Predictors of Clinically Important Improvements in Motor Function and Daily Use of Affected Arm after a Botulinum Toxin A Injection in Patients with Chronic Stroke
Abstract
1. Introduction
2. Results
3. Discussion
Study Limitations
4. Conclusions
5. Materials and Methods
5.1. Patients and Experimental Setup
5.2. Procedure
5.3. Outcome Measures
5.3.1. FMA-UE
5.3.2. MAL
5.4. Potential Predictors
5.4.1. MAS
5.4.2. MRC
5.4.3. Joint Proprioception Sensation
5.4.4. WMFT
5.4.5. Time since Stroke Onset to BoNT-A Injection
5.5. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Urban, P.P.; Wolf, T.; Uebele, M.; Marx, J.r.J.; Vogt, T.; Stoeter, P.; Bauermann, T.; Weibrich, C.; Vucurevic, G.D.; Schneider, A. Occurence and clinical predictors of spasticity after ischemic stroke. Stroke 2010, 41, 2016–2020. [Google Scholar] [CrossRef] [PubMed]
- Watkins, C.; Leathley, M.; Gregson, J.; Moore, A.; Smith, T.; Sharma, A. Prevalence of spasticity post stroke. Clin. Rehabil. 2002, 16, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Sommerfeld, D.K.; Eek, E.U.-B.; Svensson, A.-K.; Holmqvist, L.W.; Von Arbin, M.H. Spasticity after stroke: Its occurrence and association with motor impairments and activity limitations. Stroke 2004, 35, 134–139. [Google Scholar] [CrossRef]
- Kelly, K.M.; Borstad, A.L.; Kline, D.; Gauthier, L.V. Improved quality of life following constraint-induced movement therapy is associated with gains in arm use, but not motor improvement. Top. Stroke Rehabil. 2018, 25, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Esquenazi, A.; Novak, I.; Sheean, G.; Singer, B.; Ward, A. International consensus statement for the use of botulinum toxin treatment in adults and children with neurological impairments–introduction. Eur. J. Neurol. 2010, 17, 1–8. [Google Scholar] [CrossRef]
- Cardoso, E.; Rodrigues, B.; Lucena, R.; Oliveira, I.R.; Pedreira, G.; Melo, A. Botulinum toxin type A for the treatment of the upper limb spasticity after stroke: A meta-analysis. Arq. Neuro-Psiquiatr. 2005, 63, 30–33. [Google Scholar] [CrossRef]
- Levy, J.; Molteni, F.; Cannaviello, G.; Lansaman, T.; Roche, N.; Bensmail, D. Does botulinum toxin treatment improve upper limb active function? Ann. Phys. Rehabil. Med. 2019, 62, 234–240. [Google Scholar] [CrossRef]
- Bethoux, F. Spasticity Management After Stroke. Phys. Med. Rehabil. Clin. N. Am. 2015, 26, 625–639. [Google Scholar] [CrossRef]
- Sheean, G.; Lannin, N.; Turner-Stokes, L.; Rawicki, B.; Snow, B. Botulinum toxin assessment, intervention and after-care for upper limb hypertonicity in adults: International consensus statement. Eur. J. Neurol. 2010, 17, 74–93. [Google Scholar] [CrossRef]
- Winstein, C.J.; Stein, J.; Arena, R.; Bates, B.; Cherney, L.R.; Cramer, S.C.; Deruyter, F.; Eng, J.J.; Fisher, B.; Harvey, R.L. Guidelines for adult stroke rehabilitation and recovery: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2016, 47, e98–e169. [Google Scholar] [CrossRef]
