Venom and Social Behavior: The Potential of Using Spiders to Evaluate the Evolution of Sociality under High Risk
Abstract
:1. Introduction
2. Sociality in Arachnids
2.1. Differences between Solitary and Social Spiders
3. Risk Assessment
3.1. Venom Metering
4. Social Risk
4.1. Cannibalism
4.1.1. Courtship and Mating
4.1.2. Sibling Cannibalism
4.1.3. Avoiding Cannibalization
4.2. Social Learning
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brakes, P. Sociality and Wild Animal Welfare: Future Directions. Front. Vet. Sci. 2019, 6. [Google Scholar] [CrossRef]
- Noordwijk, M.A.V.; Schaik, C.P.V. The Hidden Costs of Sociality: Intra-Group Variation in Feeding Strategies in Sumatran Long-Tailed Macaques (Macaca fascicularis). Behaviour 1986, 99, 296–314. [Google Scholar] [CrossRef]
- Schoepf, I.; Schradin, C. Better off Alone! Reproductive Competition and Ecological Constraints Determine Sociality in the African Striped Mouse (Rhabdomys pumilio). J. Anim. Ecol. 2012, 81, 649–656. [Google Scholar] [CrossRef] [Green Version]
- Wilson, E.O. Sociobiology: The New Synthesis, Twenty-Fifth Anniversary Edition; The Belknap Press of Harvard University Press: Cambridge, MA, USA, 2000; ISBN 978-0-674-00235-7. [Google Scholar]
- Itani, J. Intraspecific Killing among Non-Human Primates. J. Soc. Biol. Struct. 1982, 5, 361–368. [Google Scholar] [CrossRef]
- Van Ballenberghe, V.; Erickson, A.W. A Wolf Pack Kills Another Wolf. Am. Midl. Nat. 1973, 90, 490–493. [Google Scholar] [CrossRef]
- Dugatkin, L.A.; Earley, R.L. Individual Recognition, Dominance Hierarchies and Winner and Loser Effects. Proc. R. Soc. Lond. B 2004, 271, 1537–1540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hölldobler, B.; Wilson, H.C. The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies; W. W. Norton & Company: New York, NY, USA, 2009; ISBN 978-0-393-06704-0. [Google Scholar]
- Sturgis, S.J.; Gordon, D.M. Nestmate Recognition in Ants (Hymenoptera: Formicidae): A Review. Myrmecol. News 2012, 16, 101–110. [Google Scholar]
- Communication between the Workers of Stingless Bees: Bee World. Available online: https://www.tandfonline.com/doi/abs/10.1080/0005772X.1960.11095309?journalCode=tbee20 (accessed on 21 March 2020).
- Leadbeater, E.; Chittka, L. Social Learning in Insects—From Miniature Brains to Consensus Building. Curr. Biol. 2007, 17, R703–R713. [Google Scholar] [CrossRef] [Green Version]
- Leadbeater, E.; Chittka, L. The Dynamics of Social Learning in an Insect Model, the Bumblebee (Bombus terrestris). Behav. Ecol. Sociobiol. 2007, 61, 1789–1796. [Google Scholar] [CrossRef]
- Dawson, E.H.; Avarguès-Weber, A.; Chittka, L.; Leadbeater, E. Learning by Observation Emerges from Simple Associations in an Insect Model. Curr. Biol. 2013, 23, 727–730. [Google Scholar] [CrossRef] [Green Version]
- Starr, C.K.; Matthews, C.R.W. Enabling Mechanisms in the Origin of Sociality in the Hymenoptera—The Sting’s the Thing. Ann. Entomol. Soc. Am. 1985, 78, 836–840. [Google Scholar] [CrossRef]
- Lawson, S.P.; Sigle, L.T.; Lind, A.L.; Legan, A.W.; Mezzanotte, J.N.; Honegger, H.-W.; Abbot, P. An Alternative Pathway to Eusociality: Exploring the Molecular and Functional Basis of Fortress Defense. Evolution 2017, 71, 1986–1998. [Google Scholar] [CrossRef]
- Linksvayer, T.A.; Johnson, B.R. Re-Thinking the Social Ladder Approach for Elucidating the Evolution and Molecular Basis of Insect Societies. Curr. Opin. Insect Sci. 2019, 34, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Agnarsson, I.; Avilés, L.; Coddington, J.A.; Maddison, W.P. Sociality in Theridiid Spiders: Repeated Origins of an Evolutionary Dead End. Evolution 2006, 60, 2342–2351. [Google Scholar] [CrossRef] [PubMed]
- Comparative Genomics Identifies Putative Signatures of Sociality in Spiders/Genome Biology and Evolution/Oxford Academic. Available online: https://academic.oup.com/gbe/article/12/3/122/5711289?login=true (accessed on 9 April 2021).
