Application of Non-Aflatoxigenic Aspergillus flavus for the Biological Control of Aflatoxin Contamination in China
Abstract
:1. Introduction
2. Results
2.1. Peanut Yield in Each Biocontrol-Treated Plot
2.2. Distribution of Aspergillus flavus in Soils
2.3. Aflatoxin Concentrations in Treated and Untreated Peanut Kernels
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Strain Selection
5.2. Biocontrol Formulation Preparation and Application
5.3. Field Assays
5.4. Distribution of Aspergillus flavus in Soil Samples
5.5. Aflatoxin Assessments
5.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abbas, H.K.; Accinelli, C.; Shier, W.T. Biological control of aflatoxin contamination in U.S. crops and the use of bioplastic formulations of Aspergillus flavus biocontrol strains to optimize application strategies. J. Agric. Food Chem. 2017, 65, 7081–7087. [Google Scholar] [CrossRef] [PubMed]
- Cole, R.J.; Dorner, J.W.; Holbrook, C.C. Advances in mycotoxin elimination and resistance. In Advances in Peanut Science; Pattee, H.E., Stalker, H.T., Eds.; American Peanut Research and Education Society: Stillwater, AZ, USA, 1995; Volume 45, pp. 456–474. [Google Scholar]
- Pitt, J.I.; Taniwaki, M.H.; Cole, M.B. Mycotoxin production in major crops as influenced by growing, harvesting, storage and processing, with emphasis on the achievement of food safety objectives. Food Control 2013, 32, 205–215. [Google Scholar] [CrossRef]
- Williams, J.H.; Phillips, T.D.; Jolly, P.E.; Stiles, J.K.; Jolly, C.M.; Aggarwal, D. Human aflatoxicosis in developing countries: A review of toxicology, exposure, potential health consequences, and interventions. Am. J. Clin. Nutr. 2004, 80, 1106–1122. [Google Scholar] [CrossRef]
- IARC. Some naturally occurring substances: Food items and constituents, heterocyclic aromatic amines and mycotoxins. IARC Monographs on the evaluation of carcinogenic risks to humans. Anal. Chim. Acta 1993, 294, 341. [Google Scholar] [CrossRef]
- Juan, C.; Raiola, A.; Mañes, J.; Ritieni, A. Presence of mycotoxin in commercial infant formulas and baby foods from Italian market. Food Control 2014, 39, 227–236. [Google Scholar] [CrossRef]
- Jahanmard, E.; Azarani, F.; Sharifi, M.; Esfandiari, Z. Aflatoxin in pistachio nuts used as ingredients in Gaz sweets produced in Isfahan, Iran. Food Addit. Contam. Part B 2014, 7, 70–73. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, F. Global burden of aflatoxin-induced hepatocellular carcinoma: A risk assessment. Environ. Health Perspect. 2010, 118, 818–824. [Google Scholar] [CrossRef]
- Wogan, G.N. Impacts of chemicals on liver cancer risk. Semin. Cancer Biol. 2000, 10, 201–210. [Google Scholar] [CrossRef]
- Bhatnagar-Mathur, P.; Sunkara, S.; Bhatnagar-Panwar, M.; Waliyar, F.; Sharma, K.K. Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops. Plant Sci. 2015, 234, 119–132. [Google Scholar] [CrossRef]
- Proctor, A.D.; Ahmedna, M.; Kumar, J.V.; Goktepe, I. Degradation of aflatoxins in peanut kernels/flour by gaseous ozonation and mild heat treatment. Food Addit. Contam. Part A 2004, 21, 786–793. [Google Scholar] [CrossRef]