- Fugl-Meyer, A.R.; Jääskö, L.; Leyman, I.; Olsson, S.; Steglind, S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand. J. Rehabil. Med. 1975, 7, 13–31. [Google Scholar]
- Van der Lee, J.; Beckerman, H.; Knol, D.; De Vet, H.; Bouter, L. Clinimetric properties of the motor activity log for the assessment of arm use in hemiparetic patients. Stroke 2004, 35, 1410–1414. [Google Scholar] [CrossRef] [PubMed]
- Doucet, B.M.; Gutman, S.A. Quantifying function: The rest of the measurement story. Am. J. Occup. Ther. 2013, 67, 7–9. [Google Scholar] [CrossRef]
- Sedaghat, A.R. Understanding the minimal clinically important difference (MCID) of patient-reported outcome measures. Otolaryngol.–Head Neck Surg. 2019, 161, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Jaeschke, R.; Singer, J.; Guyatt, G.H. Measurement of health status: Ascertaining the minimal clinically important difference. Control. Clin. Trials 1989, 10, 407–415. [Google Scholar] [CrossRef]
- Lim, Y.-H.; Choi, E.-H.; Lim, J.Y. Comparison of effects of botulinum toxin injection between subacute and chronic stroke patients: A pilot study. Medicine 2016, 95, e2851. [Google Scholar] [CrossRef]
- Wagner, J.M.; Lang, C.E.; Sahrmann, S.A.; Edwards, D.F.; Dromerick, A.W. Sensorimotor impairments and reaching performance in subjects with poststroke hemiparesis during the first few months of recovery. Phys. Ther. 2007, 87, 751–765. [Google Scholar] [CrossRef]
- Lin, K.C.; Chuang, L.L.; Wu, C.Y.; Hsieh, Y.W.; Chang, W.Y. Responsiveness and validity of three dexterous function measures in stroke rehabilitation. J. Rehabil. Res. Dev. 2010, 47, 563–571. [Google Scholar] [CrossRef]
- Yancosek, K.E.; Howell, D. A narrative review of dexterity assessments. J. Hand Ther. 2009, 22, 258–269. [Google Scholar] [CrossRef]
- Huang, P.-C.; Hsieh, Y.-W.; Wang, C.-M.; Wu, C.-Y.; Huang, S.-C.; Lin, K.-C. Predictors of motor, daily function, and quality-of-life improvements after upper-extremity robot-assisted rehabilitation in stroke. Am. J. Occup. Ther. 2014, 68, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Leem, M.J.; Kim, G.S.; Kim, K.H.; Im Yi, T.; Im Moon, H. Predictors of functional and motor outcomes following upper limb robot-assisted therapy after stroke. Int. J. Rehabil. Res. 2019, 42, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Baldan, F.; Turolla, A.; Rimini, D.; Pregnolato, G.; Maistrello, L.; Agostini, M.; Jakob, I. Robot-assisted rehabilitation of hand function after stroke: Development of prediction models for reference to therapy. J. Electromyogr. Kinesiol. 2021, 57, 102534. [Google Scholar] [CrossRef]
- Francisco, G.E.; Jost, W.H.; Bavikatte, G.; Bandari, D.S.; Tang, S.F.T.; Munin, M.C.; Largent, J.; Adams, A.M.; Zuzek, A.; Esquenazi, A. Individualized OnabotulinumtoxinA Treatment for Upper Limb Spasticity Resulted in High Clinician- and Patient-Reported Satisfaction: Long-Term Observational Results from the ASPIRE Study. PM R 2020, 12, 1120–1133. [Google Scholar]