- Avilés, L.; Harwood, G.; Koenig, W. A Quantitative Index of Sociality and Its Application to Group-Living Spiders and Other Social Organisms. Ethology 2012, 118, 1219–1229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chak, S.T.C.; Duffy, J.E.; Hultgren, K.M.; Rubenstein, D.R. Evolutionary Transitions towards Eusociality in Snapping Shrimps. Nat. Ecol. Evol. 2017, 1, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Salomon, M. Facultative Group Living in the Western Black Widow Spider, Latrodectus hesperus: An Evolutionary Approach. Ph.D. Thesis, Department of Biological Sciences—Simon Fraser University, Burnaby, BC, Canada, 2008. [Google Scholar]
- Wise, D.H. Cannibalism, Food Limitation, Intraspecific Competition, and the Regulation of Spider Populations. Annu. Rev. Entomol. 2006, 51, 441–465. [Google Scholar] [CrossRef]
- Bekoff, M. Mammalian Dispersal and the Ontogeny of Individual Behavioral Phenotypes. Am. Nat. 1977, 111, 715–732. [Google Scholar] [CrossRef]
- Rayor, L.S.; Taylor, L.A. Social Behavior in Amblypygids, and a Reassessment of Arachnid Social Patterns. J. Arachnol. 2006, 34, 399–421. [Google Scholar] [CrossRef]
- Shivashankar, T. Advanced Sub Social Behaviour in the Scorpion Heterometrus fulvipes Brunner (Arachnida). J. Biosci. 1994, 19, 81–90. [Google Scholar] [CrossRef]
- Thiel, M.; Wellborn, G. The Natural History of the Crustacea: Life Histories; Oxford University Press: New York, NY, USA, 2018; Volume 5, ISBN 978-0-19-062028-8. [Google Scholar]
- Kullmann, E.J. Evolution of Social Behavior in Spiders (Araneae; Eresidae and Theridiidae). Am. Zool. 1972, 12, 419–426. [Google Scholar] [CrossRef]
- Hermani, H. Social Insects V1; Academic Press, Inc: New York, NY, USA, 2012; ISBN 978-0-323-14782-8. [Google Scholar]
- Lubin, Y.; Bilde, T. The Evolution of Sociality in Spiders. In Advances in the Study of Behavior; Academic Press: Cambridge, MA, USA, 2007; Volume 37, pp. 83–145. [Google Scholar]
- Whitehouse, M.E.A.; Lubin, Y. The Functions of Societies and the Evolution of Group Living: Spider Societies as a Test Case. Biol. Rev. 2005, 80, 347–361. [Google Scholar] [CrossRef] [PubMed]
- Burgess, J.W. Social Spiders. Sci. Am. 1976, 234, 100–107. [Google Scholar] [CrossRef]
- Pekár, S.; García, L.F.; Viera, C. Trophic Niches and Trophic Adaptations of Prey-Specialized Spiders from the Neotropics: A Guide. In Behaviour and Ecology of Spiders: Contributions from the Neotropical Region; Viera, C., Gonzaga, M.O., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 247–274. ISBN 978-3-319-65717-2. [Google Scholar]
- Salomon, M.; Vibert, S.; Bennett, R.G. Habitat Use by Western Black Widow Spiders (Latrodectus hesperus) in Coastal British Columbia: Evidence of Facultative Group Living. Can. J. Zool. 2010, 88, 334–346. [Google Scholar] [CrossRef]