- Ji, N.; Diao, E.; Li, X.; Zhang, Z.; Dong, H. Detoxification and safety evaluation of aflatoxin B1 in peanut oil using alkali refining. J. Sci. Food Agric. 2016, 96, 4009–4014. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, W.; Zhang, A.; Zhang, Q. Prevention and control of aflatoxin in peanuts and removal methods. Chinese Journal of Food Eng. 2010, 50, 25–27. [Google Scholar] [CrossRef]
- Weaver, M.A.; Abbas, H.K. Field displacement of aflatoxigenic Aspergillus flavus strains through repeated biological control applications. Front. Microbiol. 2019, 10, 1788–1794. [Google Scholar] [CrossRef] [PubMed]
- Garber, R.K.; Cotty, P.J. Formation of sclerotia and aflatoxins in developing cotton bolls infected by the S strain of Aspergillus flavus and potential for biocontrol with an atoxigenic strain. Phytopathology 1997, 87, 940–945. [Google Scholar] [CrossRef] [PubMed]
- Cotty, P.J. Effect of atoxigenic strains of Aspergillus flavus on aflatoxin contamination of developing cottonseed. Plant Dis. 1990, 74, 233–235. [Google Scholar] [CrossRef]
- Dorner, J.W.; Cole, R.J.; Blankenship, P.D. Use of a biocompetitive agent to control preharvest aflatoxin in drought stressed peanuts. J. Food Prot. 1992, 55, 888–892. [Google Scholar] [CrossRef]
- Dorner, J.W. Development of biocontrol technology to manage aflatoxin contamination in peanuts. Peanut Sci. 2009, 36, 60–67. [Google Scholar] [CrossRef]
- Atehnkeng, J.; Ojiambo, P.S.; Donner, M.; Ikotun, T.; Sikora, R.A.; Cotty, P.J.; Bandyopadhyay, R. Distribution and toxigenicity of Aspergillus species isolated from maize kernels from three agro-ecological zones in Nigeria. Int. J. Food Microbiol. 2008, 122, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, R.; Ortega-Beltran, A.; Akande, A.; Mutegi, C.; Atehnkeng, J.; Kaptoge, L.; Senghor, A.L.; Adhikari, B.N.; Cotty, P.J. Biological control of aflatoxins in Africa: Current status and potential challenges in the face of climate change. World Mycotoxin J. 2016, 9, 771–789. [Google Scholar] [CrossRef]
- Mauro, A.; Garcia-Cela, E.; Pietri, A.; Cotty, P.J.; Battilani, P. Biological control products for aflatoxin prevention in Italy: Commercial field evaluation of atoxigenic Aspergillus flavus active ingredients. Toxins 2018, 10, 30. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Yan, L.; Ma, Z. Molecular characterization of an atoxigenic Aspergillus flavus strain AF051. Appl. Microbiol. Biotechnol. 2009, 83, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chang, X.; Wu, Z.; Dou, J.; Yin, Y.; Sun, C.; Wu, W. Rapid isolation of non-aflatoxigenic Aspergillus flavus strains. World Mycotoxin J. 2020, 13, 277–286. [Google Scholar] [CrossRef]
- Jaime-Garcia, R.; Cotty, P.J. Aspergillus flavus in soils and corncobs in South Texas: Implications for management of aflatoxins in corn-cotton rotations. Plant Dis. 2007, 88, 1366–1371. [Google Scholar] [CrossRef] [PubMed]
- Moral, J.; Garcia-Lopez, M.T.; Camiletti, B.X.; Jaime, R.; Michailides, T.J.; Bandyopadhyay, R.; Ortega-Beltran, A. Present status and perspective on the future use of aflatoxin biocontrol products. Agronomy 2020, 10, 491. [Google Scholar] [CrossRef]
- Accinelli, C.; Abbas, H.K.; Abbas, H.K.; Zablotowicz, R.M.; Wilkinson, J.R. Use of a granular bioplastic formulation for carrying conidia of a non-aflatoxigenic strain of Aspergillus flavus. Bioresour. Technol. 2009, 100, 3997–4004. [Google Scholar] [CrossRef]
