Pan-American Lancehead Pit-Vipers: Coagulotoxic Venom Effects and Antivenom Neutralisation of Bothrops asper and B. atrox Geographical Variants
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Snake Venom Sample Preparation
4.2. Human Plasma
4.3. Venom-Induced Coagulation
4.4. Antivenom Neutralising Efficacy
4.5. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kasturiratne, A.; Wickremasinghe, A.R.; de Silva, N.; Gunawardena, N.K.; Pathmeswaran, A.; Premaratna, R.; Savioli, L.; Lalloo, D.G.; de Silva, H.J. The global burden of snakebite: A literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 2008, 5, e218. [Google Scholar] [CrossRef] [PubMed]
- Ruha, A.-M.; Kleinschmidt, K.C.; Greene, S.; Spyres, M.B.; Brent, J.; Wax, P.; Padilla-Jones, A.; Campleman, S. The epidemiology, clinical course, and management of snakebites in the North American snakebite registry. J. Med. Toxicol. 2017, 13, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Dolab, J.A.; de Roodt, A.R.; de Titto, E.H.; García, S.I.; Funes, R.; Salomón, O.D.; Chippaux, J.-P. Epidemiology of snakebite and use of antivenom in Argentina. Trans. R. Soc. Trop. Med. Hyg. 2014, 108, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, M.K.B.; da Fonseca, C.S.; Navoni, J.A.; Freire, E.M.X. Snakebite accidents in Rio Grande do Norte state, Brazil: Epidemiology, health management and influence of the environmental scenario. Trop. Med. Int. Health 2019, 24, 432–441. [Google Scholar] [CrossRef]
- Chippaux, J.-P. Epidemiology of envenomations by terrestrial venomous animals in Brazil based on case reporting: From obvious facts to contingencies. J. Venom. Anim. Toxins Incl. Trop. Dis. 2015, 21, 1–17. [Google Scholar] [CrossRef]
- Mota-da-Silva, A.; Colombini, M.; Moura-da-Silva, A.M.; Souza, R.M.; Monteiro, W.M.; Bernarde, P.S. Epidemiological and clinical aspects of snakebites in the upper Juruá River region, western Brazilian Amazonia. Acta Amaz. 2019. [Google Scholar] [CrossRef]
- Monteiro, W.M.; Contreras-Bernal, J.C.; Bisneto, P.F.; Sachett, J.; Mendonça da Silva, I.; Lacerda, M.; Guimarães da Costa, A.; Val, F.; Brasileiro, L.; Sartim, M.A.; et al. Bothrops atrox, the most important snake involved in human envenomings in the amazon: How venomics contributes to the knowledge of snake biology and clinical toxinology. Toxicon X 2020, 6, 100037. [Google Scholar] [CrossRef]
- Otero-Patiño, R. Epidemiological, clinical and therapeutic aspects of Bothrops asper bites. Toxicon 2009, 54, 998–1011. [Google Scholar] [CrossRef]
- Gutiérrez, J.M. Current challenges for confronting the public health problem of snakebite envenoming in Central America. J. Venom. Anim. Toxins Incl. Trop. Dis. 2014, 20, 7. [Google Scholar] [CrossRef]
- Chippaux, J.-P. Incidence and mortality due to snakebite in the Americas. PLoS Negl. Trop. Dis. 2017, 11, e0005662. [Google Scholar] [CrossRef]
- Sousa, L.F.; Zdenek, C.N.; Dobson, J.S.; Op den Brouw, B.; Coimbra, F.C.P.; Gillett, A.; Del-Rei, T.H.M.; Chalkidis, H.D.M.; Sant’Anna, S.; Teixeira-da-Rocha, M.M.; et al. Coagulotoxicity of Bothrops (lancehead pit-vipers) venoms from Brazil: Differential biochemistry and antivenom efficacy resulting from prey-driven venom variation. Toxins 2018, 10, 411. [Google Scholar] [CrossRef] [PubMed]