- Bertani, R.; Fukushima, C.S.; Martins, R. Sociable Widow Spiders? Evidence of Subsociality in Latrodectus walckenaer, 1805 (Araneae, Theridiidae). J. Ethol. 2008, 26, 299–302. [Google Scholar] [CrossRef]
- Pfennig, D.W. Kinship and Cannibalism. BioScience 1997, 47, 667–675. [Google Scholar] [CrossRef] [Green Version]
- Bilde, T.; Lubin, Y. Kin Recognition and Cannibalism in a Subsocial Spider. J. Evol. Biol. 2001, 14, 959–966. [Google Scholar] [CrossRef]
- Beavis, A.S.; Rowell, D.M.; Evans, T. Cannibalism and Kin Recognition in Delena cancerides (Araneae: Sparassidae), a Social Huntsman Spider. J. Zool. 2007, 271, 233–237. [Google Scholar] [CrossRef]
- Anthony, C.D. Kinship Influences Cannibalism in the Wolf Spider, Pardosa milvina. J. Insect Behav. 2003, 16, 23–36. [Google Scholar] [CrossRef]
- Walsh, R.E.; Rayor, L.S. Kin Discrimination in the Amblypygid, Damon diadema. J. Arachnol. 2008, 36, 336–343. [Google Scholar] [CrossRef]
- Johnson, J.C.; Kitchen, K.; Andrade, M.C.B. Family Affects Sibling Cannibalism in the Black Widow Spider, Latrodectus hesperus: Sibling Cannibalism in Black Widow Spiders. Ethology 2010, 116, 770–777. [Google Scholar] [CrossRef]
- Kitchen, K.A.; Johnson, J.C. The Effects of Relatedness, Age Differences, Family and Maternal Investment on Juvenile Cannibalism in the Black Widow Spider, Latrodectus Hesperus; Department of Integrated Natural Sciences, Arizona State University at the West Campus: Glendale, AZ, USA, 2008. [Google Scholar]
- Evans, T.A. Kin Recognition in a Social Spider. Proc. Biol. Sci. 1999, 266, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.J.; Jackson, R.R. Araneophagic Jumping Spiders Discriminate between the Draglines of Familiar and Unfamiliar Conspecifics. Ethol. Ecol. Evol. 1995, 7, 185–190. [Google Scholar] [CrossRef]
- Bilde, T.; Maklakov, A.A.; Taylor, P.W.; Lubin, Y. State-Dependent Decisions in Nest Site Selection by a Web-Building Spider. Anim. Behav. 2002, 64, 447–452. [Google Scholar] [CrossRef] [Green Version]
- Fischer, A. Chemical Communication in Spiders—A Methodological Review. J. Arachnol. 2019, 47, 1–27. [Google Scholar] [CrossRef]
- Pollard, S.D.; Macnab, A.M.; Jackson, R.R. Communication with Chemicals: Pheromones and Spiders. In Ecophysiology of Spiders; Nentwig, W., Ed.; Springer: Berlin/Heidelberg, Germany, 1987; pp. 133–141. ISBN 978-3-642-71552-5. [Google Scholar]
- Witt, P.N.; Rovner, J.S. Spider Communication: Mechanisms and Ecological Significance; Princeton University Press: Princeton, NJ, USA, 2014; ISBN 978-1-4008-5751-7. [Google Scholar]
- Scott, C.; Kirk, D.; McCann, S.; Gries, G. Web Reduction by Courting Male Black Widows Renders Pheromone-Emitting Females’ Webs Less Attractive to Rival Males. Anim. Behav. 2015, 107, 71–78. [Google Scholar] [CrossRef]
