From Poison to Promise: The Evolution of Tetrodotoxin and Its Potential as a Therapeutic
Abstract
:1. Overview: The Evolution and Ecology of Tetrodotoxin and Its Relevance to Medicine
2. Mechanisms of Tetrodotoxin Poisoning and Evolution of Resistance
3. Effects of and Treatments for TTX Poisoning
4. Medical and Therapeutic Applications of TTX
4.1. TTX as a Therapeutic: Pain
4.1.1. Cancer-Related Pain
4.1.2. Neuropathic Pain
4.1.3. Allodynia and Hyperalgesia
4.1.4. Ectopic Neural Discharges
4.1.5. Postherpetic Neuralgia
4.1.6. Inflammatory Pain
4.1.7. Chronic Pain
4.1.8. Visceral Pain
4.2. TTX as a Therapeutic: Brain Trauma and Spinal Cord Injury
4.3. TTX as a Therapeutic: Anesthetic
4.4. TTX as a Therapeutic: Tumor Suppressor
4.5. TTX as a Therapeutic: Heroin and Cocaine Addiction
5. Concluding Thoughts
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bane, V.; Lehane, M.; Dikshit, M.; O’Riordan, A.; Furey, A. Tetrodotoxin: Chemistry, Toxicity, Source, Distribution and Detection. Toxins 2014, 6, 693–755. [Google Scholar] [CrossRef] [Green Version]
- Lago, J.; Rodríguez, L.; Blanco, L.; Vieites, J.; Cabado, A. Tetrodotoxin, an Extremely Potent Marine Neurotoxin: Distribution, Toxicity, Origin and Therapeutical Uses. Mar. Drugs 2015, 13, 6384–6406. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Suleski, M.; Hedges, S.B. TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. Mol. Biol. Evol. 2017, 34, 1812–1819. [Google Scholar] [CrossRef] [PubMed]
- Hedges, S.B.; Marin, J.; Suleski, M.; Paymer, M.; Kumar, S. Tree of Life Reveals Clock-Like Speciation and Diversification. Mol. Biol. Evol. 2015, 32, 835–845. [Google Scholar] [CrossRef] [PubMed]
- Hwang, P.-A.; Noguchi, T.; Hwang, D.-F. Neurotoxin Tetrodotoxin as Attractant for Toxic Snails. Fisheries Sci. 2004, 70, 1106–1112. [Google Scholar] [CrossRef]
- Matsumura, K. Tetrodotoxin as a Pheromone. Nature 1995, 378, 563–564. [Google Scholar] [CrossRef] [PubMed]
- Bucciarelli, G.M.; Green, D.B.; Shaffer, H.B.; Kats, L.B. Individual Fluctuations in Toxin Levels Affect Breeding Site Fidelity in a Chemically Defended Amphibian. Proc. R. Soc. B 2016, 283, 20160468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, K.; Okabe, S.; Asakawa, M.; Bessho, K.; Taniyama, S.; Shida, Y.; Ohtsuka, S. Detection of Tetrodotoxin (TTX) from Two Copepods Infecting the Grass Puffer Takifugu Niphobles: TTX Attracting the Parasites? Toxicon 2006, 48, 620–626. [Google Scholar] [CrossRef]
- Elliott, S.A.; Kats, L.B.; Breeding, J.A. The Use of Conspecific Chemical Cues for Cannibal Avoidance in California Newts (Taricha Torosa). Ethology 1993, 95, 186–192. [Google Scholar] [CrossRef]
- Ota, W.M.; Olsen, B.; Bucciarelli, G.M.; Kats, L.B. The Effect of Newt Toxin on an Invasive Snail. Hydrobiologia 2018, 817, 341–348. [Google Scholar] [CrossRef]
- Bucciarelli, G.M.; Kats, L.B. Effects of Newt Chemical Cues on the Distribution and Foraging Behavior of Stream Macroinvertebrates. Hydrobiologia 2015, 749, 69–81. [Google Scholar] [CrossRef]
- Nieto, F.R.; Cobos, E.J.; Tejada, M.Á.; Sánchez-Fernández, C.; González-Cano, R.; Cendán, C.M. Tetrodotoxin (TTX) as a Therapeutic Agent for Pain. Mar. Drugs 2012, 10, 281–305. [Google Scholar] [CrossRef]
- King, G.F. Venoms as a Platform for Human Drugs: Translating Toxins into Therapeutics. Expert Opin. Biol. Ther. 2011, 11, 1469–1484. [Google Scholar] [CrossRef] [PubMed]
- Koh, C.Y.; Kini, R.M. From Snake Venom Toxins to Therapeutics—Cardiovascular Examples. Toxicon 2012, 59, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Juarez, P.; Comas, I.; Gonzalez-Candelas, F.; Calvete, J.J. Evolution of Snake Venom Disintegrins by Positive Darwinian Selection. Mol. Biol. Evol. 2008, 25, 2391–2407. [Google Scholar] [CrossRef] [Green Version]
