An Automatic Immunoaffinity Pretreatment of Deoxynivalenol Coupled with UPLC-UV Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the MBs and IMBs
2.2. Synthesis of the IMB
2.2.1. Screening of the mAb
2.2.2. Optimization of the Coupling Conditions
2.3. Optimization of the Elution Conditions
2.4. Optimization of the Elution Conditions
2.4.1. Elution Ability of Different Concentrations of Methanol
2.4.2. Elution Ability of Hot Water
2.5. The Selectivity and Specificity of the IMB
2.6. Analytical Performance
2.7. Application in Real Samples
3. Conclusions
4. Materials and Methods
4.1. Chemicals and Regents
4.2. Instrument and Analytical Conditions
4.3. Synthesis of Magnetic Beads
4.4. Synthesis of N-Hydroxysuccinimide-Terminated Magnetic Beads
4.5. Preparation of Anti-DON Immunoaffinity Magnetic Beads
4.6. Sample Sources and Preparation
4.7. IMB Purification
4.8. Immunoaffinity Column Purification
4.9. Method Validation
4.10. Data Management
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Sanders, M.; Guo, Y.R.; Iyer, A.; García, Y.R.; Galvita, A.; Heyerickd, A.; Deforce, D.; Risseeuw, M.D.P.; Calenbergh, S.V.; Bracke, M.; et al. An immunogen synthesis strategy for the development of specific anti-deoxynivalenol monoclonal antibodies. Food Addit. Contam. Part A 2014, 31, 1751–1759. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.L.; Wen, Y.Q.; Liu, Y.L.; Ma, Y.X. Occurrence of deoxynivalenol in maize germs from North China Plain and the distribution of deoxynivalenol in the processed products of maize germs. Food Chem. 2018, 266, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, C.; Mischke, C.; Stroka, J. Determination of deoxynivalenol and its major conjugates in cereals using an organic solvent-free extraction and IAC clean-up coupled in-line with HPLC-PCD-FLD. Food Addit. Contam. Part A 2020, 37, 1765–1776. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Ansari, K.M.; Dwivedi, P.D.; Pandey, H.P.; Das, M. Occurrence of deoxynivalenol in cereals and exposure risk assessment in Indian population. Food Control 2013, 30, 549–555. [Google Scholar] [CrossRef]
- Park, J.; Chang, H.; Kim, D.G.; Chung, S.; Lee, C. Long-Term Occurrence of Deoxynivalenol in Feed and Feed Raw Materials with a Special Focus on South Korea. Toxins 2018, 10, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO; WHO. Safety Evaluation of Certain Mycotoxins in Food. Prepared by Fifty-Sixth Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); WHO food additives Series 47; International Programme on Chemical Safety, Word Health Organization: Geneva, Switzerland, 2001; p. 74. [Google Scholar]
- Wan, D.; Huang, L.; Pan, Y.; Wu, Q.; Chen, D.; Tao, Y.; Wang, X.; Liu, Z.L.; Li, J.; Wang, L.Y.; et al. Metabolism, distribution, and excretion of deoxynivalenol with combined techniques of radiotracing, high-performance liquid chromatography ion trap time-of-flight mass spectrometry, and online radiometric detection. J. Agric. Food Chem. 2014, 62, 288–296. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer; World Health Organization. Some naturally occurring substances, food items and constituents. Heterocyclic Aromatic Amines and Mycotoxins. Int. Agency Res. Cancer Monogr. Eval. Carcinog. Risks Hum. 1993, 56, 397–444. [Google Scholar]
- Amuzie, C.J.; Pestka, J.J. Suppression of insulin-like growth factor acid-labile subunit expression a novel mechanism for deoxynivalenol-induced growth retardation. Toxicol. Sci. 2010, 113, 412–421. [Google Scholar] [CrossRef]
- European Commission. Commission regulation no 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union L. 2006, 364, 5. [Google Scholar]
- National Health and Family Planning Commission; China Food and Drug Administration. Maximum Levels of Mycotoxins in Foods; National Criterion of China: Beijing, China, 2017; GB/T 2761-2017. [Google Scholar]
- Canady, R.A.; Coker, R.D.; Egan, S.K.; Krska, R.; Kuiper Goodman, T.; Olsen, M.; Pestka, J.; Resnik, S.; Schlatter, J. Deoxynivalenol. In Safety Evaluation of certain Mycotoxins in food. Food Additives No. 47. Prepared for the Fifty-Sixth Meetings of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); World Health Organization (WHO): Geneva, Switzerland, 2001; pp. 419–555. [Google Scholar]
- Ok, H.E.; Lee, S.Y.; Chun, H.S. Occurrence and simultaneous determination of nivalenol and deoxynivalenol in rice and bran by HPLC-UV detection and immunoaffifinity cleanup. Food Control 2018, 87, 53–59. [Google Scholar] [CrossRef]