- Andrade, M.C.B.; MacLeod, E.C. Potential for CFC in Black Widows (Genus latrodectus): Mechanisms and Social Context. In Cryptic Female Choice in Arthropods: Patterns, Mechanisms and Prospects; Peretti, A.V., Aisenberg, A., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 27–53. ISBN 978-3-319-17894-3. [Google Scholar]
- Johnson, J.C.; Halpin, R.; Stevens, D.R. Extreme Developmental Synchrony Reduces Sibling Cannibalism in the Black Widow Spider, Latrodectus hesperus. Anim. Behav. 2016, 120, 61–66. [Google Scholar] [CrossRef]
- Bilde, T.; Lubin, Y.; Smith, D.; Schneider, J.M.; Maklakov, A.A. The Transition to Social Inbred Mating Systems in Spiders: Role of Inbreeding Tolerance in a Subsocial Predecessor. Evolution 2005, 59, 160–174. [Google Scholar] [CrossRef]
- Avilés, L.; Purcell, J. Chapter 3—The Evolution of Inbred Social Systems in Spiders and Other Organisms: From Short-Term Gains to Long-Term Evolutionary Dead Ends? In Advances in the Study of Behavior; Brockmann, H.J., Roper, T.J., Naguib, M., Mitani, J.C., Simmons, L.W., Eds.; Academic Press: Cambridge, MA, USA, 2012; Volume 44, pp. 99–133. [Google Scholar]
- Baek, J.H.; Oh, J.H.; Kim, Y.H.; Lee, S.H. Comparative Transcriptome Analysis of the Venom Sac and Gland of Social Wasp Vespa Tropica and Solitary Wasp Rhynchium brunneum. J. Asia Pac. Entomol. 2013, 16, 497–502. [Google Scholar] [CrossRef]
- Lee, S.H.; Baek, J.H.; Yoon, K.A. Differential Properties of Venom Peptides and Proteins in Solitary vs. Social Hunting Wasps. Toxins 2016, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- Binford, G.J.; Rypstra, A.L. Foraging Behavior of the Communal Spider, Philoponella republicana (Araneae: Uloboridae). J. Insect Behav. 1992, 5, 321–335. [Google Scholar] [CrossRef]
- Uetz, G.W.; Hartsock, S.P. Prey Selection in an Orb-Weaving Spider: Micrathena gracilis (Araneae: Araneidae). Psyche 1987, 94, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Nentwig, W. Feeding Ecology of the Tropical Spitting Spider Scytodes longipes (Araneae, Scytodidae). Oecologia 1985, 65, 284–288. [Google Scholar] [CrossRef]
- Clements, R.; Li, D. Regulation and Non-Toxicity of the Spit from the Pale Spitting Spider Scytodes pallida (Araneae: Scytodidae). Ethology 2005, 111, 311–321. [Google Scholar] [CrossRef]
- Ariki, N.K.; Muñoz, L.E.; Armitage, E.L.; Goodstein, F.R.; George, K.G.; Smith, V.L.; Vetter, I.; Herzig, V.; King, G.F.; Loening, N.M. Characterization of Three Venom Peptides from the Spitting Spider Scytodes thoracica. PLoS ONE 2016, 11, e0156291. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.R.; Pollard, S.D.; Li, D.; Fijn, N. Interpopulation Variation in the Risk-Related Decisions of Portia labiata, an Araneophagic Jumping Spider (Araneae, Salticidae), during Predatory Sequences with Spitting Spiders. Anim. Cogn. 2002, 5, 215–223. [Google Scholar] [CrossRef]
