Xi, Q.; Chang, S.; Xue, C.; Ma, J.; Xie, Q.; Zhang, Y. Astragalus polysaccharide enhances immunity and inhibits H9N2 avian influenza virus in vitro and in vivo. J. Anim. Sci. Biotechnol. 2013, 4, 22. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Li, Q.; Shi, W.; Zhong, X. Effects of Huangqi Maxingshigan decoction on infectious laryngotracheitis in chickens. Ital. J. Anim. Sci. 2011, 10, 124–130. [Google Scholar] [CrossRef]
- Xu, C.L.; Zhao, Y.F.; Shang, X.Y.; Niu, W.N. The effects of supplementing diets with Atractylodes macrocephala Koidz rhizomes on growth performance and immune function in piglets. J. Anim. Feed Sci. 2012, 21, 302–312. [Google Scholar] [CrossRef]
- Brambilla, G.; Filippis, S.D. Trends in animal feed composition and the possible consequences on residue tests. Anal. Chim. Acta. 2005, 529, 7–13. [Google Scholar] [CrossRef]
- Hao, C.Q.; Ma, Y.; Feng, F.; Yang, J.; Gao, Q.X.; Bu, J.J.; Xin, G.S. Primary biological function and application of Chinese herbal feed additives. Pratacultural Sci. 2020, 37, 1638–1645. [Google Scholar]
- Pelletier, S.W. Alkaloids: Chemical and Biological Perspectives. Pergamon 1999, 13, 163–236. [Google Scholar]
- Verpoorte, R. Encyclopedia of Analytical Science, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Bello-Ramírez, A.M.; Buendía-Orozco, J.; Nava-Ocampo, A.A. A QSAR analysis to explain the analgesic properties of Aconitum alkaloids. Fundam. Clin. Pharmacol. 2003, 17, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.; Ding, R.; Chu, Z.Y.; Zhang, M.B.; Liu, X.Y.; Xie, S.H.; Zhai, Y.J.; Wang, Y.D. Role of berberine in anti-bacterial as a high-affinity LPS antagonist binding to TLR4/MD-2 receptor. BMC Complement. Altern. Med. 2014, 14, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamoto, M.; Ono, M.; Baba, M. Potent inhibition of HIV type 1 replication by an antiinflammatory alkaloid, cepharanthine, in chronically infected monocytic cells. AIDS Res. Hum. Retrov. 1998, 14, 1239–1245. [Google Scholar] [CrossRef] [PubMed]
- Ramesha, B.T.; Suma, H.K.; Senthilkumar, U.; Priti, V.; Ravikanth, G.; Vasudeva, R.; Kumar, T.R.; Ganeshaiah, K.N.; Shaanker, R.U. New plant sources of the anti-cancer alkaloid, camptothecine from the Icacinaceae taxa, India. Phytomedicine 2013, 20, 521–527. [Google Scholar] [CrossRef]
- Li, Q.L.; Zhao, S.; Sun, L.T.; Liu, X.L.; Wang, C.Y.; Li, Y.M.; Li, C.; Zhang, D. Effective components of ginseng aconite in cardiotonic effect. J. Chang. Univ. Chin. Med. 2015, 31, 463–465. [Google Scholar]
- Li, G.D. Veratrine Antihypertensive Effect and Mechanism of the Experimental Study; Yanbian University: Yanji, China, 2007. [Google Scholar]
- Green, B.T.; Lee, S.T.; Panter, K.E.; Brown, D.R. Piperidine alkaloids: Human and food animal teratogens. Food Chem. Toxicol. 2012, 50, 2049–2055. [Google Scholar] [CrossRef] [Green Version]
- Carnaval, T.G.; Sampaio, R.M.; Lanfredi, C.B.; Borsatti, M.A.; Adde, C.A. Effects of opioids on local anesthesia in the rat: A codeine and tramadol study. Braz. Oral Res. 2013, 27, 455–462. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.M.; Zhang, Z.; Yao, R.Z.; Wang, G.L. The Role of Intrathecal Morphine for Postoperative Analgesia in Primary Total Joint Arthroplasty under Spinal Anesthesia: A Systematic Review and Meta-Analysis. Pain Med. 2021, 22, 1473–1484. [Google Scholar] [CrossRef]
- Ning, J.; Chen, L.; Rietjens, I. Role of toxicokinetics and alternative testing strategies in pyrrolizidine alkaloid toxicity and risk assessment; state-of-the-art and future perspectives. Food Chem. Toxicol. 2019, 131, 110572. [Google Scholar] [CrossRef]
- Schrenk, D.; Gao, L.; Lin, G.; Mahony, C.; Mulder, P.P.J.; Peijnenburg, A.; Pfuhler, S.; Rietjens, I.; Rutz, L.; Steinhoff, B.; et al. Pyrrolizidine alkaloids in food and phytomedicine: Occurrence, exposure, toxicity, mechanisms, and risk assessment—A review. Food Chem. Toxicol. 2020, 136, 111107. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, B.L. Safety considerations of traditional Chinese medicine containing pyrrolizidine alkaloids. Chin. J. Clin. Pharmacol. 2020, 36, 84–86. [Google Scholar]
- Tajibieke, A.; Gulinaer. Poisoning and Treatment of Aconitum Carmichaeli. Grass Feed. Livest. 2012, 02, 46–47. [Google Scholar]
- Yan, D.J.; Zhou, Q.W.; Lu, H.; Wu, C.C.; Zhao, B.Y.; Cao, D.D.; Ma, F.; Liu, X.X. The disaster, ecological distribution and control of poisonous weeds in natural grasslands of Xinjiang Uygur Autonomous region. Sci. Agric. Sin. 2015, 48, 565–582. [Google Scholar]
- Chen, F.R.; Zou, D.J.; Shan, R.L.; Xu, Z.L.; Ma, L.H.; Mei, Z.N.; Huang, X.J. A literature analysis on the causes and detoxification methods of aconitine-containing plants poisoning in recent 10 years. Lishizhen Med. Mater. Med. Res. 2012, 23, 3116–3118. [Google Scholar]