- Gracies, J.M.; O’Dell, M.; Vecchio, M.; Hedera, P.; Kocer, S.; Rudzinska-Bar, M.; Rubin, B.; Timerbaeva, S.L.; Lusakowska, A.; Boyer, F.C. Effects of repeated abobotulinumtoxinA injections in upper limb spasticity. Muscle Nerve 2018, 57, 245–254. [Google Scholar] [CrossRef]
- Turner-Stokes, L.; Jacinto, J.; Fheodoroff, K.; Brashear, A.; Maisonobe, P.; Lysandropoulos, A.; Ashford, S. Longitudinal goal attainment with integrated upper limb spasticity management including repeat injections of botulinum yoxin A: Findings from the prospective, observational Upper Limb International Spasticity (ULIS-III) cohort study. J. Rehabil. Med. 2021, 53, jrm00157. [Google Scholar] [CrossRef] [PubMed]
- Ro, T.; Ota, T.; Saito, T.; Oikawa, O. Spasticity and Range of Motion Over Time in Stroke Patients Who Received Multiple-Dose Botulinum Toxin Therapy. J. Stroke Cereb. Dis. 2020, 29, 104481. [Google Scholar] [CrossRef] [PubMed]
- Mills, P.B.; Finlayson, H.; Sudol, M.; O’Connor, R. Systematic review of adjunct therapies to improve outcomes following botulinum toxin injection for treatment of limb spasticity. Clin. Rehabil. 2016, 30, 537–548. [Google Scholar] [CrossRef]
- Hung, J.-W.; Chen, Y.-W.; Chen, Y.-J.; Pong, Y.-P.; Wu, W.-C.; Chang, K.-C.; Wu, C.-Y. The Effects of Distributed vs. Condensed Schedule for Robot-Assisted Training with Botulinum Toxin A Injection for Spastic Upper Limbs in Chronic Post-Stroke Subjects. Toxins 2021, 13, 539. [Google Scholar] [CrossRef]
- Abo, M.; Shigematsu, T.; Hara, H.; Matsuda, Y.; Nimura, A.; Yamashita, Y.; Takahashi, K. Efficacy and Safety of OnabotulinumtoxinA 400 Units in Patients with Post-Stroke Upper Limb Spasticity: Final Report of a Randomized, Double-Blind, Placebo-Controlled Trial with an Open-Label Extension Phase. Toxins 2020, 12, 127. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, J.; Bai, Z.; Chen, S.; Cai, S. Predictive factors of upper limb motor recovery for stroke survivors admitted to a rehabilitation programme. Eur. J. Phys. Rehabil. Med. 2020, 56, 706–712. [Google Scholar]
- Hsieh, Y.-W.; Wu, C.-Y.; Lin, K.-C.; Chang, Y.-F.; Chen, C.-L.; Liu, J.-S. Responsiveness and validity of three outcome measures of motor function after stroke rehabilitation. Stroke 2009, 40, 1386–1391. [Google Scholar] [CrossRef] [PubMed]
- Platz, T.; Pinkowski, C.; van Wijck, F.; Kim, I.-H.; Di Bella, P.; Johnson, G. Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer Test, Action Research Arm Test and Box and Block Test: A multicentre study. Clin. Rehabil. 2005, 19, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Page, S.J.; Fulk, G.D.; Boyne, P. Clinically important differences for the upper-extremity Fugl-Meyer Scale in people with minimal to moderate impairment due to chronic stroke. Phys. Ther. 2012, 92, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Lo, A.C.; Guarino, P.D.; Richards, L.G.; Haselkorn, J.K.; Wittenberg, G.F.; Federman, D.G.; Ringer, R.J.; Wagner, T.H.; Krebs, H.I.; Volpe, B.T. Robot-assisted therapy for long-term upper-limb impairment after stroke. N. Engl. J. Med. 2010, 362, 1772–1783. [Google Scholar] [CrossRef]