- Vonk, F.J.; Casewell, N.R.; Henkel, C.V.; Heimberg, A.M.; Jansen, H.J.; McCleary, R.J.R.; Kerkkamp, H.M.E.; Vos, R.A.; Guerreiro, I.; Calvete, J.J.; et al. The King Cobra Genome Reveals Dynamic Gene Evolution and Adaptation in the Snake Venom System. Proc. Natl. Acad. Sci. USA 2013, 110, 20651–20656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fry, B.G. From Genome to “Venome”: Molecular Origin and Evolution of the Snake Venom Proteome Inferred from Phylogenetic Analysis of Toxin Sequences and Related Body Proteins. Genome Res. 2005, 15, 403–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyes-Velasco, J.; Card, D.C.; Andrew, A.L.; Shaney, K.J.; Adams, R.H.; Schield, D.R.; Casewell, N.R.; Mackessy, S.P.; Castoe, T.A. Expression of Venom Gene Homologs in Diverse Python Tissues Suggests a New Model for the Evolution of Snake Venom. Mol. Biol. Evol. 2015, 32, 173–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fry, B.G.; Winkel, K.D.; Wickramaratna, J.C.; Hodgson, W.C.; Wüster, W. Effectiveness of Snake Antivenom: Species and Regional Venom Variation and Its Clinical Impact. J. Toxicol. Toxin Rev. 2003, 22, 23–34. [Google Scholar] [CrossRef]
- Moczydlowski, E.G. The Molecular Mystique of Tetrodotoxin. Toxicon 2013, 63, 165–183. [Google Scholar] [CrossRef]
- Kiernan, M.C.; Isbister, G.K.; Lin, C.S.-Y.; Burke, D.; Bostock, H. Acute Tetrodotoxin-Induced Neurotoxicity after Ingestion of Puffer Fish. Ann. Neurol. 2005, 57, 339–348. [Google Scholar] [CrossRef]
- Lee, C.H.; Ruben, P.C. Interaction between Voltage-Gated Sodium Channels and the Neurotoxin, Tetrodotoxin. Channels 2008, 2, 407–412. [Google Scholar] [CrossRef]
- Saoudi, M.; Abdelmouleh, A.; El Feki, A. Tetrodotoxin: A Potent Marine Toxin. Toxin Rev. 2010, 29, 60–70. [Google Scholar] [CrossRef]
- Stevens, M.; Peigneur, S.; Tytgat, J. Neurotoxins and Their Binding Areas on Voltage-Gated Sodium Channels. Front. Pharmacol. 2011, 2, 71. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Zhang, J.; Han, B.; Pen, L.; Liu, D. An Electrophysiological Study of Acute Tetrodotoxin Poisoning. Cell Biochem. Biophys. 2011, 59, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Catterall, W.A. Voltage-Gated Sodium Channels at 60: Structure, Function and Pathophysiology. J. Physiol. 2012, 590, 2577–2589. [Google Scholar] [CrossRef]
- Isom, L.; De Jongh, K.; Patton, D.; Reber, B.; Offord, J.; Charbonneau, H.; Walsh, K.; Goldin, A.; Catterall, W. Primary Structure and Functional Expression of the Beta 1 Subunit of the Rat Brain Sodium Channel. Science 1992, 256, 839–842. [Google Scholar] [CrossRef]
- Davis, T.H.; Chen, C.; Isom, L.L. Sodium Channel Β1 Subunits Promote Neurite Outgrowth in Cerebellar Granule Neurons. J. Biol. Chem. 2004, 279, 51424–51432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zakon, H.H. Adaptive Evolution of Voltage-Gated Sodium Channels: The First 800 Million Years. Proc. Natl. Acad. Sci. USA 2012, 109, 10619–10625. [Google Scholar] [CrossRef] [Green Version]
- Noda, M.; Hiyama, T.Y. The Nax Channel: What It Is and What It Does. Neuroscientist 2015, 21, 399–412. [Google Scholar] [CrossRef]
- Goldin, A.L. Resurgence of Sodium Channel Research. Annu. Rev. Physiol. 2001, 63, 871–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fozzard, H.A.; Lipkind, G.M. The Tetrodotoxin Binding Site Is within the Outer Vestibule of the Sodium Channel. Mar. Drugs 2010, 8, 219–234. [Google Scholar] [CrossRef] [Green Version]
- Jost, M.C.; Hillis, D.M.; Lu, Y.; Kyle, J.W.; Fozzard, H.A.; Zakon, H.H. Toxin-Resistant Sodium Channels: Parallel Adaptive Evolution across a Complete Gene Family. Mol. Biol. Evol. 2008, 25, 1016–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinemann, S.H.; Terlau, H.; Imoto, K. Molecular Basis for Pharmacological Differences between Brain and Cardiac Sodium Channels. Pflugers Arch. 1992, 422, 90–92. [Google Scholar] [CrossRef] [PubMed]
- Satin, J.; Kyle, J.W.; Chen, M.; Bell, P.; Cribbs, L.L.; Fozzard, H.A.; Rogart, R.B. A Mutant of TTX-Resistant Cardiac Sodium Channels with TTX-Sensitive Properties. Science 1992, 256, 1202–1205. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, O.; Hwang, D.-F.; Taniyama, S.; Takatani, T. Toxins of Pufferfish That Cause Human Intoxications. In Coastal Environmental and Ecosystem Issues of the East China Sea; Ishimatsu, A., Lie, H.-J., Eds.; Terrapub and Nagasaki University: Nagasaki, Japan, 2010; pp. 227–244. [Google Scholar]
- Yotsu-Yamashita, M.; Nishimori, K.; Nitanai, Y.; Isemura, M.; Sugimoto, A.; Yasumoto, T. Binding Properties of 3H-PbTx-3 and 3H-Saxitoxin to Brain Membranes and to Skeletal Muscle Membranes of Puffer Fish Fugu Pardalis and the Primary Structure of a Voltage-Gated Na+ Channel α-Subunit (FMNa1) from Skeletal Muscle of F. Pardalis. Biochem. Biophys. Res. Commun. 2000, 267, 403–412. [Google Scholar] [CrossRef]