- Huang, W.Q.; Zeng, X.F.; Zhang, R.L.; Li, L.H.; Hong, S.J. Forensic analysis of deaths ascribed to acute aconitine poisoning in yunnan province: 4 cases report. J. Kunming Med. Univ. 2015, 36, 142–144. [Google Scholar]
- Sun, P.; Gao, X.K.; Zheng, X. Investigation report of food poisoning caused by eating pork containing atropine. Henan J. Prev. Med. 1998, 9, 315–316. [Google Scholar]
- Yan, Y.M.; Luo, C.H.; Fang, L.H.; Lei, X.L.; Liu, W.; Mo, Z.X. HPLC and UV determinations of hirsutine and total alkaloids in four species plants of Uncaria Genus in Guangdong province. Lishizhen Med. Mater. Med. Res. 2012, 23, 2974–2977. [Google Scholar]
- Mroczek, T.; Ndjoko-Ioset, K.; Głowniak, K.; Miętkiewicz-Capała, A.; Hostettmann, K. Investigation of Symphytum cordatum alkaloids by liquid–liquid partitioning, thin-layer chromatography and liquid chromatography–ion-trap mass spectrometry. Anal. Chim. Acta. 2006, 566, 157–166. [Google Scholar] [CrossRef]
- Beales, K.A.; Betteridge, K.; Colegate, S.M.; Edgar, J.A. Solid-phase extraction and LC-MS analysis of pyrrolizidine alkaloids in honeys. J. Agric. Food. Chem. 2004, 52, 6664–6672. [Google Scholar] [CrossRef]
- Beike, J.; Frommherz, L.; Wood, M.; Brinkmann, B.; Köhler, H. Determination of aconitine in body fluids by LC-MS-MS. Int. J. Legal. Med. 2004, 118, 289–293. [Google Scholar] [CrossRef]
- Bystrowska, B.; Adamczyk, P.; Moniczewski, A.; Zaniewska, M.; Fuxe, K.; Filip, M. LC/MS/MS evaluation of cocaine and its metabolites in different brain areas, peripheral organs and plasma in cocaine self-administering rats. Pharm. Rep. 2012, 64, 1337–1349. [Google Scholar] [CrossRef]
- Hamscher, G.; Priess, B.; Nau, H.; Panariti, E. Determination of colchicine residues in sheep serum and milk using high-performance liquid chromatography combined with electrospray ionization ion trap tandem mass spectrometry. Anal. Chem. 2005, 77, 2421–2425. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.M.; Xiang, B.; Xiao, X.Q.; Ge, J.W.; Chen, Z.; Yang, L.P.; Wei, F. Study on chemical constituents of lindera aggregate by GC-MS and UPLC-ESI-MS/MS. J. Chin. Med. Sci. 2016, 39, 2229–2236. [Google Scholar]
- Zhong, S.H.; Ren, X.X.; Huang, J.; Luan, Y.J.; Yu, Z.S. Detection of four foodborne toxic alkaloids in putrefied blood by QuEChERS-UPLC-MS/MS. Chem. Res. Appl. 2020, 32, 24–31. [Google Scholar]
- Newman, C.I.; Giordano, B.C.; Copper, C.L.; Collins, G.E. Microchip micellar electrokinetic chromatography separation of alkaloids with UV-absorbance spectral detection. Electrophoresis 2008, 29, 803–810. [Google Scholar] [CrossRef]
- Emon, J.M.V. Immunoassay and Other Bioanalytical Techniques; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Fodey, T.L.; Greer, N.M.; Crooks, S.R. Antibody production: Low dose immunogen vs. low incorporation hapten using salmeterol as a model. Anal. Chim. Acta 2009, 637, 328–332. [Google Scholar] [CrossRef]
- Tanaka, H.; Putalun, W.; Tsuzaki, C.; Shoyama, Y. A simple determination of steroidal alkaloid glycosides by thin-layer chromatography immunostaining using monoclonal antibody against solamargine. FEBS Lett. 1997, 404, 279–282. [Google Scholar] [CrossRef]
- Kido, K.; Edakuni, K.; Morinaga, O.; Tanaka, H.; Shoyama, Y. An enzyme-linked immunosorbent assay for aconitine-type alkaloids using an anti-aconitine monoclonal antibody. Anal. Chim. Acta. 2008, 616, 109–114. [Google Scholar] [CrossRef]
- Yan, L.; Nan, X.; Zhang, C.; Wang, H.; Huang, X.; Hu, J.; Liu, Y. Development of an enzyme-linked immunosorbent assay for camptothecin. Mol. Med. Rep. 2019, 20, 959–966. [Google Scholar] [CrossRef]
- Spector, S.; Parker, C.W. Morphine: Radioimmunoassay. Science 1970, 168, 1347–1348. [Google Scholar] [CrossRef]
- Zheng, P.M.; Peng, T.; Wang, J.Y.; Zhang, J.; Wang, Z.L.; Zhang, Y.F.; Ren, Z.H.; Wang, S.H.; Jiang, H.Y. Fluorescent lateral flow immunoassay based on gold nanocluster for detection of pyrrolizidine alkaloids. Microchim. Acta. 2021, 188, 11. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zheng, P.; Wang, J.; He, S.; Ren, Z.; Zhang, Y.; Xiong, J.; Jiang, H. Indirect competitive enzyme-linked immunosorbent assay based on a broad-spectrum monoclonal antibody for tropane alkaloids detection in pig urine, pork and cereal flours. Food Chem. 2021, 337, 127617. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhai, S.; Liu, C.; Wang, X.; Yang, Y.; Tu, Y. A convenient electrochemiluminescent immunosensor for detecting methamphetamine antibody. Anal. Sci. 2019, 35, 875–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.W.; Gao, L.; Shu, M.L.; Liu, J.H.; Yu, B.Y. Development of a highly sensitive and specific ELISA method for the determination of l-corydalmine in SD rats with monoclonal antibody. J. Chromatogr. B 2018, 1073, 163–169. [Google Scholar] [CrossRef]