- Hénaut, Y.; Machkour-M’Rabet, S.; Lachaud, J.-P. The Role of Learning in Risk-Avoidance Strategies during Spider–Ant Interactions. Anim. Cogn. 2014, 17, 185–195. [Google Scholar] [CrossRef]
- Nyffeler, M. Prey Selection of Spiders in the Field. J. Arachnol. 1999, 27, 317–324. [Google Scholar]
- Casewell, N.R.; Wüster, W.; Vonk, F.J.; Harrison, R.A.; Fry, B.G. Complex Cocktails: The Evolutionary Novelty of Venoms. Trends Ecol. Evol. 2013, 28, 219–229. [Google Scholar] [CrossRef]
- Morgenstern, D.; King, G.F. The Venom Optimization Hypothesis Revisited. Toxicon 2013, 63, 120–128. [Google Scholar] [CrossRef]
- Lira, A.F.A.; Santos, A.B.; Silva, N.A.; Martins, R.D. Threat Level Influences the Use of Venom in a Scorpion Species, Tityus stigmurus (Scorpiones, Buthidae). Acta Ethol. 2017, 20, 291–295. [Google Scholar] [CrossRef]
- Cooper, A.M.; Nelsen, D.R.; Hayes, W.K. The Strategic Use of Venom by Spiders. In Evolution of Venomous Animals and Their Toxins; Gopalakrishnakone, P., Malhotra, A., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 1–18. ISBN 978-94-007-6727-0. [Google Scholar]
- Hayes, W.K. Venom Metering by Juvenile Prairie Rattlesnakes, Crotalus v. Viridis: Effects of Prey Size and Experience. Anim. Behav. 1995, 50, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Hayes, W.K.; Lavín-Murcio, P.; Kardong, K.V. Northern Pacific Rattlesnakes (Crotalus Viridis oreganus) Meter Venom When Feeding on Prey of Different Sizes. Copeia 1995, 1995, 337–343. [Google Scholar] [CrossRef]
- Nelsen, D. Ontogeny of Venom Use and Venom Composition in the Western Widow Spider Latrodectus Hesperus. Ph.D. Thesis, Loma Linda University Electron, Loma Linda, CA, USA, 2013. [Google Scholar]
- Nelsen, D.R.; Kelln, W.; Hayes, W.K. Poke but Don’t Pinch: Risk Assessment and Venom Metering in the Western Black Widow Spider, Latrodectus hesperus. Anim. Behav. 2014, 89, 107–114. [Google Scholar] [CrossRef]
- Santana, R.C.; Perez, D.; Dobson, J.; Panagides, N.; Raven, R.J.; Nouwens, A.; Jones, A.; King, G.F.; Fry, B.G. Venom Profiling of a Population of the Theraphosid Spider Phlogius Crassipes Reveals Continuous Ontogenetic Changes from Juveniles through Adulthood. Toxins 2017, 9, 116. [Google Scholar] [CrossRef]
- Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry and High-Performance Liquid Chromatography Study of Quantitative and Qualitative Variation in Tarantula Spider Venoms—Escoubas—2002—Rapid Communications in Mass Spectrometry—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/rcm.595?casa_token=N5NfESQ3YZkAAAAA%3Az3R8sD3CypVay_FEqSiTN2G_I8DLiePJp1vENGTNRB4yMsUqshAG6X6vUfDvTc8C00_ylyj2rjToo4j (accessed on 7 September 2020).