- Vaelli, P.M.; Theis, K.R.; Williams, J.E.; O’Connell, L.A.; Foster, J.A.; Eisthen, H.L. The Skin Microbiome Facilitates Adaptive Tetrodotoxin Production in Poisonous Newts. eLife 2020, 9, e53898. [Google Scholar] [CrossRef] [PubMed]
- Hanifin, C.T.; Gilly, W.F. Evolutionary History of a Complex Adaptation: Tetrodotoxin Resistance in Salamanders. Evolution 2015, 69, 232–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGlothlin, J.W.; Kobiela, M.E.; Feldman, C.R.; Castoe, T.A.; Geffeney, S.L.; Hanifin, C.T.; Toledo, G.; Vonk, F.J.; Richardson, M.K.; Brodie, E.D.; et al. Historical Contingency in a Multigene Family Facilitates Adaptive Evolution of Toxin Resistance. Current 2016, 26, 1616–1621. [Google Scholar] [CrossRef]
- Geffeney, S.; Brodie, E.D.; Ruben, P.C.; Brodie, E.D. Mechanisms of Adaptation in a Predator-Prey Arms Race: TTX-Resistant Sodium Channels. Science 2002, 297, 1336–1339. [Google Scholar] [CrossRef] [Green Version]
- Geffeney, S.L.; Fujimoto, E.; Brodie, E.D.; Brodie, E.D.; Ruben, P.C. Evolutionary Diversification of TTX-Resistant Sodium Channels in a Predator–Prey Interaction. Nature 2005, 434, 759–763. [Google Scholar] [CrossRef]
- Nagashima, Y.; Yamamoto, K.; Shimakura, K.; Shiomi, K. A Tetrodotoxin-Binding Protein in the Hemolymph of Shore Crab Hemigrapsus Sanguineus: Purification and Properties. Toxicon 2002, 40, 753–760. [Google Scholar] [CrossRef]
- Matsui, T.; Yamamori, K.; Furukawa, K.; Kono, M. Purification and Some Properties of a Tetrodotoxin Binding Protein from the Blood Plasma of Kusafugu, Takifugu Niphobles. Toxicon 2000, 38, 463–468. [Google Scholar] [CrossRef]
- Turner, R.; Maler, L.; Deerinck, T.; Levinson, S.; Ellisman, M. TTX-Sensitive Dendritic Sodium Channels Underlie Oscillatory Discharge in a Vertebrate Sensory Neuron. J. Neurosci. 1994, 14, 6453–6471. [Google Scholar] [CrossRef] [PubMed]
- Hwang, P.-A.; Tsai, Y.-H.; Lin, H.-P.; Hwang, D.-F. Tetrodotoxin-Binding Proteins Isolated from Five Species of Toxic Gastropods. Food Chem. 2007, 103, 1153–1158. [Google Scholar] [CrossRef]
- Hines, T. Zombies and Tetrodotoxin. Skept. Inquirer 2008, 32, 60–62. [Google Scholar]
- Ohyabu, N.; Nishikawa, T.; Isobe, M. First Asymmetric Total Synthesis of Tetrodotoxin. J. Am. Chem. Soc. 2003, 125, 8798–8805. [Google Scholar] [CrossRef] [PubMed]
- Kasteel, E.E.J.; Westerink, R.H.S. Comparison of the Acute Inhibitory Effects of Tetrodotoxin (TTX) in Rat and Human Neuronal Networks for Risk Assessment Purposes. Toxicol. Lett. 2017, 270, 12–16. [Google Scholar] [CrossRef]
- Tarby, T.J.; Costin, A.; Adey, W.R. Effects of Tetrodotoxin on Impedance in Normal and Asphyxiated Cerebral Tissue. Exp. Neurol. 1968, 22, 517–531. [Google Scholar] [CrossRef]
- Kao, C.Y. Tetrodotoxin, Saxitoxin and Their Significance in the Study of Excitation Phenomena. Pharmacol. Rev. 1966, 18, 997–1049. [Google Scholar] [PubMed]
- O’Leary, M.A.; Schneider, J.J.; Isbister, G.K. Use of High Performance Liquid Chromatography to Measure Tetrodotoxin in Serum and Urine of Poisoned Patients. Toxicon 2004, 44, 549–553. [Google Scholar] [CrossRef]
- Clark, R.F.; Williams, S.R.; Nardt, S.P.; Manoguerra, A.S. A Review of Selected Seafood Poisonings. Undersea Hyperb. Med. 1999, 26, 175–184. [Google Scholar] [PubMed]
- Lipsius, M.R.; Siegman, M.J.; Kao, C.Y. Direct Relaxant Actions of Procaine and Tetrodotoxin on Vascular Smooth Muscle. J. Pharmacol. Exp. Ther. 1968, 164, 60–74. [Google Scholar] [PubMed]
- Islam, Q.T.; Razzak, M.A.; Islam, M.A.; Bari, M.I.; Basher, A.; Chowdhury, F.R.; Sayeduzzaman, A.B.M.; Ahasan, H.A.M.N.; Faiz, M.A.; Arakawa, O.; et al. Puffer Fish Poisoning in Bangladesh: Clinical and Toxicological Results from Large Outbreaks in 2008. Trans. R. Soc. Trop. Med. Hyg. 2011, 105, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Yotsu-Yamashita, M.; Sugimoto, A.; Takai, A.; Yasumoto, T. Effects of Specific Modifications of Several Hydroxyls of Tetrodotoxin on Its Affinity to Rat Brain Membrane. J. Pharmacol. Exp. Ther. 1999, 289, 1688–1696. [Google Scholar] [PubMed]