- Klinglmayr, C.; Nobauer, K.; Razzazi-Fazeli, E.; Cichna-Markl, M. Determination of deoxynivalenol in organic and conventional food and feed by sol-gel immunoaffinity chromatography and HPLC-UV detection. J. Chromatogr. B 2010, 878, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Rao, Q.; Song, S.; Liu, N.; Han, Z.; Hou, J.; Wu, A. Simultaneous determination of major type B trichothecenes and deoxynivalenol-3-glucoside in animal feed and raw materials using improved DSPE combined with LC-MS/MS. J. Chromatogr. B 2014, 963, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Valle-Algarra, F.M.; Medina, A.; Gimeno-Adelantado, J.V.; Llorens, A.; Jimenez, M.; Mateo, R. Comparative assessment of solid-phase extraction clean-up procedures, GC columns and perfluoroacylation reagents for determination of type B trichothecenes in wheat by GC-ECD. Talant 2005, 66, 194. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Carrasco, Y.; Molto, J.C.; Manes, J.; Berrada, H. Development of microextraction techniques in combination with GC-MS/MS for the determination of mycotoxins and metabolites in human urine. J. Sep. Sci. 2017, 40, 1572–1582. [Google Scholar] [CrossRef]
- Sugita-Konsihi, Y.; Tanaka, T.; Tabata, S.; Nakajima, M.; Nouno, M.; Nakaie, Y.; Chonan, T.; Aoyagi, M.; Kibune, N.; Mizuno, K. Validation of an hplc analytical method coupled to a multifunctional clean-up column for the determination of deoxynivalenol. Mycopathologia 2006, 161, 239–243. [Google Scholar] [CrossRef]
- Wierucka, M.; Biziuk, M. Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples. Trends Anal. Chem. 2014, 59, 50–58. [Google Scholar] [CrossRef]
- Liu, H.M.; Lu, A.X.; Fu, H.L.; Li, B.R.; Yang, M.H.; Wang, J.H.; Luan, Y.X. Affinity capture of aflatoxin B1 and B2 by aptamer-functionalized magnetic agarose microspheres prior to their determination by HPLC. Mikrochim. Acta 2018, 185, 326. [Google Scholar] [CrossRef]
- Váradi, C.; Lew, C.; Guttman, A. Rapid magnetic bead based sample preparation for automated and high throughput N-glycan analysis of therapeutic antibodies. Anal. Chem. 2014, 86, 5682–5687. [Google Scholar] [CrossRef]
- Saçligil, D.; Şenel, S.; Yavuz, H.; Denizli, A. Purification of transferrin by magnetic immunoaffinity beads. J. Sep. Sci. 2015, 38, 2729–2736. [Google Scholar] [CrossRef]
- Ye, J.; Xuan, Z.; Zhang, B.; Wu, Y.; Li, L.; Wang, S.; Xie, G.; Wang, S.X. Automated analysis of ochratoxin A in cereals and oil by immunoaffinity magnetic beads coupled to UPLC-FLD. Food Control 2019, 104, 57–62. [Google Scholar] [CrossRef]
- Xuan, Z.; Ye, J.; Zhang, B.; Li, L.; Wu, Y.; Wang, S. An Automated and High-Throughput Immunoaffinity Magnetic Bead-Based Sample Clean-Up Platform for the Determination of Aflatoxins in Grains and Oils Using UPLC-FLD. Toxins 2019, 11, 583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miron, T.; Wilchek, M. A Spectrophotometric Assay for Soluble and Immobilized A/-Hydroxysuccinimide Esters. Anal. Biochem. 1982, 126, 433–435. [Google Scholar] [CrossRef]
- Xu, Z.L.; Deng, H.; Lei, H.T.; Jiang, Y.M.; Campbell, K.; Shen, Y.D.; Yang, J.Y.; Wang, H.; Sun, Y.M. Development of a Broad-Specifificity Monoclonal Antibody-Based Immunoaffiffiffinity Chromatography Cleanup for Organophosphorus Pesticide Determination in Environmental Samples. Agric. Food Chem. 2012, 60, 5847–5852. [Google Scholar] [CrossRef] [PubMed]
- Stroka, J.; Seidler, J. Immunoaffinity clean-up of mycotoxins with organic solvent-free elution. World Mycotoxin J. 2014, 7, 115–120. [Google Scholar] [CrossRef]
- Leal, T.; Abrunhosa, L.; Domingues, L.; Venâncio, A.; Oliveira, C. BSA-based sample clean-up columns for ochratoxin A determination in wine: Method development and validation. Food Chem. 2019, 300, 125204. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Commission Regulation (EC) No 401/2006 of 23 February 2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Off. J. Eur. Union 2006, 70, 12–34. [Google Scholar]
- National Verification Regulations and Calibration Specifications of measuring Instruments of China. In The Selection and Use of Reference Materials; State General administration of the People’s Republic of China for Quality Supervision and Inspection and Quarantine: Beijing, China, 2015; JJF 1507-2015.
- ISO Guide 33: Reference Materials-Good Practice in Using Reference Materials; International Origanization for Standardization: Geneva, Switzerland, 2015.