- Virtanen, R.; Kanto, J.; Iisalo, E. Radioimmunoassay for atropine and l-hyoscyamine. Acta Pharmacol. Toxicol. 1980, 47, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, M.; Wirsching, P.; Janda, K.D. Design and synthesis of a cocaine-diamide hapten for vaccine development. Tetrahedron Lett. 1996, 37, 5479–5482. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Irie, M.; Yoshimatsu, K.; Ishimaru, K.; Sawada, J. A monoclonal antibody to scopolamine and its use for competitive enzyme-linked immunosorbent assay. Phytochemistry 1991, 30, 3273–3276. [Google Scholar] [CrossRef]
- Sakamoto, S.; Nagamitsu, R.; Yusakul, G.; Miyamoto, T.; Tanaka, H.; Morimoto, S. Ultrasensitive immunoassay for monocrotaline using monoclonal antibody produced by N, N′-carbonyldiimidazole mediated hapten-carrier protein conjugates. Talanta 2017, 168, 67–72. [Google Scholar] [CrossRef]
- Dasgupta, A. Alcohol, Drugs, Genes and the Clinical Laboratory; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Gandhi, S.; Sharma, P.; Capalash, N.; Verma, R.S.; Suri, C.R. Group-selective antibodies based fluorescence immunoassay for monitoring opiate drugs. Anal. Bioanal. Chem. 2008, 392, 215–222. [Google Scholar] [CrossRef]
- Trofimov, A.V.; Sokolov, A.V.; Rak, A.Y.; Ischenko, A.M.; Kudling, T.V.; Vakhrushev, A.V.; Gorbunov, A.A. Epitope specificity of two anti-morphine monoclonal antibodies: In vitro and in silico studies. J. Mol. Recognit. 2020, 33, e2846. [Google Scholar] [CrossRef]
- Fliniaux, M.A.; Jacquin-Dubreuil, A. A competitive solid-phase enzyme immunoassay for the evaluation of tropane alkaloids in plant material, using anti-DL-tropic acid antibodies. Planta Med. 1987, 53, 87–90. [Google Scholar] [CrossRef]
- Gintzler, A.R.; Mohacsi, E.; Spector, S. Radioimmunoassay for the simultaneous determination of morphine and codeine. Eur. J. Pharmacol. 1976, 38, 149–156. [Google Scholar] [CrossRef]
- Haurowitz, F. The Chemistry and Function of Proteins; Academic Press: New York, NY, USA, 1963. [Google Scholar]
- Kashanian, S.; Shams, A.; Ghahremani, H.; Paknejad, M. Preparation and Characterization of a Monoclonal Antibody Against Morphine. Monoclon. Antibodies Immunodiagn. Immunother. 2015, 34, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Edmond Rouan, S.K.; Otterness, I.G.; Cunningham, A.C.; Rhodes, C.T. Specific, high affinity colchicine binding monoclonal antibodies: Development and characterization of the antibodies. Hybridoma 1989, 8, 435–448. [Google Scholar] [CrossRef]
- Sabouraud, A.; Cano, N.; Scherrmann, J.M. Radioimmunoassay of colchicine with antisera exhibiting variable cross-reactivity. Ther. Drug Monit. 1994, 16, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Terazawa, K.; Ji, L.Y.; Takatori, T.; Aoki, K.; Hirose, Y.; Kuroiwa, Y. Development of monoclonal antibodies reactive with methamphetamine raised against a new antigen. J. Immunoass. 1991, 12, 277–292. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.B.; Zhong, P.; Nie, J.L.; Li, J.S.; Qu, L.N.; Li, Y.H.; Kan, G.H. Preparation and identification of specific and high-affinity monoclonal antibodies against morphine. Hybrid. Hybridomics 2002, 21, 197–201. [Google Scholar] [CrossRef]
- Zhao, H. The preparation of aconitine N-hydroxysuccinimide esters and their reactivities with bovine serum albumin. J. Shenyang Pharm. Univ. 2000, 17, 26–31. [Google Scholar]
- Yusakul, G.; Sakamoto, S.; Chanpokapaiboon, K.; Tanaka, H.; Morimoto, S. Preincubation format for a sensitive immunochromatographic assay for monocrotaline, a toxic pyrrolizidine alkaloid. Phytochem. Anal. 2019, 30, 653–660. [Google Scholar] [CrossRef]
- Roseman, D.M.; Wu, X.; Kurth, M.J. Enzyme-linked immunosorbent assay detection of pyrrolizidine alkaloids: Immunogens based on quaternary pyrrolizidinium salts. Bioconjug. Chem. 1996, 7, 187–195. [Google Scholar] [CrossRef]
- Putalun, W.; Tanaka, H.; Yahara, S.; Lhieochaiphan, S.; Shoyama, Y. Survey of solasodine-type glycoalkaloids by western blotting and ELISA using anti-solamargine monoclonal antibody. Biol. Pharm. Bull. 2000, 23, 72–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dillon, P.P.; Daly, S.J.; Manning, B.M.; O’Kennedy, R. Immunoassay for the determination of morphine-3-glucuronide using a surface plasmon resonance-based biosensor. Biosens. Bioelectron. 2003, 18, 217–227. [Google Scholar] [CrossRef]