- Colman, R.W.; Clowes, A.W.; George, J.N.; Goldhaber, S.Z.; Marder, V.J. Overview of hemostasis. In Hemostasis and Thrombosis: Basic Principles and Clinical Practice; Colman, R.W., Clowes, A.W., George, J.N., Goldhaber, S.Z., Marder, V.J., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006; pp. 3–20. [Google Scholar]
- Kini, R.M. The intriguing world of prothrombin activators from snake venom. Toxicon 2005, 45, 1133–1145. [Google Scholar] [CrossRef] [PubMed]
- Kini, R.M. Anticoagulant proteins from snake venoms: Structure, function and mechanism. Biochem. J. 2006, 397, 377. [Google Scholar] [CrossRef] [PubMed]
- Kini, R.M.; Rao, V.S.; Joseph, J.S. Procoagulant proteins from snake venoms. Pathophysiol. Haemost. Thromb. 2001, 31, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Markland, F.S. Snake venoms and the hemostatic system. Toxicon 1998, 36, 1749–1800. [Google Scholar] [CrossRef]
- Loría, G.D.; Rucavado, A.; Kamiguti, A.S.; Theakston, R.D.G.; Fox, J.W.; Alape, A.; Gutiérrez, J.M.A. Characterization of ‘basparin A,’ a prothrombin-activating metalloproteinase, from the venom of the snake Bothrops asper that inhibits platelet aggregation and induces defibrination and thrombosis. Arch. Biochem. Biophys. 2003, 418, 13–24. [Google Scholar] [CrossRef]
- Rucavado, A.; Escalante, T.; Gutiérrez, J.M.a. Effect of the metalloproteinase inhibitor batimastat in the systemic toxicity induced by Bothrops asper snake venom: Understanding the role of metalloproteinases in envenomation. Toxicon 2004, 43, 417–424. [Google Scholar] [CrossRef]
- Sousa, L.F.; Bernardoni, J.L.; Zdenek, C.N.; Dobson, J.; Coimbra, F.; Gillett, A.; Lopes-Ferreira, M.; Moura-da-Silva, A.M.; Fry, B.G. Differential coagulotoxicity of metalloprotease isoforms from Bothrops neuwiedi snake venom and consequent variations in antivenom efficacy. Toxicol. Lett. 2020, 333, 211–221. [Google Scholar] [CrossRef]
- Fuchs, J.; Faber, K.; Tuchscherer, D.T.; Tsakiris, D.A.; Weiler, S.; Hofer, K.E. Bite by a juvenile Bothrops venezuelensis (Venezuelan lancehead) resulting in severe envenomation: A case report. Toxicon 2020, 180, 39–42. [Google Scholar] [CrossRef]
- Resiere, D.; Mehdaoui, H.; Gutiérrez, J.M. Snakebite envenomation in the Caribbean: The role of medical and scientific cooperation. PLoS Negl. Trop. Dis. 2018, 12, e0006441. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Lomonte, B.; Sanz, L.; Calvete, J.J.; Pla, D. Immunological profile of antivenoms: Preclinical analysis of the efficacy of a polyspecific antivenom through antivenomics and neutralization assays. J. Proteom. 2014, 105, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Nadaud, A.; Perotti, F.; de Haro, L.; Boels, D. Snake envenomations in French Guiana: First clinical assessment of an antivenom imported from Mexico. Anaesth. Crit. Care Pain Med. 2019, 38, 193–194. [Google Scholar] [CrossRef] [PubMed]