- Kao, C.Y. Comparison of the Biological Actions of Tetrodotoxin and Saxitoxin. In Animal Toxins; Russel, F.E., Saunders, P.R., Eds.; Elsevier: Amsterdam, The Netherlands, 1967; pp. 109–114. ISBN 978-0-08-012209-0. [Google Scholar]
- How, C.-K.; Chern, C.-H.; Huang, Y.-C.; Wang, L.-M.; Lee, C.-H. Tetrodotoxin Poisoning. Am. J. Emerg. Med. 2003, 21, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Ogata, N.; Ohishi, Y. Molecular Diversity of Structure and Function of the Voltage-Gated Na+ Channels. Jpn. J. Pharmacol. 2002, 88, 365–377. [Google Scholar] [CrossRef] [Green Version]
- Dib-Hajj, S.D.; Cummins, T.R.; Black, J.A.; Waxman, S.G. Sodium Channels in Normal and Pathological Pain. Annu. Rev. Neurosci. 2010, 33, 325–347. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Uehara, A.; Ravindran, A.; Bryant, S.H.; Hall, S.; Moczydlowski, E. Kinetic Basis for Insensitivity to Tetrodotoxin and Saxitoxin in Sodium Channels of Canine Heart and Denervated Rat Skeletal Muscle. Biochemistry 1987, 26, 7546–7556. [Google Scholar] [CrossRef]
- Hong, B.; Sun, J.; Zheng, H.; Le, Q.; Wang, C.; Bai, K.; He, J.; He, H.; Dong, Y. Effect of Tetrodotoxin Pellets in a Rat Model of Postherpetic Neuralgia. Mar. Drugs 2018, 16, 195. [Google Scholar] [CrossRef] [Green Version]
- Muller, P.Y.; Milton, M.N. The Determination and Interpretation of the Therapeutic Index in Drug Development. Nat. Rev. Drug Discov. 2012, 11, 751–761. [Google Scholar] [CrossRef]
- Padera, R.F.; Tse, J.Y.; Bellas, E.; Kohane, D.S. Tetrodotoxin for Prolonged Local Anesthesia with Minimal Myotoxicity. Muscle Nerve 2006, 34, 747–753. [Google Scholar] [CrossRef]
- Hong, B.; He, J.; Sun, J.; Le, Q.; Bai, K.; Mou, Y.; Zhang, Y.; Chen, W.; Huang, W. Analgesia Effect of Enteric Sustained-Release Tetrodotoxin Pellets in the Rat. Pharmaceutics 2020, 12, 32. [Google Scholar] [CrossRef] [Green Version]
- Grundy, L.; Erickson, A.; Brierley, S.M. Visceral Pain. Annu. Rev. Physiol. 2019, 81, 261–284. [Google Scholar] [CrossRef] [PubMed]
- Dyshlovoy, S.A.; Honecker, F. Marine Compounds and Cancer: The First Two Decades of XXI Century. Mar. Drugs 2019, 18, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ono, T.; Hayashida, M.; Tezuka, A.; Hayakawa, H.; Ohno, Y. Antagonistic Effects of Tetrodotoxin on Aconitine-Induced Cardiac Toxicity. J. Nippon Med. Sch. 2013, 80, 350–361. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Li, J.; Lu, C.-L.; Kang, L.; Xie, L.; Zhang, Y.-Y.; Zhou, X.-B.; Zhong, S. Tetrodotoxin Alleviates Acute Heroin Withdrawal Syndrome: A Multicentre, Randomized, Double-Blind, Placebo-Controlled Study: Tetrodotoxin Alleviates Acute Heroin Syndrome. Clin. Exp. Pharmacol. 2011, 38, 510–514. [Google Scholar] [CrossRef]
- McLaughlin, J.; See, R.E. Selective Inactivation of the Dorsomedial Prefrontal Cortex and the Basolateral Amygdala Attenuates Conditioned-Cued Reinstatement of Extinguished Cocaine-Seeking Behavior in Rats. Psychopharmacology 2003, 168, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, L.J.; Zai, L.J.; Wrathall, J.R. Chronic Alterations in the Cellular Composition of Spinal Cord White Matter Following Contusion Injury. Glia 2005, 49, 107–120. [Google Scholar] [CrossRef]
- Ding, K.; Gupta, P.K.; Diaz-Arrastia, R. Epilepsy after Traumatic Brain Injury. In Translational Research in Traumatic Brain Injury; Laskowitz, D., Grant, G., Eds.; Frontiers in Neuroscience; CRC Press/Taylor and Francis Group: Boca Raton, FL, USA, 2016; ISBN 978-1-4665-8491-4. [Google Scholar]
- Permana, K.R.; Septian, D.D. Revolutionary Therapy for Breast Cancer (BCa) by Using Tetrodotoxin (TTX) Extracted From the Masked Puffer Fish Arothron Diadematus as Best Investment in Community. In Proceedings of the 1st Annual International Scholars Conference in Taiwan, Taichung, Taiwan, 27–29 April 2013; Volume 1, pp. 601–605. [Google Scholar]
- Garud, M.S.; Oza, M.J.; Gaikwad, A.B.; Kulkarni, Y.A. Natural Remedies for Treatment of Cancer Pain. In Nutritional Modulators of Pain in the Aging Population; Watson, R.R., Zibadi, S., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 101–106. ISBN 978-0-12-805186-3. [Google Scholar]
- Alvarez, P.; Levine, J.D. Antihyperalgesic Effect of Tetrodotoxin in Rat Models of Persistent Muscle Pain. Neuroscience 2015, 311, 499–507. [Google Scholar] [CrossRef] [Green Version]