- Yang, T.B.; Yuan, Y.H.; Zhong, P.; Qu, L.N.; Yang, B.; Li, Y.H.; Ju, G. Group-selective immunoassay for the detection of morphine in urine. Hybrid. Hybridomics 2004, 23, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Hagemann, K.; Piek, K.; Stöckigt, J.; Weiler, E.W. Monoclonal antibody-based enzyme immunoassay for the quantitative determination of the tropane alkaloid, scopolamine. Planta Med. 1992, 58, 68–72. [Google Scholar] [CrossRef]
- Pontikis, R.; Scherrmann, J.M.; Nguyen, H.N.; Boudet, L.; Pichat, L. Radioimmunoassay for colchicine: Synthesis and properties of three haptens. J. Immunoass. 1980, 1, 449–461. [Google Scholar] [CrossRef]
- Wainer, B.H.; Fitch, F.W.; Rothberg, R.M.; Fried, J. Morphine-3-succinyl—Bovine serum albumin: An immunogenic hapten-protein conjugate. Science 1972, 176, 1143–1145. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, L.; Yuan, S.; Xu, Y.; Hua, M. Preparation of Immunogen and Polyclonal Antibodies against Aconitine. Chin. J. Pharm. 2015, 46, 578–580. [Google Scholar]
- Cibotti, M.C.; Freier, C.; Andrieux, J.; Plat, M.; Cosson, L.; Bohuon, C. Monoclonal antibodies to bis-indole alkaloids of Catharanthus roseus and their use in enzyme-linked immuno-sorbent-assays. Phytochemistry 1990, 29, 2109–2114. [Google Scholar] [CrossRef]
- Chen, P.; Watt, D.S.; Tai, H.H. Improved sensitivity of enzyme immunoassay for cocaine and benzoylecgonine using heterologous hapten-enzyme conjugates. Res. Commun. Alcohol Subst. Abuse. 1994, 15, 71–82. [Google Scholar]
- Stammel, W.; Müller, R.; Thomas, H. Demonstration of highly specific and sensitive antibodies to a naturally occurring tetrahydroisoquinoline alkaloid, salsolidine. Int. J. Biochem. 1993, 25, 917–927. [Google Scholar] [CrossRef]
- Ishiyama, M.; Shoyama, Y.; Murakami, H.; Shinohara, H. Production of monoclonal antibodies and development of an ELISA for solamargine. Cytotechnology 1996, 18, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Lapinjoki, S.P.; Veräjänkorva, H.M.; Huhtikangas, A.E.; Lehtola, T.J.; Lounasmaa, M. An enzyme-linked immunosorbent assay for the antineoplastic agent vincristine. J. Immunoass. 1986, 7, 113–128. [Google Scholar] [CrossRef] [PubMed]
- Teale, J.D.; Clough, J.M.; Marks, V. Radioimmunoassay of vinblastine and vincristine. Br. J. Clin. Pharmacol. 1977, 4, 169–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.S.; Tanaka, H.; Shoyama, Y. Immunoquantitative analysis for berberine and its related compounds using monoclonal antibodies in herbal medicines. Analyst 2004, 129, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.G.; Wang, X.X.; Wang, W.W.; Sun, M.Z.; Choi, W.J.; Kim, J.; Hao, C.L.; Li, S.; Qu, A.H.; Lu, M.R.; et al. Enantiomer-dependent immunological response to chiral nanoparticles. Nature 2022, 601, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Xu, Y.; Yuan, S.; Xu, Y.; Hua, M. An enzyme-linked immunosorbent assay for monoester-type aconitic alkaloids and its application in the pharmacokinetic study of benzoylhypaconine in rats. J. Asian Nat. Prod. Res. 2018, 20, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Jing, L.; Zuo, W.; Wang, J.; Wang, Y. Preparation and Identification of the Complete Antigen of Double Ester Aconitine. J. Henan Agric. Sci. 2014, 43, 156–159. [Google Scholar]
- Abdelshafi, N.A.; Panne, U.; Schneider, R.J. Screening for cocaine on Euro banknotes by a highly sensitive enzyme immunoassay. Talanta 2017, 165, 619–624. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Inoue, H.; Chikuma, T.; Itoh, J.; Makino, Y.; Hojo, H. A rapid enzyme immunoassay for cocaine and benzoylecgonine using glucose oxidase. J. Health Sci. 2001, 47, 419–423. [Google Scholar] [CrossRef] [Green Version]
- Nuntawong, P.; Tanaka, H.; Sakamoto, S.; Morimoto, S. ELISA for the Detection of the Prohibited Doping Agent Higenamine. Planta Med. 2020, 86, 760–766. [Google Scholar] [CrossRef]
- Wurzburger, R.J.; Miller, R.L.; Boxenbaum, H.G.; Spector, S. Radioimmunoassay of atropine in plasma. J. Pharmacol. Exp. Ther. 1977, 203, 435–441. [Google Scholar] [PubMed]
- Poulev, A.; Deusneumann, B.; Bombardelli, E.; Zenk, M.H. Immunoassays for the Quantitative-Determination of Colchicine. Planta Med. 1994, 60, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Torres, O.B.; Jalah, R.; Rice, K.C.; Li, F.; Antoline, J.F.; Iyer, M.R.; Jacobson, A.E.; Boutaghou, M.N.; Alving, C.R.; Matyas, G.R. Characterization and optimization of heroin hapten-BSA conjugates: Method development for the synthesis of reproducible hapten-based vaccines. Anal. Bioanal. Chem. 2014, 406, 5927–5937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brennan, J.; Dillon, P.; O’Kennedy, R. Production, purification and characterisation of genetically derived scFv and bifunctional antibody fragments capable of detecting illicit drug residues. J. Chromatogr. B 2003, 786, 327–342. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Mehraby, M.; Zarbakhsh, M.; Farzaneh, H. Design and synthesis of a morphine-6-succinyl-bovine serum albumin hapten for vaccine development. Biotechnol. Appl. Biochem. 1999, 30, 139–146. [Google Scholar]