- Heckmann, X.; Lambert, V.; Mion, G.; Ehrhardt, A.; Marty, C.; Perotti, F.; Carod, J.-F.; Jolivet, A.; Boels, D.; Lehida Andi, I.; et al. Failure of a Mexican antivenom on recovery from snakebite-related coagulopathy in French Guiana. Clin. Toxicol. 2020, 1–7. [Google Scholar] [CrossRef]
- De Silva Oliveira, S.; Campos Alves, E.; dos Santos Santos, A.; Freitas Nascimento, E.; Tavares Pereira, J.P.; da Mendonça Silva, I.; Sachett, J.; dos Santos Ibiapina, H.N.; Santos Sarraf, L.K.; Contreras Bernal, J.C.; et al. Bothrops snakebites in the Amazon: Recovery from hemostatic disorders after Brazilian antivenom therapy. Clin. Toxicol. 2020, 58, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Barlow, A.; Pook, C.E.; Harrison, R.A.; Wüster, W. Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proc. R. Soc. Biol. Sci. Ser. B 2009, 276, 2443–2449. [Google Scholar] [CrossRef] [PubMed]
- Daltry, J.C.; Wüster, W.; Thorpe, R.S. Diet and snake venom evolution. Nature 1996, 379, 537–540. [Google Scholar] [CrossRef]
- Jackson, T.N.W.; Koludarov, I.; Ali, S.A.; Dobson, J.; Zdenek, C.N.; Dashevsky, D.; Op den Brouw, B.; Masci, P.P.; Nouwens, A.; Josh, P.; et al. Rapid radiations and the race to redundancy: An investigation of the evolution of Australian elapid snake venoms. Toxins 2016, 8, 309. [Google Scholar] [CrossRef]
- Sasa, M. Diet and snake venom evolution: Can local selection alone explain intraspecific venom variation? Toxicon 1999, 37, 253–260. [Google Scholar] [CrossRef]
- Williams, V.; White, J.; Schwaner, T.D.; Sparrow, A. Variation in venom proteins from isolated populations of tiger snakes (Notechis ater niger, N. scutatus) in South Australia. Toxicon 1988, 26, 1067–1075. [Google Scholar] [CrossRef]
- Calvete, J.J.; Sanz, L.; Pérez, A.; Borges, A.; Vargas, A.M.; Lomonte, B.; Angulo, Y.; Gutiérrez, J.M.; Chalkidis, H.M.; Mourão, R.H.V.; et al. Snake population venomics and antivenomics of Bothrops atrox: Paedomorphism along its transamazonian dispersal and implications of geographic venom variability on snakebite management. J. Proteom. 2011, 74, 510–527. [Google Scholar] [CrossRef]
- Alape-Girón, A.; Sanz, L.; Escolano, J.; Flores-Díaz, M.; Madrigal, M.; Sasa, M.; Calvete, J.J. Snake venomics of the lancehead pitviper Bothrops asper: Geographic, individual, and ontogenetic variations. J. Proteome Res. 2008, 7, 3556–3571. [Google Scholar] [CrossRef] [PubMed]
- Aragón, F.; Gubenšek, F. Bothrops asper venom from the Atlantic and Pacific zones of Costa Rica. Toxicon 1981, 19, 797–805. [Google Scholar] [CrossRef]
- Wüster, W.; Salomão, M.; Quijada-Mascareñas, J.A.; Thorpe, R.; BBBSP. Origins and evolution of the South American pitviper fauna: Evidence from mitochondrial DNA sequence analysis. In Biology of the Vipers; NHBS Academic & Professional Books: Eagle Mountain, UT, USA, 2002; pp. 111–128. [Google Scholar]
- Saldarriaga-Córdoba, M.; Parkinson, C.L.; Daza, J.M.; Wüster, W.; Sasa, M. Phylogeography of the Central American lancehead Bothrops asper (Serpentes: Viperidae). PLoS ONE 2017, 12, e0187969. [Google Scholar] [CrossRef] [PubMed]