- Accinelli, C.; Abbas, H.K.; Vicari, A.; Shier, W.T. Leaf application of a sprayable bioplastic-based formulation of biocontrol Aspergillus flavus strains for reduction of aflatoxins in corn. Pest Manag. Sci. 2016, 72, 1521–1528. [Google Scholar] [CrossRef] [PubMed]
- Mehl, H.L.; Jaime, R.; Callicott, K.A.; Probst, C.; Garber, N.P.; Ortega-Beltran, A.; Grubisha, L.C.; Cotty, P.J. Aspergillus flavus diversity on crops and in the environment can be exploited to reduce aflatoxin exposure and improve health. Ann. N. Y. Acad. Sci. 2012, 1273, 7–17. [Google Scholar] [CrossRef]
- Atehnkeng, J.; Donner, M.; Ojiambo, P.S.; Ikotun, B.; Augusto, J.; Cotty, P.J.; Bandyopadhyay, R. Environmental distribution and genetic diversity of vegetative compatibility groups determine biocontrol strategies to mitigate aflatoxin contamination of maize by Aspergillus flavus. Microb. Biotechnol. 2016, 9, 75–88. [Google Scholar] [CrossRef]
- Chang, P.-K.; Horn, B.W.; Dorner, J.W. Sequence breakpoints in the aflatoxin biosynthesis gene cluster and flanking regions in nonaflatoxigenic Aspergillus flavus isolates. Fungal Genet. Biol. 2005, 42, 914–923. [Google Scholar] [CrossRef]
- Savić, Z.; Dudaš, T.; Loc, M.; Grahovac, M.; Budakov, D.; Jajić, I.; Krstović, S.; Barošević, T.; Krska, R.; Sulyok, M.; et al. Biological control of aflatoxin in maize grown in Serbia. Toxins 2020, 12, 162. [Google Scholar] [CrossRef] [Green Version]
- Ehrlich, K.C.; Cotty, P.J. An isolate of Aspergillus flavus used to reduce aflatoxin contamination in cottonseed has a defective polyketide synthase gene. Appl. Microbiol. Biotechnol. 2004, 65, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Dorner, J.W. Biological control of aflatoxin contamination of crops. J. Toxicol.-Toxin Rev. 2004, 23, 425–450. [Google Scholar] [CrossRef]
- Dorner, J.W. Combined effects of biological control formulations, cultivars, and fungicides on postharvest colonization and aflatoxin contamination of peanuts by Aspergillus species. Peanut Sci. 2008, 31, 79–86. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, Q.; Zhang, W.; Mao, J.; Li, P. Control of aflatoxigenic molds by antagonistic microorganisms: Inhibitory behaviors, bioactive compounds, related mechanisms, and influencing factors. Toxins 2020, 12, 24. [Google Scholar] [CrossRef]
- Waliyar, F.; Kumar, L.; Traoré, A.; Ntare, B.; Diarra, B.; Kodio, O. Pre- and postharvest management of aflatoxin contamination in peanuts. In Mycotoxins: Detection Methods, Management, Public; CABI: Wallingford, UK, 2008; pp. 209–218. [Google Scholar]
- Samapundo, S.; Devlieghere, F.; Geeraerd, A.H.; Meulenaer, B.D.; Impe, J.F.V.; Debevere, J. Modelling of the individual and combined effects of water activity and temperature on the radial growth of Aspergillus flavus and A. parasiticus on corn. Food Microbiol. 2007, 24, 517–529. [Google Scholar] [CrossRef]
- Dorner, J.W.; Cole, R.J. Effect of application of nontoxigenic strains of Aspergillus flavus and A. parasiticus on subsequent aflatoxin contamination of peanuts in storage. J. Stored Prod. Res. 2002, 38, 329–339. [Google Scholar] [CrossRef]