- Nieto, F.R.; Entrena, J.M.; Cendán, C.M.; Del Pozo, E.; Vela, J.M.; Baeyens, J.M. Tetrodotoxin Inhibits the Development and Expression of Neuropathic Pain Induced by Paclitaxel in Mice. Pain 2008, 137, 520–531. [Google Scholar] [CrossRef]
- Hagen, N.A.; Fisher, K.M.; Lapointe, B.; du Souich, P.; Chary, S.; Moulin, D.; Sellers, E.; Ngoc, A.H. An Open-Label, Multi-Dose Efficacy and Safety Study of Intramuscular Tetrodotoxin in Patients with Severe Cancer-Related Pain. J. Pain Symptom Manag. 2007, 34, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Hagen, N.A.; Cantin, L.; Constant, J.; Haller, T.; Blaise, G.; Ong-Lam, M.; du Souich, P.; Korz, W.; Lapointe, B. Tetrodotoxin for Moderate to Severe Cancer-Related Pain: A Multicentre, Randomized, Double-Blind, Placebo-Controlled, Parallel-Design Trial. Pain Res. Manag. 2017, 2017, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hagen, N.A.; du Souich, P.; Lapointe, B.; Ong-Lam, M.; Dubuc, B.; Walde, D.; Love, R.; Ngoc, A.H. Tetrodotoxin for Moderate to Severe Cancer Pain: A Randomized, Double Blind, Parallel Design Multicenter Study. J. Pain Symptom Manag. 2008, 35, 420–429. [Google Scholar] [CrossRef] [PubMed]
- About Halneuron. Available online: https://wexpharma.com/technology/about-halneuron/ (accessed on 2 June 2021).
- Colloca, L.; Ludman, T.; Bouhassira, D.; Baron, R.; Dickenson, A.H.; Yarnitsky, D.; Freeman, R.; Truini, A.; Attal, N.; Finnerup, N.B.; et al. Neuropathic Pain. Nat. Rev. Dis. Primers 2017, 3, 17002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woolf, C.J. What Is This Thing Called Pain? J. Clin. Investig. 2010, 120, 3742–3744. [Google Scholar] [CrossRef]
- Costigan, M.; Scholz, J.; Woolf, C.J. Neuropathic Pain: A Maladaptive Response of the Nervous System to Damage. Annu. Rev. Neurosci. 2009, 32, 1–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cummins, T.R.; Waxman, S.G. Downregulation of Tetrodotoxin-Resistant Sodium Currents and Upregulation of a Rapidly Repriming Tetrodotoxin-Sensitive Sodium Current in Small Spinal Sensory Neurons after Nerve Injury. J. Neurosci. 1997, 17, 3503–3514. [Google Scholar] [CrossRef] [Green Version]
- Black, J.A.; Cummins, T.R.; Plumpton, C.; Chen, Y.H.; Hormuzdiar, W.; Clare, J.J.; Waxman, S.G. Upregulation of a Silent Sodium Channel After Peripheral, but Not Central, Nerve Injury in DRG Neurons. J. Neurophysiol. 1999, 82, 2776–2785. [Google Scholar] [CrossRef] [PubMed]
- Clifford, J.; Salas, M.; McIntyre, M.; Wong, D. (276) Tetrodotoxin Attenuates Thermal Hyperalgesia in a Rat Full Thickness Thermal Injury Pain Model. J. Pain 2015, 16, S45. [Google Scholar] [CrossRef]
- Lyu, Y.S.; Park, S.K.; Chung, K.; Chung, J.M. Low Dose of Tetrodotoxin Reduces Neuropathic Pain Behaviors in an Animal Model. Brain Res. 2000, 871, 98–103. [Google Scholar] [CrossRef]
- Marcil, J.; Walczak, J.-S.; Guindon, J.; Ngoc, A.H.; Lu, S.; Beaulieu, P. Antinociceptive Effects of Tetrodotoxin (TTX) in Rodents. Br. J. Anaesth. 2006, 96, 761–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salas, M.M.; McIntyre, M.K.; Petz, L.N.; Korz, W.; Wong, D.; Clifford, J.L. Tetrodotoxin Suppresses Thermal Hyperalgesia and Mechanical Allodynia in a Rat Full Thickness Thermal Injury Pain Model. Neurosci. Lett. 2015, 607, 108–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kayser, V.; Viguier, F.; Ioannidi, M.; Bernard, J.-F.; Latrémolière, A.; Michot, B.; Vela, J.-M.; Buschmann, H.; Hamon, M.; Bourgoin, S. Differential Anti-Neuropathic Pain Effects of Tetrodotoxin in Sciatic Nerve- versus Infraorbital Nerve-Ligated Rats–Behavioral, Pharmacological and Immunohistochemical Investigations. Neuropharmacology 2010, 58, 474–487. [Google Scholar] [CrossRef]
- Xie, W.; Strong, J.A.; Meij, J.T.A.; Zhang, J.-M.; Yu, L. Neuropathic Pain: Early Spontaneous Afferent Activity Is the Trigger. Pain 2005, 116, 243–256. [Google Scholar] [CrossRef]
- Lai, J.; Gold, M.S.; Kim, C.-S.; Bian, D.; Ossipov, M.H.; Hunter, J.C.; Porreca, F. Inhibition of Neuropathic Pain by Decreased Expression of the Tetrodotoxin-Resistant Sodium Channel, NaV1.8. Pain 2002, 95, 143–152. [Google Scholar] [CrossRef]