- Usagawa, T.; Itoh, Y.; Hifumi, E.; Takeyasu, A.; Nakahara, Y.; Uda, T. Characterization of morphine-specific monoclonal antibodies showing minimal cross-reactivity with codeine. J. Immunol. Methods 1993, 157, 143–148. [Google Scholar] [CrossRef]
- Langer, T.; Mostl, E.; Chizzola, R.; Gutleb, R. A competitive enzyme immunoassay for the pyrrolizidine alkaloids of the senecionine type. Planta Med. 1996, 62, 267–271. [Google Scholar] [CrossRef]
- Sethi, V.S.; Burton, S.S.; Jackson, D.V. A sensitive radioimmunoassay for vincristine and vinblastine. Cancer Chemother. Pharmacol. 1980, 4, 183–187. [Google Scholar] [CrossRef]
- Li, S.; Wu, X.; Kuang, H.; Liu, L. Development of an ic-ELISA and an immunochromatographic strip assay for the detection of aconitine. Food Agric. Immunol. 2020, 31, 243–254. [Google Scholar] [CrossRef]
- Nakayama, H.; Kenjjou, N.; Shigetoh, N.; Ito, Y. Fluorescence Immunoassay for Cocaine Detection. Monoclon. Antibodies Immunodiagn. Immunother. 2016, 35, 83–85. [Google Scholar] [CrossRef]
- Susan, V.D.H.; Calavia, P.G.; Hardwick, S.; Hudson, S.; Wolff, K.; Russell, D.A. A competitive enzyme immunoassay for the quantitative detection of cocaine from banknotes and latent fingermarks. Forensic Sci. Int. 2015, 250, 1–7. [Google Scholar]
- Wenger, B.; Kugelbrey, K.; Gao, H.; Sigrist, H.; Voirin, G. Au-labeled antibodies to enhance the sensitivity of a refractometric immunoassay: Detection of cocaine. Biosens. Bioelectron. 2012, 34, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Bauer, C.G.; Eremenko, A.V.; Kühn, A.; Kürzinger, K.; Makower, A.; Scheller, F.W. Automated amplified flow immunoassay for cocaine. Anal. Chem. 1998, 70, 4624–4630. [Google Scholar] [CrossRef] [PubMed]
- Elmar, W.W.; Stöckigt, J.; Zenk, M.H. Radioimmunoassay for the quantitative determination of scopolamine. Phytochemistry 1981, 20, 2009–2016. [Google Scholar]
- Zvereva, E.A.; Zherdev, A.V.; Formanovsky, A.A.; Abuknesha, R.A.; Eremin, S.A.; Dzantiev, B.B. Fluorescence polarization immunoassay of colchicine. J. Pharm. Biomed. Anal. 2018, 159, 326–330. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Lu, J.R.; He, Y.H.; Du, J.X. Molecular imprinting–chemiluminescence sensor for the determination of brucine. Anal. Chim. Acta. 2005, 541, 97–102. [Google Scholar] [CrossRef]
- Guteneva, N.V.; Znoyko, S.L.; Orlov, A.V.; Nikitin, M.P.; Nikitin, P.I. Rapid lateral flow assays based on the quantification of magnetic nanoparticle labels for multiplexed immunodetection of small molecules: Application to the determination of drugs of abuse. Mikrochim. Acta 2019, 186, 621. [Google Scholar] [CrossRef]
- Gandhi, S.; Caplash, N.; Sharma, P.; Raman Suri, C. Strip-based immunochromatographic assay using specific egg yolk antibodies for rapid detection of morphine in urine samples. Biosens. Bioelectron. 2009, 25, 502–505. [Google Scholar] [CrossRef]
- Chapman, D.J.; Joel, S.P.; Aherne, G.W. Evaluation of a differential radioimmunoassay technique for the determination of morphine and morphine-6-glucuronide in human plasma. J. Pharm. Biomed. Anal. 1994, 12, 353–360. [Google Scholar] [CrossRef]
- Duan, Y.; Luo, J.; Liu, C.; Shan, L.; Dou, X.; Yang, S.; Yang, M. Rapid identification of triptolide in Tripterygium wilfordii products by gold immunochromatographic assay. J. Pharm. Biomed. Anal. 2019, 168, 102–112. [Google Scholar] [CrossRef]
- Weiler, E.W.; Kruger, H.; Zenk, M.H. Use of immunoassay in plant sciences.13. Radioimmunoassay for the determination of the steroidal alkaloid solasodine and related-compounds in living plants and Herbarium specimens. Planta Med. 1980, 39, 112–124. [Google Scholar] [CrossRef]
- Mule, S.J.; Jukofsky, D.; Kogan, M.; Depace, A.; Verebey, K. Evaluation of radioimmunoassay for benzoylecgonine (a cocaine metabolite) in human urine. Clin. Chem. 1977, 23, 796–801. [Google Scholar] [CrossRef] [PubMed]
- Li, R.F.; Hou, Y.L.; Huang, J.C.; Pan, W.Q.; Ma, Q.H.; Shi, Y.X.; Li, C.F.; Zhao, J.; Jia, Z.H.; Jiang, H.M.; et al. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacol. Res. 2020, 156, 104761. [Google Scholar]
- Li, H.; Ma, S.; Zhang, X.; Li, C.; Dong, B.; Mujtaba, M.G.; Wei, Y.; Liang, X.; Yu, X.; Wen, K.; et al. Generic hapten synthesis, broad-specificity monoclonal antibodies preparation, and ultrasensitive ELISA for five antibacterial synergists in chicken and milk. J. Agric. Food Chem. 2018, 66, 11170–11179. [Google Scholar] [CrossRef]