- Mora-Obando, D.; Salazar-Valenzuela, D.; Pla, D.; Lomonte, B.; Guerrero-Vargas, J.A.; Ayerbe, S.; Gibbs, H.L.; Calvete, J.J. Venom variation in Bothrops asper lineages from North-Western South America. J. Proteom. 2020, 229, 103945. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, C.C.; Argôlo, A.J.S.; Arzamendia, V.; Azevedo, J.A.; Barbo, F.E.; Bérnils, R.S.; Bolochio, B.E.; Borges-Martins, M.; Brasil-Godinho, M.; Braz, H.; et al. Atlas of Brazilian Snakes: Verified point-locality maps to mitigate the Wallacean shortfall in a megadiverse snake fauna. S. Am. J. Herpetol. 2019, 14, 1–274. [Google Scholar] [CrossRef]
- Campbell, J.A.; Lamar, W.W. The Venomous Reptiles of the Western Hemisphere; Comstock Publishing Associates: Ithaca, NY, USA, 2004; Volume 1. [Google Scholar]
- Gibbs, H.L.; Sovic, M.; Amazonas, D.; Chalkidis, H.; Salazar-Valenzuela, D.; Moura-Da-Silva, A.M. Recent lineage diversification in a venomous snake through dispersal across the Amazon River. Biol. J. Linn. Soc. 2018, 123, 651–665. [Google Scholar] [CrossRef]
- Wüster, W.; Salomão, M.G.; Duckett, G.J.; Thorpe, R.S. BBBSP Mitochondrial DNA phylogeny of the Bothrops atrox species complex (Squamata: Serpentes: Viperidae). Kaupia Darmst Beitr Natgesch 1999, 8, 135–144. [Google Scholar]
- Salazar Valenzuela, C.D. Diversification in the Neotropics: Insights from Demographic and Phylogenetic Patterns of Lancehead Pitvipers (Bothrops spp.). Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2016. [Google Scholar]
- Resiere, D.; Villalta, M.; Arias, A.S.; Kallel, H.; Nèviére, R.; Vidal, N.; Mehdaoui, H.; Gutiérrez, J.M. Snakebite envenoming in French Guiana: Assessment of the preclinical efficacy against the venom of Bothrops atrox of two polyspecific antivenoms. Toxicon 2020, 173, 1–4. [Google Scholar] [CrossRef]
- Resiere, D.; Houcke, S.; Pujo, J.M.; Mayence, C.; Mathien, C.; NkontCho, F.; Blaise, N.; Demar, M.P.; Hommel, D.; Kallel, H. Clinical features and management of snakebite envenoming in French Guiana. Toxins 2020, 12, 662. [Google Scholar] [CrossRef]
- Segura, A.; Castillo, M.C.; Núñez, V.; Yarlequé, A.; Gonçalves, L.R.C.; Villalta, M.; Bonilla, C.; Herrera, M.; Vargas, M.; Fernández, M.; et al. Preclinical assessment of the neutralizing capacity of antivenoms produced in six Latin American countries against medically-relevant Bothrops snake venoms. Toxicon 2010, 56, 980–989. [Google Scholar] [CrossRef]
- Thomas, L.; Chausson, N.; Uzan, J.; Kaidomar, S.; Vignes, R.; Plumelle, Y.; Bucher, B.; Smadja, D. Thrombotic stroke following snake bites by the “Fer-de-Lance” Bothrops lanceolatus in Martinique despite antivenom treatment: A report of three recent cases. Toxicon 2006, 48, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Otero, R.; Gutiérrez, J.; Beatriz Mesa, M.a.; Duque, E.; Rodríguez, O.; Luis Arango, J.; Gómez, F.; Toro, A.; Cano, F.; María Rodríguez, L.; et al. Complications of Bothrops, Porthidium, and Bothriechis snakebites in Colombia. A clinical and epidemiological study of 39 cases attended in a university hospital. Toxicon 2002, 40, 1107–1114. [Google Scholar] [CrossRef]