- Fox, L.R. Cannibalism in Natural Populations. Annu. Rev. Ecol. Syst. 1975, 6, 87–106. [Google Scholar] [CrossRef]
- Polis, G.A. The Evolution and Dynamics of Intraspecific Predation. Annu. Rev. Ecol. Syst. 1981, 12, 225–251. [Google Scholar] [CrossRef]
- Dickinson, J.L. Egg Cannibalism by Larvae and Adults of the Milkweed Leaf Beetle (Labidomera clivicollis, Coleoptera: Chrysomelidae). Ecol. Entomol. 1992, 17, 209–218. [Google Scholar] [CrossRef]
- Kim, K.-W.; Horel, A. Matriphagy in the Spider Amaurobius ferox (Araneidae, Amaurobiidae): An Example of Mother-Offspring Interactions. Ethology 1998, 104, 1021–1037. [Google Scholar] [CrossRef]
- Kim, K.W.; Roland, C.; Horel, A. Functional Value of Matriphagy in the Spider Amaurobius ferox. Ethology 2000, 106, 729–742. [Google Scholar] [CrossRef]
- Seibt, U.; Wickler, W. Gerontophagy versus Cannibalism in the Social Spiders Stegodyphus Mimosarum pavesi and Stegodyphus dumicola Pocock. Anim. Behav. 1987, 35, 1903–1905. [Google Scholar] [CrossRef]
- Sentenská, L.; Šedo, O.; Pekár, S. Biting and Binding: An Exclusive Coercive Mating Strategy of Males in a Philodromid Spider. Anim. Behav. 2020, 168, 59–68. [Google Scholar] [CrossRef]
- Miller, D.W.; Jones, A.D.; Goldston, J.S.; Rowe, M.P.; Rowe, A.H. Sex Differences in Defensive Behavior and Venom of The Striped Bark Scorpion Centruroides vittatus (Scorpiones: Buthidae). Integr. Comp. Biol. 2016, 56, 1022–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, J.M. Sexual Cannibalism as a Manifestation of Sexual Conflict. Cold Spring Harb. Perspect. Biol. 2014, 6, a017731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forster, L.M. The Stereotyped Behavior of Sexual Cannibalism in Latrodectus-hasselti Thorell (Araneae, Theridiidae), the Australian Redback Spider. Aust. J. Zool. 1992, 40, 1–11. [Google Scholar] [CrossRef]
- Segoli, M.; Arieli, R.; Sierwald, P.; Harari, A.R.; Lubin, Y. Sexual Cannibalism in the Brown Widow Spider (Latrodectus geometricus). Ethology 2008, 114, 279–286. [Google Scholar] [CrossRef]
- Andrade, M.C.B. Sexual Selection for Male Sacrifice in the Australian Redback Spider. Science 1996, 271, 70–72. [Google Scholar] [CrossRef] [Green Version]
- Snow, L.S.E.; Maydianne, C.B. Andrade Pattern of Sperm Transfer in Redback Spiders: Implications for Sperm Competition and Male Sacrifice. Behav. Ecol. 2004, 15, 785–792. [Google Scholar] [CrossRef] [Green Version]
- Andrade, M.C.B. Female Hunger Can Explain Variation in Cannibalistic Behavior despite Male Sacrifice in Redback Spiders. Behav. Ecol. 1998, 9, 33–42. [Google Scholar] [CrossRef]
- Andrade, M.C.B. Risky Mate Search and Male Self-Sacrifice in Redback Spiders. Behav. Ecol. 2003, 14, 531–538. [Google Scholar] [CrossRef]
- Segoli, M.; Harari, A.R.; Lubin, Y. Limited Mating Opportunities and Male Monogamy: A Field Study of White Widow Spiders, Latrodectus pallidus (Theridiidae). Anim. Behav. 2006, 72, 635–642. [Google Scholar] [CrossRef]
- Breene, R.G.; Sweet, M.H. Evidence of Insemination of Multiple Females by the Male Black Widow Spider, Latrodectus mactans (Araneae, Theridiidae). J. Arachnol. 1985, 13, 331–335. [Google Scholar]
- Snow, L.S.E.; Andrade, M.C.B. Multiple Sperm Storage Organs Facilitate Female Control of Paternity. Proc. R. Soc. B Biol. Sci. 2005, 272, 1139–1144. [Google Scholar] [CrossRef] [Green Version]
- Sentenská, L.; Uhl, G.; Lubin, Y. Alternative Mating Tactics in a Cannibalistic Widow Spider: Do Males Prefer the Safer Option? Anim. Behav. 2020, 160, 53–59. [Google Scholar] [CrossRef]