- Wu, Y.; Ye, J.; Xuan, Z.H.; Li, L.; Wang, H.B.; Wang, S.S.; Liu, H.M.; Wang, S.X. Development and validation of a rapid and efficient method for simultaneous determination of mycotoxins in coix seed using one-step extraction and UHPLC-HRMS. Food Addit. Contam. Part A 2021, 38, 148–159. [Google Scholar] [CrossRef]
- Besselink, G.A.J.; Beugleing, T.; Bantjes, A. Hydrolysis of Activated Groups and Coupling of Amino Compounds. Appl. Biochernistry Biotechnol. 1993, 43, 227. [Google Scholar] [CrossRef]
- Cuatrecasas, P.; Parikh, I. Adsorbents for affinity chromatography. Use of N-hydroxysuccinimide esters of agarose. Biochemistry 1972, 11, 2291–2299. [Google Scholar] [CrossRef]
- Qileng, A.; Zhu, H.S.; Liu, S.Q.; He, L.; Qin, W.W.; Liu, W.P.; Xu, Z.L.; Liu, Y.J. Machine learning: Assisted multivariate detection and visual image matching to build broad-specificity immunosensor. Sens. Actuators B Chem. 2021, 339, 129872. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO)/World Health Organization (WHO). The Codex General Guidelines on Sampling-CAC/GL 50-2004; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- National Health and Family Planning Commission; China Food and Drug Administration. Determination of Deoxynivalenol and Its Acetylated Derivatives in Foods; National Criterion of China: Beijing, China, 2016; GB 5009.111-2016. [Google Scholar]
- Chen, Z.; Wu, Y.Q.; Kang, M.; He, N.Y.; Wan, S.R.; Su, E.; Wang, L.J. Research on Automated Nucleic Acid Extraction Instrument Based on Magnetic Nanoparticles Separation. Nanosci. Nanotechnol. Lett. 2018, 10, 60–68. [Google Scholar] [CrossRef]
Matrix | Spiked Level (μg/kg) | Detected Amount (μg/kg) | Recovery (%) | RSD (%) |
---|---|---|---|---|
corn | 100 | 98.4 ± 6.9 | 98.4 ± 6.9 | 7.0 |
500 | 485.8 ± 28.0 | 97.2 ± 5.6 | 5.8 | |
1000 | 919.6 ± 51.3 | 92.0 ± 5.1 | 5.6 | |
2000 | 1840.1 ± 80.8 | 92.0 ± 4.0 | 4.4 | |
wheat | 100 | 109.5 ± 4.2 | 109.5 ± 4.2 | 3.8 |
500 | 473.1 ± 22.4 | 94.6 ± 4.5 | 4.7 | |
1000 | 927.2 ± 19.1 | 92.7 ± 1.9 | 2.1 | |
2000 | 1922.3 ± 120.7 | 96.1 ± 6.0 | 6.3 |
DON Reference Material | Lot Number | Detected Amount (μg/kg) | State Value (±, SD, μg/kg) | Target Value (μg/kg) |
---|---|---|---|---|
corn | MRM-DON-CORN-0.5-0021 | 510.4 | 520 ± 100 | 500 |
MRM-DON-CORN-1-002G | 986.7 | 1090 ± 20 | 1000 | |
wheat | MRM-DON-WHEAT-0.5-005A | 492.4 | 510 ± 20 | 500 |
MRM-DON-WHEAT-1-010 | 943.9 | 1030 ± 40 | 1000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Xuan, Z.; Ye, J.; Chen, J.; Wang, M.; Freitag, S.; Krska, R.; Liu, Z.; Li, L.; Wu, Y.; et al. An Automatic Immunoaffinity Pretreatment of Deoxynivalenol Coupled with UPLC-UV Analysis. Toxins 2022, 14, 93. https://doi.org/10.3390/toxins14020093
Liu H, Xuan Z, Ye J, Chen J, Wang M, Freitag S, Krska R, Liu Z, Li L, Wu Y, et al. An Automatic Immunoaffinity Pretreatment of Deoxynivalenol Coupled with UPLC-UV Analysis. Toxins. 2022; 14(2):93. https://doi.org/10.3390/toxins14020093
Chicago/Turabian StyleLiu, Hongmei, Zhihong Xuan, Jin Ye, Jinnan Chen, Meng Wang, Stephan Freitag, Rudolf Krska, Zehuan Liu, Li Li, Yu Wu, and et al. 2022. "An Automatic Immunoaffinity Pretreatment of Deoxynivalenol Coupled with UPLC-UV Analysis" Toxins 14, no. 2: 93. https://doi.org/10.3390/toxins14020093
APA StyleLiu, H., Xuan, Z., Ye, J., Chen, J., Wang, M., Freitag, S., Krska, R., Liu, Z., Li, L., Wu, Y., & Wang, S. (2022). An Automatic Immunoaffinity Pretreatment of Deoxynivalenol Coupled with UPLC-UV Analysis. Toxins, 14(2), 93. https://doi.org/10.3390/toxins14020093