- Isbister, G.K. Snakebite doesn’t cause disseminated intravascular coagulation: Coagulopathy and thrombotic microangiopathy in snake envenoming. Semin. Thromb. Hemost. 2010, 36, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Resiere, D.; Mégarbane, B.; Valentino, R.; Mehdaoui, H.; Thomas, L. Bothrops lanceolatus bites: Guidelines for severity assessment and emergent management. Toxins 2010, 2, 163–173. [Google Scholar] [CrossRef]
- Currier, R.B.; Harrison, R.A.; Rowley, P.D.; Laing, G.D.; Wagstaff, S.C. Intra-specific variation in venom of the African Puff Adder (Bitis arietans): Differential expression and activity of snake venom metalloproteinases (SVMPs). Toxicon 2010, 55, 864–873. [Google Scholar] [CrossRef]
- Oliveira, I.S.d.; Cardoso, I.A.; Bordon, K.d.C.F.; Carone, S.E.I.; Boldrini-França, J.; Pucca, M.B.; Zoccal, K.F.; Faccioli, L.H.; Sampaio, S.V.; Rosa, J.C.; et al. Global proteomic and functional analysis of Crotalus durissus collilineatus individual venom variation and its impact on envenoming. J. Proteom. 2019, 191, 153–165. [Google Scholar] [CrossRef]
- Tasoulis, T.; Silva, A.; Veerati, P.C.; Baker, M.; Hodgson, W.C.; Dunstan, N.; Isbister, G.K. Intra-specific venom variation in the Australian coastal taipan Oxyuranus scutellatus. Toxins 2020, 12, 485. [Google Scholar] [CrossRef]
- Estevao-Costa, M.I.; Gontijo, S.S.; Correia, B.L.; Yarleque, A.; Vivas-Ruiz, D.; Rodrigues, E.; Chávez-Olortegui, C.; Oliveira, L.S.; Sanchez, E.F. Neutralization of toxicological activities of medically-relevant Bothrops snake venoms and relevant toxins by two polyvalent bothropic antivenoms produced in Peru and Brazil. Toxicon 2016, 122, 67–77. [Google Scholar] [CrossRef]
- Kohlhoff, M.; Borges, M.H.; Yarleque, A.; Cabezas, C.; Richardson, M.; Sanchez, E.F. Exploring the proteomes of the venoms of the Peruvian pit vipers Bothrops atrox, B. barnetti and B. pictus. J. Proteom. 2012, 75, 2181–2195. [Google Scholar] [CrossRef]
- Bogarín, G.; Romero, M.; Rojas, G.; Lutsch, C.; Casadamont, M.; Lang, J.; Otero, R.; Gutiérrez, J.M.a. Neutralization, by a monospecific Bothrops lanceolatus antivenom, of toxic activities induced by homologous and heterologous Bothírops snake venoms. Toxicon 1999, 37, 551–557. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Sanz, L.; Escolano, J.; Fernández, J.; Lomonte, B.; Angulo, Y.; Rucavado, A.; Warrell, D.A.; Calvete, J.J. Snake venomics of the Lesser Antillean pit vipers Bothrops caribbaeus and Bothrops lanceolatus: Correlation with toxicological activities and immunoreactivity of a heterologous antivenom. J. Proteome Res. 2008, 7, 4396–4408. [Google Scholar] [CrossRef] [PubMed]
- Niewiarowski, S.; Kirby, E.P.; Brudzynski, T.M.; Stocker, K. Thrombocytin, a serine protease from Bothrops atrox venom. 2. Interaction with platelets and plasma-clotting factors. Biochemistry 1979, 18, 3570–3577. [Google Scholar] [CrossRef] [PubMed]