- Wen, K.; Bai, Y.; Wei, Y.; Li, C.; Shen, J.; Wang, Z. Influence of Small Molecular Property on Antibody Response. J. Agric. Food Chem. 2020, 68, 10944–10950. [Google Scholar] [CrossRef]
- Yuan, M.; Liu, B.; Liu, E.; Sheng, W.; Zhang, Y.; Crossan, A.; Kennedy, I.; Wang, S. Immunoassay for phenylurea herbicides: Application of molecular modeling and quantitative structure-activity relationship analysis on an antigen-antibody interaction study. Anal. Chem. 2011, 83, 4767–4774. [Google Scholar] [CrossRef]
- Wang, Z.H.; Ding, S.Y.; Zhang, S.X.; Shen, J.Z. Structure-activity relationship of 17 sulfonamides binding to antibody by molecular modeling technique. Acta Chim. Sin. 2008, 66, 2613–2619. [Google Scholar]
- Goryacheva, I.Y.; Lenain, P.; Saeger, S.D. Nanosized labels for rapid immunotests. TrAC—Trend. Anal. Chem. 2013, 46, 30–43. [Google Scholar] [CrossRef]
- Peng, T.; Wang, J.; Zhao, S.; Xie, S.; Yao, K.; Zheng, P.; Wang, S.; Ke, Y.; Jiang, H. A fluorometric clenbuterol immunoassay based on the use of organic/inorganic hybrid nanoflowers modified with gold nanoclusters and artificial antigen. Microchim. Acta. 2018, 185, 366. [Google Scholar] [CrossRef]
No. | Toxic Alkaloid | CAS | Structure | Classification | Source | Injury Portion | LD50 | |
---|---|---|---|---|---|---|---|---|
Rat | Mouse | |||||||
1 | Aconitine | 302-27-2 | Diterpenoid alkaloid | Ranunculaceae, Aconitum carmichaeli Debx., root | Nervous system | 80 μg/kg d | 1 mg/mL a; 270 μg/kg b; 270 μg/kg c; 120 μg/kg d | |
2 | Cocaine | 50-36-2 | Tropine alkaloid | Erythroxylaceae, Erythroxylum coca Lam., leaf | Nervous system | 70 mg/kg b; 250 mg/kg c; 17,500 μg/kg d | 99 mg/kg a; 59 mg/kg b; 81 mg/kg c; 16 mg/kg d | |
3 | Scopolamine | 51-34-3 | Tropine alkaloid | Solanaceae, Hyoscyamus niger L., seed | Respiratory system | 2650 mg/kg a | 1275 mg/kg a; 400 mg/kg b; 1700 mg/kg c; 100 mg/kg d | |
4 | Atropine | 51-55-8 | Tropine alkaloid | Solanaceae, Hyoscyamus niger L., root, leaf | Nervous system | 500 mg/kg a; 280 mg/kg b; 250 mg/kg c; 73 mg/kg d; 920 mg/kg e | 75 mg/kga; 30 mg/kg b; 428 mg/kg c; 30 mg/kg d; 550 mg/kg e | |
5 | Colchicine | 64-86-8 | Organic amine alkaloid | Liliaceae, Iphigenia indica Kunth., seed, flower | Respiratory system | 1600 μg/kg d; | 5886 μg/kg a; 1600 μg/kg b; 1200 μg/kg c; 1700 μg/kg d; 1197 μg/kg e | |
6 | Ephedrine | 299-42-3 | Organic amine alkaloids | Ephedraceae, Ephedra sinica Stapf., stems | Nervous system | 600 mg/kg a; 150 mg/kg b; 300 mg/kg c | 689 mg/kg a; 350 mg/kg b 132 mg/kg c; 74 mg/kg d; 170 mg/kg f | |
7 | Strychnine | 57-24-9 | Monoterpenoid indole alkaloid | Loganiaceae, Strychnos nuxvomica L., seed | Nervous system | 2350 μg/kg a; 1100 μg/kg b; 1200 μg/kg c; 582 μg/kg d; 1400 μg/kg e | 2 mg/kg a; 980 μg/kg b; 474 μg/kg c; 410μg/kg d; 628 μg/kg e 1060 μg/kg f | |
8 | Brucine | 357-57-3 | Monoterpenoid indole alkaloid | Loganiaceae, Strychnos nuxvomica L., seed | Nervous system | 91 mg/kg b | 150 mg/kg a; 62 mg/kg b; 60 mg/kg c; 12 mg/kg d | |
9 | Evodiamine | 518-17-2 | Monoterpenoid indole alkaloid | Rutaceae, Evodia rutaecarpa (Juss.) Benth., mellow fruit | Liver, kidney | - | - | |
10 | Camptothecin | 7689-03-4 | Monoterpenoid indole alkaloid | Nyssaceae, Camptotheca acuminata Decne., root, fruit, bark, branch, leaf | Intestine | - | 50,100 μg/kg a; 64 mg/kg b; 38 mg/kg d; | |
11 | Morphine | 57-27-2 | Benzylisoquinoline alkaloid | Papaveraceae, Papaver somniferum L., seed | Respiratory system | 335 mg/kg a; 100 mg/kg b; 109 mg/kg c; 140 mg/kg d | 524 mg/kg a; 140 mg/kg b; 220 mg/kg c; 135 mg/kg d; 6900 μg/kg e | |
12 | Codeine | 76-57-3 | Benzylisoquinoline alkaloid | Papaveraceae, Papaver somniferum L., fruit | Respiratory system | 427 mg/kg a; 100 mg/kg b; 229 mg/kg c; 75 mg/kg d | 250 mg/kg a; 60 mg/kg b; 84,100 μg/kg c; 54 mg/kg d; 290 mg/kg e | |
13 | Berberine | 2086-83-1 | Benzylisoquinoline alkaloid | Rutaceae, Phellodendron amurense Rupr., bark | Heart | - | 329 mg/kg a; 18 mg/kg c; | |
14 | Papaverine | 58-74-2 | Quinoline alkaloid | Papaveraceae, Papaver somniferum L., seed | Nervous system, heart, liver | 325 mg/kg a; 59,600 μg/kg b; 151 mg/kg c; 13,300 μg/kg d; | 162 mg/kg a; 91 mg/kg b; 170 mg/kg c; 25 mg/kg d; | |
15 | Salsolidine | 493-48-1 | Isoquinoline alkaloid | Chenopodiaceae, Salsola collina Pall., stem, leave | - | - | 250 mg/kg b; 170 mg/kg d; | |
16 | Matrine | 519-02-8 | Quinolizidine alkaloid | Leguminosae, Sophora flavescens Ait., root | Nervous system, respiratory system | 125 mg/kg b; | 150 mg/kg b; 64,850 μg/kg d; 74,150 μg/kg e | |
17 | Retrorsine | 480-54-6 | Pyrrolizidine alkaloid | Compositae, Senecio scandens Buch-Ham., the whole herb | Liver, kidney | 34 mg/kg a; 34 mg/kg b; 38 mg/kg d | 65 mg/kg b; 59 mg/kg d | |