- Uswatte, G.; Taub, E.; Morris, D.; Light, K.; Thompson, P. The Motor Activity Log-28: Assessing daily use of the hemiparetic arm after stroke. Neurology 2006, 67, 1189–1194. [Google Scholar] [CrossRef] [PubMed]
- Taub, E.; Miller, N.E.; Novack, T.A.; Cook, E.W.; Fleming, W.C.; Nepomuceno, C.S.; Connell, J.S.; Crago, J. Technique to improve chronic motor deficit after stroke. Arch. Phys. Med. Rehabil. 1993, 74, 347–354. [Google Scholar]
- Lang, C.E.; Edwards, D.F.; Birkenmeier, R.L.; Dromerick, A.W. Estimating minimal clinically important differences of upper-extremity measures early after stroke. Arch. Phys. Med. Rehabil. 2008, 89, 1693–1700. [Google Scholar] [CrossRef]
- Van der Lee, J.H.; Wagenaar, R.C.; Lankhorst, G.J.; Vogelaar, T.W.; Devillé, W.L.; Bouter, L.M. Forced use of the upper extremity in chronic stroke patients: Results from a single-blind randomized clinical trial. Stroke 1999, 30, 2369–2375. [Google Scholar] [CrossRef]
- Coupar, F.; Pollock, A.; Rowe, P.; Weir, C.; Langhorne, P. Predictors of upper limb recovery after stroke: A systematic review and meta-analysis. Clin. Rehabil. 2012, 26, 291–313. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Smith, M.B. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys. Ther. 1987, 67, 206–207. [Google Scholar] [CrossRef]
- Pandyan, A.D.; Johnson, G.R.; Price, C.I.; Curless, R.H.; Barnes, M.P.; Rodgers, H. A review of the properties and limitations of the Ashworth and modified Ashworth Scales as measures of spasticity. Clin. Rehabil. 1999, 13, 373–383. [Google Scholar] [CrossRef]
- Gregson, J.M.; Leathley, M.J.; Moore, A.P.; Smith, T.L.; Sharma, A.K.; Watkins, C.L. Reliability of measurements of muscle tone and muscle power in stroke patients. Age Ageing 2000, 29, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Paternostro-Sluga, T.; Grim-Stieger, M.; Posch, M.; Schuhfried, O.; Vacariu, G.; Mittermaier, C.; Bittner, C.; Fialka-Moser, V. Reliability and validity of the Medical Research Council (MRC) scale and a modified scale for testing muscle strength in patients with radial palsy. J. Rehabil. Med. 2008, 40, 665–671. [Google Scholar] [CrossRef]
- Lincoln, N.; Jackson, J.; Adams, S. Reliability and revision of the Nottingham Sensory Assessment for stroke patients. Physiotherapy 1998, 84, 358–365. [Google Scholar] [CrossRef]
- Uswatte, G.; Taub, E. Constraint-induced movement therapy: New approaches to outcome measurement in rehabilitation. Cogn. Neurorehabilit. 1999, 215–229. [Google Scholar]
- Morris, D.M.; Uswatte, G.; Crago, J.E.; Cook, E.W., III; Taub, E. The reliability of the wolf motor function test for assessing upper extremity function after stroke. Arch. Phys. Med. Rehabil. 2001, 82, 750–755. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-L.; Lin, K.-C.; Liing, R.-J.; Wu, C.-Y.; Chen, C.-L. Kinematic measures of Arm-trunk movements during unilateral and bilateral reaching predict clinically important change in perceived arm use in daily activities after intensive stroke rehabilitation. J. Neuroeng. Rehabil. 2015, 12, 84. [Google Scholar] [CrossRef][Green Version]