- Omana-Zapata, I.; Khabbaz, M.A.; Hunter, J.C.; Clarke, D.E.; Bley, K.R. Tetrodotoxin Inhibits Neuropathic Ectopic Activity in Neuromas, Dorsal Root Ganglia and Dorsal Horn Neurons. Pain 1997, 72, 41–49. [Google Scholar] [CrossRef]
- Chen, J.-J.; Lue, J.-H.; Lin, L.-H.; Huang, C.-T.; Chiang, R.P.-Y.; Chen, C.-L.; Tsai, Y.-J. Effects of Pre-Emptive Drug Treatment on Astrocyte Activation in the Cuneate Nucleus Following Rat Median Nerve Injury. Pain 2010, 148, 158–166. [Google Scholar] [CrossRef]
- Woolf, C.J.; Costigan, M. Transcriptional and Posttranslational Plasticity and the Generation of Inflammatory Pain. Proc. Natl. Acad. Sci. USA 1999, 96, 7723–7730. [Google Scholar] [CrossRef] [Green Version]
- Kidd, B.L.; Urban, L.A. Mechanisms of Inflammatory Pain. Br. J. Anaesth. 2001, 87, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Black, J.A.; Liu, S.; Tanaka, M.; Cummins, T.R.; Waxman, S.G. Changes in the Expression of Tetrodotoxin-Sensitive Sodium Channels within Dorsal Root Ganglia Neurons in Inflammatory Pain. Pain 2004, 108, 237–247. [Google Scholar] [CrossRef]
- Nassar, M.A.; Stirling, L.C.; Forlani, G.; Baker, M.D.; Matthews, E.A.; Dickenson, A.H.; Wood, J.N. Nociceptor-Specific Gene Deletion Reveals a Major Role for Nav1.7 (PN1) in Acute and Inflammatory Pain. Proc. Natl. Acad. Sci. USA 2004, 101, 12706–12711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alguacil, L.F.; Pérez-García, C.; Salas, E.; González-Martín, C.; Castillo, C.; Polanco, M.J.; Herradón, G.; Morales, L. Subcutaneous Tetrodotoxin and Inflammatory Pain. Br. J. Anaesth. 2008, 100, 729–730. [Google Scholar] [CrossRef] [Green Version]
- Beloeil, H.; Ababneh, Z.; Chung, R.; Zurakowski, D.; Mulkern, R.V.; Berde, C.B. Effects of Bupivacaine and Tetrodotoxin on Carrageenan-Induced Hind Paw Inflammation in Rats (Part 1). Anesthesiology 2006, 105, 128–138. [Google Scholar] [CrossRef]
- Maatuf, Y.; Geron, M.; Priel, A. The Role of Toxins in the Pursuit for Novel Analgesics. Toxins 2019, 11, 131. [Google Scholar] [CrossRef] [Green Version]
- Patapoutian, A.; Tate, S.; Woolf, C.J. Transient Receptor Potential Channels: Targeting Pain at the Source. Nat. Rev. Drug Discov. 2009, 8, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Salvatierra, J.; Castro, J.; Erickson, A.; Li, Q.; Braz, J.; Gilchrist, J.; Grundy, L.; Rychkov, G.Y.; Deiteren, A.; Rais, R.; et al. NaV1.1 Inhibition Can Reduce Visceral Hypersensitivity. JCI Insight 2018, 3, e121000. [Google Scholar] [CrossRef] [Green Version]
- Osteen, J.D.; Herzig, V.; Gilchrist, J.; Emrick, J.J.; Zhang, C.; Wang, X.; Castro, J.; Garcia-Caraballo, S.; Grundy, L.; Rychkov, G.Y.; et al. Selective Spider Toxins Reveal a Role for the Nav1.1 Channel in Mechanical Pain. Nature 2016, 534, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Mattei, C. Tetrodotoxin, a Candidate Drug for Nav1.1-Induced Mechanical Pain? Mar. Drugs 2018, 16, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Cano, R.; Tejada, M.; Artacho-Cordón, A.; Nieto, F.; Entrena, J.; Wood, J.; Cendán, C. Effects of Tetrodotoxin in Mouse Models of Visceral Pain. Mar. Drugs 2017, 15, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundy, L.; Erickson, A.; Caldwell, A.; Garcia-Caraballo, S.; Rychkov, G.; Harrington, A.; Brierley, S.M. Tetrodotoxin-Sensitive Voltage-Gated Sodium Channels Regulate Bladder Afferent Responses to Distension. Pain 2018, 159, 2573–2584. [Google Scholar] [CrossRef]
- Graber, K.D.; Prince, D.A. A Critical Period for Prevention of Posttraumatic Neocortical Hyperexcitability in Rats. Ann. Neurol. 2004, 55, 860–870. [Google Scholar] [CrossRef] [PubMed]
- Dudek, F.E.; Clark, S. Is There a “Critical Period” for Intervention in Posttraumatic Epilepsy? Epilepsy Curr. 2004, 4, 254–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prenen, G.H.M.; Go, K.G.; Postema, F.; Zuiderveen, F.; Korf, J. Cerebral Cation Shifts in Hypoxic-Ischemic Brain Damage Are Prevented by the Sodium Channel Blocker Tetrodotoxin. Exp. Neurol. 1988, 99, 118–132. [Google Scholar] [CrossRef]
- Xie, Y.; Dengler, K.; Zacharias, E.; Wilffert, B.; Tegtmeier, F. Effects of the Sodium Channel Blocker Tetrodotoxin (TTX) on Cellular Ion Homeostasis in Rat Brain Subjected to Complete Ischemia. Brain Res. 1994, 652, 216–224. [Google Scholar] [CrossRef]