18 | Monocrotaline | 315-22-0 | Pyrrolizidine alkaloid | Liliaceae, Lilium brownie F.E.Br.ex Miellez, the whole herb | Liver, lung | 66 mg/kg a; 60 mg/kg c; 92 mg/kg d | 259 mg/kg b; 261 mg/kg d | |
19 | Dichroine | 24159-07-7 | Quinazolidone alkaloid | Saxifragaceae, Dichroa febrifuga Lour., root, leaf | Intestine | - | 2500 μg/kg a; 4600 μg/kg d | |
20 | Wilfordine | 37239-51-3 | Macrocyclic alkaloid | Celastraceae, Tripterygium wilfordii Hook. f., root, leaf, flower, fruit | Intestine, nervous system | - | - | |
21 | Vincristine | 57-22-7 | Bisindole alkaloids | Apocynaceae, Catharathus roseus (L.) G.Don, the whole herb | Intestine, nervous system | 1250 μg/kg b; 1 mg/kg d | 1300 μg/kg b; 3990 μg/kg d | |
22 | Solasonine | 19121-58-5 | Steroidal alkaloid | Solanaceae, Solanum nigrum L., the whole herb | Hemolysis | 1500 mg/kg b | 77,300 μg/kg b | |
23 | Cytisine | 485-35-8 | Piperidine alkaloid | Leguminosae, Sophora tonkinensis Gapnep., root, stem | Liver, nervous system, respiratory system, cardiovascular system | 8750 μg/kg c | 101 mg/kg a; 8550 μg/kg b; 11,764 μg/kg c; 1730 μg/kg d | |
24 | Dauricine | 524-17-4 | Isoquinoline alkaloid | Menispermaceae, Menispermum dauricum DC., stem | - | - | 185 mg/kg b; 1180 mg/kg a | |
25 | Chelidonine | 476-32-4 | Isoquinoline alkaloid | Papaveraceae, Chelidonium majus, the whole herb | - | - | 125 mg/kg c; 35 mg/kg d | |
26 | Kumujian A | 72755-19-2 | β-Carboline alkaloid | Simaroubaceae, Picrasma quassioides (D. Don)Benn., branch and leaf | - | - | - | |
27 | Conine | 458-88-8 | Piperidine alkaloid | Apiaceae, Cicuta virosa L. | - | - | 100 mg/kg a; 80 mg/kg c; 19 mg/kg d | |
28 | Harmine | 442-51-3 | Pyrrolidine alkaloid | Zygophyllaceae, Peganum harmala L. the whole herb | Nervous system | 200 mg/kg c | 243 mg/kg c | |
29 | Ibogaine | 83-74-9 | Indole alkaloid | Apocynaceae, Tabernanthe iboga, roots, bark, and leaves | Nervous system | 327 mg/kg a; 145 mg/kg b | - |
Toxic Alkaloid | Synthesis of Antigen | Property of Antibody | Reference | |||
---|---|---|---|---|---|---|
Hapten | Coupling Method | Type | IC50 | CR, % | ||
Aconitine | 3-Succinic anhydride aconitine | Active ester method | mAb | - | Aconitine 100.0 Mesaconitine 93.1 Hypaconitine 104.0 Jesaconitine 65.6 Benzoylaconine 8.8 Benzoylmesaconine 5.0 Benzoylhypaconine 1.1 | [52] |
3-Glutaric anhydride aconitine | pAb | - | Aconitine 100.0 | [83] | ||
8-Succinic acid aconitine | Single displacement reaction | pAb | - | - | [74] | |
8-Hexadecanedioic acid aconitine | ||||||
Mono ester aconitine | 3-Glutaryl benzoylmesaconine | Active ester method | mAb | 1 ng/ml | Benzoylhypaconine 140.0 | [92] |
Double ester aconitine | Double ester aconitine | mAb | 30 ng/mL | Double ester aconitine 100.0 | [93] | |
Cocaine | Benzoylecgonine | Active ester method | mAb | - - - | Cocaine 100.0 Benzoylecgonine 2.2 Norcocaine 13.0 | [94] |
mAb | 15 nM 180 nM 3100 nM | Cocaine 100.0 Benzoylecgonine 8.3 Ecgonine methylester 0.5 | [95] | |||
Higenamine | - | Carbodiimide method | mAb | 100 ng/mL | Norlaudanosoline 223.0 (S)-Higenamine 100.0 Tetrahydrobenzyl isoquinoline 4.2 Berberine 3.5 | [96] |
Cocaine /benzoylecgonine | Diazotized 4-aminococaine/4-aminobenzoylecgonine | Diazo method | mAb | 0.4 ng/mL | Cocaine 100.0 | [85] |
Scopolamine | Nor-scopolamine-N-β-propionic acid | Active ester method | mAb | - - - - - | Scopolamine 100.0 Nor-scopolamine 86.0 Dehydrohyoscyamine 0.7 L-Hyoscyamine 0.2 6-Hydroxy-hyoscyamine 0.2 | [80] |
Atropine | 3-Succinic anhydride tropine | Active ester method | mAb | 0.05 ng/mL 0.07 ng/mL 0.14 ng/mL 0.14 ng/mL 0.24 ng/mL 5.30 ng/mL 10.15 ng/mL | Atropine 100.0 Scopolamine 71.4 Homatropine 35.7 Apoatropine 35.7 Anisodamine 20.8 Anisodine 0.9 L-hyoscyamine 0.5 | [56] |
Diarotized β-aminobenroic acid L-hyoscyamine | Diazo method | pAb | - | Atropine 100.0 | [59] | |
3-Succinic anhydride atropine | Active ester method | pAb | 6.25 ng/mL | Atropine 100.0 | [97] | |
Colchicine | Colchicine | Carbodiimide method | mAb | 3.6 nM | Colchicine 100.0 | [70] |
Colchicine | Colchicine | - | pAb | - | Colchicine 100.0 3-demethylcolchicine 80.0 | [98] |
Ephedrine | β-amino-glutaraldehyde methamphetamine | Active ester method | mAb | - - - | Methamphetamine 100.0. Methoxyphenamine 8.0 Ephedrine 2.0 | [72] |
Camptothecin | 20(s)-O-succinyl camptothecin | Active ester method Mixed anhydride method | mAb | 2.19 μg/mL 2.85 μg/mL 0.68 μg/mL 0.87 μg/mL | Camptothecin 100.0 Irinotecan 76.6 Topotecan 321.3 Belotecan 250.8 | [53] |
Camptothecin 7-carboxylic acid | ||||||
Morphine /codeine | Heroin/morphine surrogate | Maleimide-thiol chemistry | - | - | - | [99] |
Acidic derivative of monoacetyl morphine | Active ester method | pAb | 0.012 ng/mL 0.01 ng/mL 0.013 ng/mL 0.014 ng/mL | Morphine 100.0 Heroin 120.0 Monoacetylmorphine 92.3 Codeine 85.7 | [64] | |