- Dorner, J.W.; Cole, R.J.; Connick, W.J.; Daigle, D.J.; McGuire, M.R.; Shasha, B.S. Evaluation of biological control formulations to reduce aflatoxin contamination in peanuts. Biol. Control 2003, 26, 318–324. [Google Scholar] [CrossRef]
- Liao, B. A review on progress and prospects of peanut industry in China. Chin. J. Oil Crop Sci. 2020, 42, 161–166. [Google Scholar] [CrossRef]
- Okike, I.; Samireddypalle, A.; Kaptoge, L.; Fauquet, C.; Blummel, M. Technical innovations for small-scale producers and households to process wet cassava peels into high quality animal feed ingredients and aflasafe™ substrate. Food Chain 2015, 5, 71–90. [Google Scholar] [CrossRef]
- Zhang, F.; Adeola, O. Energy values of canola meal, cottonseed meal, bakery meal, and peanut flour meal for broiler chickens determined using the regression method. Poult. Sci. 2017, 96, 397–404. [Google Scholar] [CrossRef]
- Da Silva, R.L.; Damasceno, F.M.; Rocha, R.; Honório, M.K.; Pereira Sartori, M.; Barros, M.M.; Pezzato, L.E. Replacement of soybean meal by peanut meal in diets for juvenile Nile tilapia, Oreochromis niloticus. Lat. An. J. Aquant. Res. 2017, 45, 1044–1053. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Liu, H.; Noblet, J.; Liu, L.; Li, D.; Wang, F.; Lai, C. Net energy content of rice bran, corn germ meal, corn gluten feed, peanut meal, and sunflower meal in growing pigs. Asian-Australas. J. Anim. Sci. 2018, 31, 1481–1490. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Chen, Y.; Kong, Q.; Ma, Y.; Liu, Y. Detoxification of aflatoxin B1 by Zygosaccharomyces rouxii with solid state fermentation in peanut meal. Toxins 2017, 9, 42. [Google Scholar] [CrossRef]
- Alaniz Zanon, M.S.; Chiotta, M.L.; Giaj-Merlera, G.; Barros, G.; Chulze, S. Evaluation of potential biocontrol agent for aflatoxin in Argentinean peanuts. Int. J. Food Microbiol. 2013, 162, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Agbetiameh, D.; Ortega-Beltran, A.; Awuah, R.T.; Atehnkeng, J.; Elzein, A.; Cotty, P.J.; Bandyopadhyay, R. Field efficacy of two atoxigenic biocontrol products for mitigation of aflatoxin contamination in maize and groundnut in Ghana. Biol. Control 2020, 150, 104351–104363. [Google Scholar] [CrossRef] [PubMed]
- Accinelli, C.; Abbas, H.K.; Shier, W.T. A bioplastic-based seed coating improves seeding growth and reduces production of coated seed dust. J. Crop Improv. 2018, 32, 318–330. [Google Scholar] [CrossRef]
- Agbetiameh, D.; Ortega-Beltran, A.; Awuah, R.T.; Atehnkeng, J.; Islam, M.S.; Callicott, K.A.; Cotty, P.J.; Bandyopadhyay, R. Potential of atoxigenic Aspergillus flavus vegetative compatibility groups associated with maize and groundnut in Ghana as biocontrol agents for aflatoxin management. Front. Microbiol. 2019, 10, 2069. [Google Scholar] [CrossRef]
- Hu, H.; Hu, X. On markov chains in space-time random environments. Acta Math. Sci. 2009, 29, 1–10. [Google Scholar] [CrossRef]
- Shotwell, O.L.; Hesseltine, C.W.; Stubblefield, R.D.; Sorenson, W.G. Production of aflatoxin on rice. Appl. Microbiol. 1966, 14, 425–428. [Google Scholar] [CrossRef]
- GB.4789.15-2016; Food Microbiology Inspection–Mold and Yeast Counting. NHFPC. Standards Press of China: 2016 (Beijing, China). Available online: http://down.foodmate.net/standard/sort/3/49843.html (accessed on 1 September 2022).