- Wolf, J.A.; Stys, P.K.; Lusardi, T.; Meaney, D.; Smith, D.H. Traumatic Axonal Injury Induces Calcium Influx Modulated by Tetrodotoxin-Sensitive Sodium Channels. J. Neurosci. 2001, 21, 1923–1930. [Google Scholar] [CrossRef] [PubMed]
- Iwata, A. Traumatic Axonal Injury Induces Proteolytic Cleavage of the Voltage-Gated Sodium Channels Modulated by Tetrodotoxin and Protease Inhibitors. J. Neurosci. 2004, 24, 4605–4613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, L.J.; Wrathall, J.R. Time Course Studies on the Effectiveness of Tetrodotoxin in Reducing Consequences of Spinal Cord Contusion. J. Neurosci. Res. 2001, 66, 191–202. [Google Scholar] [CrossRef]
- Teng, Y.D.; Wrathall, J.R. Local Blockade of Sodium Channels by Tetrodotoxin Ameliorates Tissue Loss and Long-Term Functional Deficits Resulting from Experimental Spinal Cord Injury. J. Neurosci. 1997, 17, 4359–4366. [Google Scholar] [CrossRef]
- Rosenberg, L.J.; Teng, Y.D.; Wrathall, J.R. Effects of the Sodium Channel Blocker Tetrodotoxin on Acute White Matter Pathology After Experimental Contusive Spinal Cord Injury. J. Neurosci. 1999, 19, 6122–6133. [Google Scholar] [CrossRef]
- Schwartz, D.M.; Duncan, K.G.; Fields, H.L.; Jones, M.R. Tetrodotoxin: Anesthetic Activity in the de-Epithelialized Cornea. Graefes Arch. 1998, 236, 790–794. [Google Scholar] [CrossRef]
- Schwartz, D.M.; Fields, H.L.; Duncan, K.G.; Duncan, J.L.; Jones, M.R. Experimental Study of Tetrodotoxin, a Long-Acting Topical Anesthetic. Am. J. Ophthalmol. 1998, 125, 481–487. [Google Scholar] [CrossRef]
- Kohane, D.S.; Yieh, J.; Lu, N.T.; Langer, R.; Strichartz, G.R.; Berde, C.B. A Re-Examination of Tetrodotoxin for Prolonged Duration Local Anesthesia. Anesthesiology 1998, 89, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Berde, C.B.; Athiraman, U.; Yahalom, B.; Zurakowski, D.; Corfas, G.; Bognet, C. Tetrodotoxin-Bupivacaine-Epinephrine Combinations for Prolonged Local Anesthesia. Mar. Drugs 2011, 9, 2717–2728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohane, D.S.; Smith, S.E.; Louis, D.N.; Colombo, G.; Ghoroghchian, P.; Hunfeld, N.G.M.; Berde, C.B.; Langer, R. Prolonged Duration Local Anesthesia from Tetrodotoxin-Enhanced Local Anesthetic Microspheres. Pain 2003, 104, 415–421. [Google Scholar] [CrossRef]
- Melnikova, D.; Khotimchenko, Y.; Magarlamov, T. Addressing the Issue of Tetrodotoxin Targeting. Mar. Drugs 2018, 16, 352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, C.H.; Beutler, S.S.; Kaye, A.D.; Urman, R.D. Pharmacologic Properties of Novel Local Anesthetic Agents in Anesthesia Practice. Anesthesiol Clin. 2017, 35, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Campbell, T.M.; Main, M.J.; Fitzgerald, E.M. Functional Expression of the Voltage-Gated Na+-Channel Nav1.7 Is Necessary for EGF-Mediated Invasion in Human Non-Small Cell Lung Cancer Cells. J. Cell Sci. 2013, 126, 4939–4949. [Google Scholar] [CrossRef] [Green Version]
- Diss, J.K.J.; Stewart, D.; Pani, F.; Foster, C.S.; Walker, M.M.; Patel, A.; Djamgoz, M.B.A. A Potential Novel Marker for Human Prostate Cancer: Voltage-Gated Sodium Channel Expression in Vivo. Prostate Cancer Prostatic Dis. 2005, 8, 266–273. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Lv, Y.; Xu, J.; Mao, X.; Chen, Z.; Lu, W. Over-Expression of Nav1.6 Channels Is Associated with Lymph Node Metastases in Colorectal Cancer. World J. Surg. Onc. 2019, 17, 175. [Google Scholar] [CrossRef]
- Hernandez-Plata, E.; Ortiz, C.S.; Marquina-Castillo, B.; Medina-Martinez, I.; Alfaro, A.; Berumen, J.; Rivera, M.; Gomora, J.C. Overexpression of NaV1.6 Channels Is Associated with the Invasion Capacity of Human Cervical Cancer. Int. J. Cancer 2012, 130, 2013–2023. [Google Scholar] [CrossRef]
- Gao, R.; Shen, Y.; Cai, J.; Lei, M.; Wang, Z. Expression of Voltage-Gated Sodium Channel α Subunit in Human Ovarian Cancer. Oncol. Rep. 2010, 23, 1293–1299. [Google Scholar] [CrossRef]
- Fouda, F.M. Anti-Tumor Activity of Tetrodotoxin Extracted from the Masked Puffer Fish Arothron Diadematus. Egypt. J. Biol. 2005, 7, 1–13. [Google Scholar]