Characteristics | Value |
---|---|
Age (years) | 49.32 ± 10.95 |
Sex (Male/Female) | 62 (70.5)/26 (29.5) |
Education years | 12.09 ± 3.51 |
Side of Hemiplegia (Rt/Lt) | 37 (42.0)/51 (58.0) |
Nature (Hemorrhage/Infarction) | 35 (39.8)/53 (60.2) |
Lesion (Cortical/Subcortical/Brainstem) | 29 (33.0)/58 (65.9)/1 (/1.1) |
Naïve to BoNT-A (Yes/No) | 48 (54.55)/40 (45.45) |
Total injection dose (U) | 326.70 ± 95.66 |
Outcome | Mean ± SD | p |
---|---|---|
FMA_UE | ||
Baseline | 30.11 ± 8.25 | <0.01 |
Post-treatment | 33.20 ± 8.30 | |
MAL AOU | ||
Baseline | 1.27 ± 0.72 | <0.01 |
Post-treatment | 1.82 ± 0.84 | |
MAL QOM | ||
Baseline | 0.90 ± 0.70 | <0.01 |
Post-treatment | 1.37 ± 0.81 |
Candidate Predictor | FMA-UE | MAL AOU | MAL QOM | ||||||
---|---|---|---|---|---|---|---|---|---|
Change ≥ 5 | Change < 5 | p | Change ≥ 0.5 | Change < 0.5 | p | Change ≥ 0.5 | Change < 0.5 | p | |
n = 25 | n = 63 | n = 45 | n = 43 | n = 37 | n = 51 | ||||
General Information | |||||||||
Age (years) | 46.19 ± 13.67 | 50.56 ± 9.37 | 0.159 | 48.59 ± 11.47 | 50.09 ± 10.31 | 0.527 | 47.70 ± 11.36 | 50.50 ± 10.48 | 0.249 |
Sex (male/female) | 17/8 | 45/18 | 0.751 | 29/16 | 33/10 | 0.206 | 25/12 | 37/14 | 0.613 |
Education years | 11.52 ± 3.90 | 12.32 ± 3.31 | 0.381 | 12.82 ± 3.41 | 11.33 ± 3.44 | 0.046 † | 13.43 ± 2.95 | 11.12 ± 3.55 | 0.001 † |
Time since stroke (<36 months/≧36 months) | 21/4 | 34/29 | 0.014 † | 31/14 | 24/19 | 0.205 | 29/8 | 26/25 | 0.009 † |
Lesion Side (left/right) | 11/14 | 26/37 | 0.815 | 21/24 | 16/27 | 0.369 | 20/17 | 17/34 | 0.052 |
Nature (hemorrhage/infarction) | 8/17 | 27/36 | 0.348 | 18/27 | 17/26 | 0.964 | 16/21 | 19/32 | 0.571 |
Naïve to BoNT-A (Yes/No) | 14/11 | 34/29 | 0.863 | 30/15 | 18/25 | 0.019 † | 28/9 | 20/31 | 0.001 † |
Post-injection days | 75.88 ± 16.97 | 76.30 ± 17.12 | 0.918 | 81.87 ± 17.67 | 70.41 ± 13.53 | 0.001 † | 82.24 ± 19.07 | 71.78 ± 13.91 | 0.007 † |
Injection dose (U) | 298.00 ± 88.14 | 338.10 ± 96.15 | 0.071 | 310.11 ± 84.82 | 344.07 ± 103.01 | 0.100 | 313.38 ± 82.69 | 336.37 ± 102.99 | 0.255 |
Clinical Assessment at Baseline | |||||||||
MMSE | 27.52 ± 2.35 | 26.92 ± 2.50 | 0.303 | 26.98 ± 2.60 | 27.21 ± 2.33 | 0.665 | 27.41 ± 2.64 | 26.86 ± 2.33 | 0.326 |
FMA-UE | |||||||||
Proximal | 26.76 ± 6.10 | 26.10 ± 6.42 | 0.657 | 27.49 ± 6.19 | 25.02 ± 6.25 | 0.070 | 28.43 ± 5.59 | 24.73 ± 6.40 | 0.005 † |
Distal | 4.04 ± 2.54 | 3.84 ± 3.13 | 0.762 | 4.20 ± 2.93 | 3.58 ± 3.00 | 0.336 | 3.95 ± 2.58 | 3.86 ± 3.24 | 0.895 |
Proprioception score | 8.36 ± 3.87 | 7.62 ± 3.38 | 0.415 | 8.82 ± 3.26 | 6.79 ± 3.53 | 0.007 † | 8.97 ± 3.14 | 7.00 ± 3.59 | 0.008† |
MAS | |||||||||
Proximal UE | 7.66 ± 4.30 | 8.91 ± 3.31 | 0.206 | 8.51 ± 4.05 | 8.60 ± 3.22 | 0.906 | 8.84 ± 3.60 | 8.35 ± 3.70 | 0.544 |
Distal UE | 3.18 ± 1.83 | 3.87 ± 1.74 | 0.115 | 3.63 ± 1.81 | 3.71 ± 1.77 | 0.843 | 3.89 ± 1.80 | 3.51 ± 1.76 | 0.323 |
MRC | |||||||||