- Waner, S.; Motro, U.; Lubin, Y.; Harari, A.R. Male Mate Choice in a Sexually Cannibalistic Widow Spider. Anim. Behav. 2018, 137, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Baruffaldi, L.; Andrade, M.C.B. Contact Pheromones Mediate Male Preference in Black Widow Spiders: Avoidance of Hungry Sexual Cannibals? Anim. Behav. 2015, 102, 25–32. [Google Scholar] [CrossRef]
- Johnson, J.C.; Trubl, P.; Blackmore, V.; Miles, L. Male Black Widows Court Well-Fed Females More than Starved Females: Silken Cues Indicate Sexual Cannibalism Risk. Anim. Behav. 2011, 82, 383–390. [Google Scholar] [CrossRef]
- Iida, H. Small Within-clutch Variance in Spiderling Body Size as a Mechanism for Avoiding Sibling Cannibalism in the Wolf Spider Pardosa pseudoannulata (Araneae: Lycosidae). Popul. Ecol. 2003, 45, 1–6. [Google Scholar] [CrossRef]
- Uetz, G.W.; Roberts, J.A.; Taylor, P.W. Multimodal Communication and Mate Choice in Wolf Spiders: Female Response to Multimodal versus Unimodal Signals. Anim. Behav. 2009, 78, 299–305. [Google Scholar] [CrossRef]
- Vibert, S.; Scott, C.; Gries, G. Vibration Transmission through Sheet Webs of Hobo Spiders (Eratigena agrestis) and Tangle Webs of Western Black Widow Spiders (Latrodectus hesperus). J. Comp. Physiol. A 2016, 202, 749–758. [Google Scholar] [CrossRef]
- Vibert, S. Vibratory Signalling in Two Spider Species with Contrasting Web Architectures. Ph.D. Thesis, Simon Fraser University, Biological Sciences Department, Burnaby, BC, Canada, 2016. [Google Scholar]
- Jones, C.; Pollack, L.; DiRienzo, N. Game of Webs: Species and Web Structure Influence Contest Outcome in Black Widow Spiders. Behav. Ecol. 2020, 31, 32–42. [Google Scholar] [CrossRef]
- Discrimination of Airborne Pheromones by Mate-Searching Male Western Black Widow Spiders (Latrodectus hesperus): Species-and Population-Specific Responses—Canadian Journal of Zoology. Available online: https://www.nrcresearchpress.com/doi/abs/10.1139/z04-081#.Xl2Rakp7mUl (accessed on 2 March 2020).
- Ross, K.; Smith, R.L. Aspects of the Courtship Behavior of the Black Widow Spider, Latrodectus hesperus (Araneae: Theridiidae), with Evidence for the Existence of a Contact Sex Pheromone. J. Arachnol. 1979, 7, 69–77. [Google Scholar]
- Exposure to Multiple Sensory Cues as a Juvenile Affects Adult Female Mate Preferences in Wolf Spiders. Anim. Behav. 2010, 80, 419–426. [CrossRef]
- Stoltz, J.A.; Andrade, M.C.B.; Kasumovic, M.M. Developmental Plasticity in Metabolic Rates Reinforces Morphological Plasticity in Response to Social Cues of Sexual Selection. J. Insect Physiol. 2012, 58, 985–990. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatchoff, L.; Stein, L.R. Venom and Social Behavior: The Potential of Using Spiders to Evaluate the Evolution of Sociality under High Risk. Toxins 2021, 13, 388. https://doi.org/10.3390/toxins13060388
Gatchoff L, Stein LR. Venom and Social Behavior: The Potential of Using Spiders to Evaluate the Evolution of Sociality under High Risk. Toxins. 2021; 13(6):388. https://doi.org/10.3390/toxins13060388
Chicago/Turabian StyleGatchoff, Laura, and Laura R. Stein. 2021. "Venom and Social Behavior: The Potential of Using Spiders to Evaluate the Evolution of Sociality under High Risk" Toxins 13, no. 6: 388. https://doi.org/10.3390/toxins13060388
APA StyleGatchoff, L., & Stein, L. R. (2021). Venom and Social Behavior: The Potential of Using Spiders to Evaluate the Evolution of Sociality under High Risk. Toxins, 13(6), 388. https://doi.org/10.3390/toxins13060388