- El-Dayem, S.M.A.; Fouda, F.M.; Ali, E.H.A.; Motelp, B.A.A.E. The Antitumor Effects of Tetrodotoxin and/or Doxorubicin on Ehrlich Ascites Carcinoma-Bearing Female Mice. Toxicol. Ind. Health 2013, 29, 404–417. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Liu, T.-T.; Wang, X.; Epstein, D.H.; Zhao, L.-Y.; Zhang, X.-L.; Lu, L. Tetrodotoxin Reduces Cue-Induced Drug Craving and Anxiety in Abstinent Heroin Addicts. Pharmacol. Biochem. Behav. 2009, 92, 603–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimm, J. Dissociation of Primary and Secondary Reward-Relevant Limbic Nuclei in an Animal Model of Relapse. Neuropsychopharmacology 2000, 22, 473–479. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, R.A.; See, R.E. Basolateral Amygdala Inactivation Abolishes Conditioned Stimulus- and Heroin-Induced Reinstatement of Extinguished Heroin-Seeking Behavior in Rats. Psychopharmacology 2002, 160, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Ogura, Y. Some Recent Problems on Fugu-Toxin, Particularly on Crystalline Tetrodotoxin. Seitai No Kagaku 1958, 9, 281–287. [Google Scholar]
- Wegener, S. Transmissibility and Localization of Tetrodotoxin in the Rough-Skinned Newt, Taricha Granulosa; Michigan State University: East Lansing, MI, USA, 2017. [Google Scholar]
- Liu, Q.; Santamaria, C.M.; Wei, T.; Zhao, C.; Ji, T.; Yang, T.; Shomorony, A.; Wang, B.Y.; Kohane, D.S. Hollow Silica Nanoparticles Penetrate the Peripheral Nerve and Enhance the Nerve Blockade from Tetrodotoxin. Nano Lett. 2018, 18, 32–37. [Google Scholar] [CrossRef]
- Zhan, C.; Wang, W.; McAlvin, J.B.; Guo, S.; Timko, B.P.; Santamaria, C.; Kohane, D.S. Phototriggered Local Anesthesia. Nano Lett. 2016, 16, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Kohane, D.S. Microparticles and Nanoparticles for Drug Delivery. Biotechnol. Bioeng. 2007, 96, 203–209. [Google Scholar] [CrossRef] [PubMed]
Abbreviation | Definition |
---|---|
CNS | Central nervous system |
CVH | Chronic visceral hypersensitivity |
DRG | Dorsal root ganglia |
EAC | Ehrlich ascites carcinoma |
LD | Lethal dose |
NaV | Voltage-gated sodium channel |
PHN | Postherpetic neuralgia |
PNS | Peripheral nervous system |
SC | Spinal cord |
SCI | Spinal cord injury |
TTX | Tetrodotoxin |
TTX-R | Tetrodotoxin-resistant |
TTX-S | Tetrodotoxin-sensitive |
WM | White matter |
TTX-S NaV Subtype | Location(s) in Body | Associated Pathologies |
---|---|---|
NaV1.1 | CNS Microglia PNS 1 Ventricular cardiomyocytes | Chronic pain Chronic visceral hypersensitivity Colorectal cancer Ovarian cancer |
NaV1.2 | CNS PNS (low expression) SC (lamina I/II) Ventricular cardiomyocytes | Ovarian cancer |
NaV1.3 | DRG (low expression) Embryonic sodium channel SC (lamina I/II—adults) Ventricular cardiomyocytes | Chronic pain Inflammatory pain Ovarian cancer |
NaV1.4 | Skeletal muscle Ventricular cardiomyocytes | Ovarian cancer |
NaV1.6 | Epidermal free nerve terminals Keratinocytes Microglia Nodes of Ranvier SC, PNS 1 Ventricular cardiomyocytes | Cervical cancer Colorectal cancer |
NaV1.7 | PNS (all types of DRG neurons) SC 1 Epidermal free nerve terminals | Chronic pain Inflammatory pain Interstitial cystitis, bladder pain syndrome Intraperitoneal cyclophosphamide-induced cystitis Mechanical hyperalgesia Non-small cell lung carcinoma Ovarian cancer Prostate cancer |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bucciarelli, G.M.; Lechner, M.; Fontes, A.; Kats, L.B.; Eisthen, H.L.; Shaffer, H.B. From Poison to Promise: The Evolution of Tetrodotoxin and Its Potential as a Therapeutic. Toxins 2021, 13, 517. https://doi.org/10.3390/toxins13080517
Bucciarelli GM, Lechner M, Fontes A, Kats LB, Eisthen HL, Shaffer HB. From Poison to Promise: The Evolution of Tetrodotoxin and Its Potential as a Therapeutic. Toxins. 2021; 13(8):517. https://doi.org/10.3390/toxins13080517
Chicago/Turabian StyleBucciarelli, Gary M., Maren Lechner, Audrey Fontes, Lee B. Kats, Heather L. Eisthen, and H. Bradley Shaffer. 2021. "From Poison to Promise: The Evolution of Tetrodotoxin and Its Potential as a Therapeutic" Toxins 13, no. 8: 517. https://doi.org/10.3390/toxins13080517
APA StyleBucciarelli, G. M., Lechner, M., Fontes, A., Kats, L. B., Eisthen, H. L., & Shaffer, H. B. (2021). From Poison to Promise: The Evolution of Tetrodotoxin and Its Potential as a Therapeutic. Toxins, 13(8), 517. https://doi.org/10.3390/toxins13080517