Proximal UE | 13.72 ± 3.41 | 12.90 ± 3.17 | 0.317 | 13.89 ± 3.33 | 12.35 ± 2.99 | 0.026 † | 13.86 ± 3.14 | 12.61 ± 3.25 | 0.075 |
Distal UE | 9.32 ± 3.40 | 7.38 ± 2.92 | 0.018 † | 8.09 ± 2.98 | 7.77 ± 3.38 | 0.642 | 7.68 ± 2.66 | 8.12 ± 3.51 | 0.508 |
WMFT | |||||||||
Time (mean) | 8.77 ± 4.19 | 10.87 ± 8.72 | 0.136 | 9.52 ± 4.94 | 11.06 ± 9.84 | 0.366 | 9.54 ± 4.40 | 10.80 ± 9.46 | 0.409 |
Quality (mean) | 2.51 ± 0.40 | 2.25 ± 0.47 | 0.016 † | 2.39 ± 0.46 | 2.25 ± 0.47 | 0.161 | 2.42 ± 0.47 | 2.26 ± 0.46 | 0.118 |
MAL | |||||||||
AOU (mean) | 1.29 ± 0.62 | 1.26 ± 0.75 | 0.846 | 1.28 ± 0.65 | 1.27 ± 0.78 | 0.935 | 1.26 ± 0.61 | 1.28 ± 0.79 | 0.859 |
QOM (mean) | 0.88 ± 0.63 | 0.91 ± 0.73 | 0.838 | 0.88 ± 0.57 | 0.92 ± 0.82 | 0.780 | 0.85 ± 0.51 | 0.93 ± 0.81 | 0.576 |
Predictor | FMA-UE | MAL AOU | MAL QOM | ||||||
---|---|---|---|---|---|---|---|---|---|
β | p | OR (95% CI) | β | p | OR (95% CI) | β | p | OR (95% CI) | |
Constant | −4.594 | 0.002 | −7.225 | <0.001 | −9.921 | <0.001 | |||
Time since stroke less than 36 months | 1.409 | 0.023 † | 4.092 (1.219–13.732) | 1.612 | 0.0012† | 5.013 (1.420–17.699) | |||
Education year | 0.099 | 0.199 | 1.104 (0.949–1.284) | 0.248 | 0.015† | 1.282 (1.050–1.565) | |||
Naïve to BoNT-A | 0.605 | 0.229 | 1.831 (0.683–4.910) | 1.201 | 0.035† | 3.322 (1.091–10.118) | |||
Post-injection duration | 0.039 | 0.021† | 1.039 (1.006–1.074) | 0.026 | 0.131 | 1.026 (0.992–1.061) | |||
MRC proximal UE | 0.657 | 0.049† | 1.930 (1.004–3.710) | ||||||
MRC distal UE | 0.567 | 0.135 | 1.762 (0.839–3.704) | ||||||
WMFT quality | 0.633 | 0.333 | 1.883 (0.523–6.786) | ||||||
FMA-UE proximal | 0.091 | 0.054 | 1.096 (0.999–1.202) | ||||||
Proprioception | 0.087 | 0.228 | 1.091 (0.947–1.257) | 0.078 | 0.368 | 1.081 (0.913–1.280) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, J.-W.; Wu, W.-C.; Chen, Y.-J.; Pong, Y.-P.; Chang, K.-C. Predictors of Clinically Important Improvements in Motor Function and Daily Use of Affected Arm after a Botulinum Toxin A Injection in Patients with Chronic Stroke. Toxins 2022, 14, 13. https://doi.org/10.3390/toxins14010013
Hung J-W, Wu W-C, Chen Y-J, Pong Y-P, Chang K-C. Predictors of Clinically Important Improvements in Motor Function and Daily Use of Affected Arm after a Botulinum Toxin A Injection in Patients with Chronic Stroke. Toxins. 2022; 14(1):13. https://doi.org/10.3390/toxins14010013
Chicago/Turabian StyleHung, Jen-Wen, Wen-Chi Wu, Yi-Ju Chen, Ya-Ping Pong, and Ku-Chou Chang. 2022. "Predictors of Clinically Important Improvements in Motor Function and Daily Use of Affected Arm after a Botulinum Toxin A Injection in Patients with Chronic Stroke" Toxins 14, no. 1: 13. https://doi.org/10.3390/toxins14010013
APA StyleHung, J.-W., Wu, W.-C., Chen, Y.-J., Pong, Y.-P., & Chang, K.-C. (2022). Predictors of Clinically Important Improvements in Motor Function and Daily Use of Affected Arm after a Botulinum Toxin A Injection in Patients with Chronic Stroke. Toxins, 14(1), 13. https://doi.org/10.3390/toxins14010013