- Rucavado, A.; Soto, M.; Escalante, T.; Loría, G.D.; Arni, R.; Gutiérrez, J.M. Thrombocytopenia and platelet hypoaggregation induced by Bothrops asper snake venom. Thromb. Haemost. 2005, 94, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Rucavado, A.; Soto, M.; Kamiguti, A.S.; Theakston, D.G.; Fox, J.W.; Escalante, T.; Gutiérrez, J.M. Characterization of aspercetin, a platelet aggregating component from the venom of the snake Bothrops asper which induces thrombocytopenia and potentiates metalloproteinase-induced hemorrhage. Thromb. Haemost. 2001, 85, 710–715. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.; Ownby, C.L.; Odell, G.V. Isolation of a myotoxin from Bothrops asper venom: Partial characterization and action on skeletal muscle. Toxicon 1984, 22, 115–128. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Lomonte, B. Phospholipase A2 myotoxins from Bothrops snake venoms. Toxicon 1995, 33, 1405–1424. [Google Scholar] [CrossRef]
- Lister, C.; Arbuckle, K.; Jackson, T.N.W.; Debono, J.; Zdenek, C.N.; Dashevsky, D.; Dunstan, N.; Allen, L.; Hay, C.; Bush, B.; et al. Catch a tiger snake by its tail: Differential toxicity, co-factor dependence and antivenom efficacy in a procoagulant clade of Australian venomous snakes. Comp. Biochem. Physiol. C Toxicol. Pharm. 2017, 202, 39–54. [Google Scholar] [CrossRef]
- O’Leary, M.A.; Kornhauser, R.S.; Hodgson, W.C.; Isbister, G.K. An examination of the activity of expired and mistreated commercial Australian antivenoms. Trans. R. Soc. Trop. Med. Hyg. 2009, 103, 937–942. [Google Scholar] [CrossRef]
- Al-Abdulla, I.; Casewell, N.R.; Landon, J. Long-term physicochemical and immunological stability of a liquid formulated intact ovine immunoglobulin-based antivenom. Toxicon 2013, 64, 38–42. [Google Scholar] [CrossRef]
- Da Galizio, N.C.; Serino-Silva, C.; Stuginski, D.R.; Abreu, P.A.E.; Sant’Anna, S.S.; Grego, K.F.; Tashima, A.K.; Tanaka-Azevedo, A.M.; de Morais-Zani, K. Compositional and functional investigation of individual and pooled venoms from long-term captive and recently wild-caught Bothrops jararaca snakes. J. Proteom. 2018, 186, 56–70. [Google Scholar] [CrossRef]
- Castellone, D. How to deliver quality results in the coagulation laboratory: Commonly asked questions. Lab. Med. 2004, 35, 208–213. [Google Scholar] [CrossRef]
- Bourke, L.A.; Youngman, N.J.; Zdenek, C.N.; op den Brouw, B.; Violette, A.; Fourmy, R.; Fry, B.G. Trimeresurus albolabris snakebite treatment implications arising from ontogenetic venom comparisons of anticoagulant function, and antivenom efficacy. Toxicol. Lett. 2020, 327, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Debono, J.; Bos, M.H.A.; Frank, N.; Fry, B. Clinical implications of differential antivenom efficacy in neutralising coagulotoxicity produced by venoms from species within the arboreal viperid snake genus Trimeresurus. Toxicol. Lett. 2019, 316, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Zdenek, C.N.; Hay, C.; Arbuckle, K.; Jackson, T.N.W.; Bos, M.H.A.; op den Brouw, B.; Debono, J.; Allen, L.; Dunstan, N.; Morley, T.; et al. Coagulotoxic effects by brown snake (Pseudonaja) and taipan (Oxyuranus) venoms, and the efficacy of a new antivenom. Toxicol. In Vitro 2019, 58, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Rojas, G.; Jiménez, J.; Gutiérrez, J. Caprylic acid fractionation of hyperimmune horse plasma: Description of a simple procedure for antivenom production. Toxicon 1994, 32, 351–363. [Google Scholar] [CrossRef]