Morphine-3-glucuronide | scFv | 381.5 pg/mL | Morhpine 100.0 | [100] | ||
pAb | - - - - - | Morphine-3-glucuronide 100.0 Morphine 83.0 Codeine 92.0 Nor-codeine 0.8 6-Monoacetyl morphine 97.0 | [78] | |||
C6-hemisuccinated derivative | mAb | - - - | Morhpine 100.0 Codeine 100.0 Apomorphine 16.5 | [69] | ||
Morphine-6-hemisuccinate | Carbodiimide method | - | - | - | [101] | |
mAb | 400 pg/mL | Morhpine 100.0 | [73] | |||
N-(4-aminobutyl) normorphine | mAb | 100 pg/mL | Morhpine 100.0 | [102] | ||
3-O-carboxymethylmorphine | pAb | - | Morhpine 100.0 | [67] | ||
Berberine | 9-O-carboxymethyl berberrubine | Active ester method | mAb | 12.5 μg/mL 21.9 μg/mL 104.1 μg/mL 8.8 μg/mL 83.3 μg/mL | Berberine 100.0 Palmatine 50.7 9-Acetylberberine 12.3 Coptisine 140.7 Berberrubine 15.1 | [90] |
Salsolidine | Salsolinol-1-carboxylic acid Salsoline-1-carboxylic acid | Reductive amination | pAb | 0.21 pmol | Salsolidine 100.0 | [86] |
Pyrrolizidine alkaloids | Succinic anhydride retrorsine- | Active ester method | mAb | 0.86 ng/mL 0.75 ng/mL 0.43 ng/mL 0.59 ng/mL 19.32 ng/mL 56.32 ng/mL 129.34 ng/mL 184.61 ng/mL 676.45 ng/mL | Retrorsine 100.0 Platyphylline 114.7 Senecionine 200.0 Integerrimine 145.8 Rosmarinine 4.5 Senecivernine 1.5 Neoplatyphylline 0.6 Gynuramine 0.5 Monocrotaline 0.1 | [55] |
Succinimid monocrotaline Succinimid retronecine | pAb | 0.9 ng/mL 760 ng/mL 100 ng/mL 1 ng/mL | Retrorsine 100.0. Monocrotaline 0.1 Senecionine 0.1 Isatidine (retrorsine N-oxide) 0.9 | [76] | ||
Retrorsine | pAb | 23 pg/mL | Senecionine 100.0 Seneciphylline 3.6–34.5 | [103] | ||
Vinblastine /vincristine | Diazo vincristine | Carbodiimide method | pAb | 1 μg/mL | Vincristine 100.0 | [88] |
4-Deacetyl vinblastine C-3 carboxazide | Carbodiimide method | pAb | 0.33 ng | Vincristine 100.0 | [104] | |
N-methyl vinblastine N-formyl vincristine | Mannich reaction | pAb | 3.8 μg/mL 2.1 μg/mL | Vinblastine 100.0 Vincristine 55.3 | [89] |
Target | Method | Sample | LOD | Reference |
---|---|---|---|---|
Aconitine | ICA | Fuzi Lizhong pills | 100 ng/mL | [105] |
Benzoylhypaconine | ELISA | Rat serum | 0.35 ng/mL | [92] |
Diester alkaloids | ELISA | Aconitum carmichaeli Debx. | 250 pg/mL | [38] |
Aco-type alkaloids | ELISA | Aconiti radixes | 100 ng/L | [52] |
Cocaine | ELISA | Banknotes | 5.6 ng/L | [94] |
FIA | - | 20 μg/L | [106] | |
cEIA | Banknotes and latent fingermarks | 0.162 ng/mL | [107] | |
ICA | Water | 0.26 μg/L | [108] | |
ICA | - | 0.38 nM | [109] | |
RIA | Hair | 0.5 ng/mL | [87] | |
Scopolamine | Plant extract | 0.1 ng/mL | [80] | |
RIA | Datura plants | 200 pg | [110] | |
ELISA | Hairy root cultures of a Duboisia hybrid | 0.2 ng/mL | [61] | |
Atropine | ELISA | Pig urine, pork, and cereal flour | 0.18 ng/mL | [31] |
RIA | Human serum albumin | 2.5 ng/mL | [59] | |
Colchicine | FPIA | Anti-gout pharmaceuticals, milk, and urine | 1.8 ng/mL | [111] |
RIA | Plasma | 0.2 ng/ml | [71] | |
Brucine | CL | Urine | 2 ng/mL | [112] |
Camptothecin | ELISA | - | 0.39 ng/mL | [53] |
Morphine | ICA | Urine | 0.6 ng/mL | [113] |
ICA | Urine | 2.5 ng/mL | [99] | |
ICA | Urine | 0.01 ng/ml | [114] | |
ELISA | Urine | 1.2 × 10−11 M | [79] | |
ELISA | Saliva | 6 ng/mL | [100] | |
RIA | Serum | 1 nM | [115] | |
RIA | Plasma and brain | - | [67] | |
Morphine-3-glucuronide | ELISA | Urine | 762 pg/mL | [78] |
Berberine | ELISA | Plant | 780 ng/mL | [90] |
Salsolidine | RIA | Serum | 0.27 pM | [86] |
Retrorsine | ICA | Honey | 0.083 μg/kg | [55] |
ELISA | - | 0.5 μg/mL | [76] | |
Monocrotaline | ICA | Plant | 0.61 ng/mL | [75] |
Triptolide | ICA | Plant | 1 μg/mL | [116] |
Vincristine | ELISA | - | 5 fM | [88] |
RIA | Biological fluids | 0.375 nM | [104] | |
RIA | Plasma | - | [89] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Z.; Zhang, H.; Wang, Z.; Chen, X.; Yang, L.; Jiang, H. Progress in Immunoassays of Toxic Alkaloids in Plant-Derived Medicines: A Review. Toxins 2022, 14, 165. https://doi.org/10.3390/toxins14030165
Ren Z, Zhang H, Wang Z, Chen X, Yang L, Jiang H. Progress in Immunoassays of Toxic Alkaloids in Plant-Derived Medicines: A Review. Toxins. 2022; 14(3):165. https://doi.org/10.3390/toxins14030165
Chicago/Turabian StyleRen, Zhenhui, Huixia Zhang, Zile Wang, Xin Chen, Liu Yang, and Haiyang Jiang. 2022. "Progress in Immunoassays of Toxic Alkaloids in Plant-Derived Medicines: A Review" Toxins 14, no. 3: 165. https://doi.org/10.3390/toxins14030165
APA StyleRen, Z., Zhang, H., Wang, Z., Chen, X., Yang, L., & Jiang, H. (2022). Progress in Immunoassays of Toxic Alkaloids in Plant-Derived Medicines: A Review. Toxins, 14(3), 165. https://doi.org/10.3390/toxins14030165