Treatment a | Henan Province | Hubei Province | ||||||
---|---|---|---|---|---|---|---|---|
Soil before Planting | Soil at Harvest | Soil before Planting | Soil at Harvest | |||||
A. flavus (logCFU/g) | Non-AF (%) | A. flavus (logCFU/g) | Non-AF (%) | A. flavus (logCFU/g) | Non-AF (%) | A. flavus (logCFU/g) | Non-AF (%) | |
Untreated/Control | 3.44 | 25.56 ± 10.18 | 3.88 | 23.33 ± 0 | 3.43 | 22.22 ± 1.92 | 4.06 | 26.67 ± 6.67 |
Rice: low dose | 3.48 | 23.33 ± 3.33 | 4.64 | 96.67 ± 5.77 | 3.54 | 21.11 ± 5.09 | 4.62 | 94.44 ± 3.85 |
Rice: high dose | 3.26 | 28.89 ± 1.92 | 4.15 | 94.44 ± 5.09 | 3.44 | 21.11 ± 5.09 | 4.87 | 94.44 ± 9.62 |
Meal: low dose | 3.49 | 31.11 ± 1.92 | 3.82 | 75.56 ± 5.09 | 3.36 | 23.33 ± 6.67 | 3.00 | 58.89 ± 6.94 |
Meal: high dose | 3.44 | 24.44 ± 1.92 | 3.85 | 73.33 ± 6.67 | 3.50 | 31.11 ± 5.09 | 3.88 | 71.11 ± 3.85 |
Coat: low dose | 3.05 | 30.00 ± 3.33 | 3.87 | 41.11 ± 3.85 | 3.62 | 25.56 ± 8.39 | 2.81 | 41.11 ± 1.92 |
Coat: high dose | 3.21 | 22.22 ± 3.85 | 4.31 | 43.33 ± 3.33 | 3.29 | 26.67 ± 5.77 | 4.35 | 42.22 ± 1.92 |
Treatment a | Soil before Planting | Soil at Harvest | ||
---|---|---|---|---|
A. flavus (logCFU/g) | Non-AF (%) | A. flavus (logCFU/g) | Non-AF (%) | |
Untreated/Control | 3.46 | 26.67 ± 6.67 | 3.86 | 24.44 ± 3.85 |
Rice: low dose | 3.49 | 28.89 ± 5.09 | 4.07 | 87.78 ± 1.92 |
Rice: medium dose | 3.48 | 26.67 ± 8.82 | 4.38 | 94.44 ± 6.94 |
Rice: high dose | 3.44 | 27.78 ± 6.94 | 4.35 | 92.22 ± 6.94 |
Treatment a | Henan Province | Hubei Province | ||
---|---|---|---|---|
Aflatoxin B1 Content (μg/kg) | Reduction (%) | Aflatoxin B1 Content (μg/kg) | Reduction (%) | |
Untreated/Control | 41.35 ± 3.80 | - | 62.29 ± 10.07 | - |
Rice: low dose | 10.61 ± 3.77 | 74.34 | 14.57 ± 9.36 | 76.61 |
Rice: high dose | 7.48 ± 1.18 | 81.90 | 12.41 ± 4.59 | 80.07 |
Meal: low dose | 12.85 ± 1.29 | 68.92 | 23.54 ± 2.29 | 62.21 |
Meal: high dose | 10.97 ± 0.97 | 73.48 | 21.47 ± 1.47 | 65.54 |
Coat: low dose | 23.02 ± 2.74 | 44.33 | 34.61 ± 0.91 | 44.44 |
Coat: high dose | 19.85 ± 0.94 | 52.00 | 54.10 ± 4.29 | 13.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Dou, J.; Wu, Z.; Li, Q.; Wang, S.; Xu, H.; Wu, W.; Sun, C. Application of Non-Aflatoxigenic Aspergillus flavus for the Biological Control of Aflatoxin Contamination in China. Toxins 2022, 14, 681. https://doi.org/10.3390/toxins14100681
Zhang W, Dou J, Wu Z, Li Q, Wang S, Xu H, Wu W, Sun C. Application of Non-Aflatoxigenic Aspergillus flavus for the Biological Control of Aflatoxin Contamination in China. Toxins. 2022; 14(10):681. https://doi.org/10.3390/toxins14100681
Chicago/Turabian StyleZhang, Wan, Jianpeng Dou, Zidan Wu, Qiu Li, Shanshan Wang, Huiru Xu, Wenfu Wu, and Changpo Sun. 2022. "Application of Non-Aflatoxigenic Aspergillus flavus for the Biological Control of Aflatoxin Contamination in China" Toxins 14, no. 10: 681. https://doi.org/10.3390/toxins14100681
APA StyleZhang, W., Dou, J., Wu, Z., Li, Q., Wang, S., Xu, H., Wu, W., & Sun, C. (2022). Application of Non-Aflatoxigenic Aspergillus flavus for the Biological Control of Aflatoxin Contamination in China. Toxins, 14(10), 681. https://doi.org/10.3390/toxins14100681