Venom | 20 μg/mL Clotting Time | AUC Value |
---|---|---|
B. asper (Costa Rica) | 17.73 ± 2.17 | 481.70 ± 18.01 |
B. asper (Ecuador) | 13.50 ± 0.85 | 384.00 ± 5.86 |
B. asper (Mérida, Yucatán, Mexico) | 14.27 ± 1.12 | 377.33 ± 9.15 |
B. asper (San Andres, Tuxtla, Veracruz, Mexico) | 47.20 ± 2.04 | 1327.33 ± 26.03 |
B. atrox (French Guiana) | 26.80 ± 0.96 | 669.70 ± 15.85 |
B. atrox (Alto Marañon, Peru) | 28.30 ± 0.66 | 741.73 ± 5.47 |
B. asper (Costa Rica) | B. asper (Ecuador) | B. asper (Mérida, Yucatán, Mexico) | B. asper (San Andres, Tuxtla, Veracruz, Mexico) | B. atrox (French Guiana) | B. atrox (Alto Marañon, Peru) | |
---|---|---|---|---|---|---|
B. asper (Costa Rica) | X | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
B. asper (Ecuador) | X | X | 0.9936 | <0.0001 | <0.0001 | <0.0001 |
B. asper (Mérida, Yucatán, Mexico) | X | X | X | <0.0001 | <0.0001 | <0.0001 |
B. asper (San Andres, Tuxtla, Veracruz, Mexico) | X | X | X | X | <0.0001 | <0.0001 |
B. atrox (French Guiana) | X | X | X | X | X | 0.0010 |
B. atrox (Alto Marañon, Peru) | X | X | X | X | X | X |
B. asper (Costa Rica) | B. asper (Ecuador) | B. asper (Mérida, Yucatán, Mexico) | B. asper (San Andres, Tuxtla, Veracruz, Mexico) | |
---|---|---|---|---|
Antivipmyn vs. PoliVal-ICP | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Antivipmyn vs. Antivipmyn-Tri | >0.9999 | 0.9996 | 0.9984 | 0.3096 |
Antivipmyn vs. Bothrofav | 0.9710 | 0.9667 | 0.9993 | <0.0001 |
Antivipmyn vs. SAB | 0.9437 | 0.0169 | 0.9525 | <0.0001 |
PoliVal-ICP vs. Antivipmyn-Tri | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
PoliVal-ICP vs. Bothrofav | <0.0001 | <0.0001 | 0.0001 | <0.0001 |
PoliVal-ICP vs. SAB | <0.0001 | <0.0001 | 0.0002 | <0.0001 |
Antivipmyn-Tri vs. Bothrofav | 0.9848 | 0.9916 | 0.9851 | <0.0001 |
Antivipmyn-Tri vs. SAB | 0.9146 | 0.0125 | 0.8598 | <0.0001 |
Bothrofav vs. SAB | 0.6759 | 0.0066 | 0.9882 | 0.5859 |
B. atrox (French Guiana) | B. atrox (Alto Marañon, Peru) | |
---|---|---|
Antivipmyn vs. PoliVal-ICP | 0.0408 | <0.0001 |
Antivipmyn vs. Antivipmyn-Tri | 0.9318 | 0.0266 |
Antivipmyn vs. Bothrofav | <0.0001 | <0.0001 |
Antivipmyn vs. SAB | <0.0001 | <0.0001 |
PoliVal-ICP vs. Antivipmyn-Tri | 0.1344 | 0.0013 |
PoliVal-ICP vs. Bothrofav | <0.0001 | <0.0001 |
PoliVal-ICP vs. SAB | <0.0001 | <0.0001 |
Antivipmyn-Tri vs. Bothrofav | <0.0001 | <0.0001 |
Antivipmyn-Tri vs. SAB | <0.0001 | <0.0001 |
Bothrofav vs. SAB | <0.0001 | <0.0001 |
Species | Antivenom | B. asper (Costa Rica) | B. asper (Mérida, Yucatán, Mexico) | B. asper (San Andres, Tuxtla, Veracruz, Mexico) | B. asper (Ecuador) |
---|---|---|---|---|---|
B. atrox (French Guiana) | PoliVal-ICP | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
SAB | <0.0001 | <0.0001 | 0.0002 | <0.0001 | |
Bothrofav | <0.0001 | <0.0001 | 0.8651 | <0.0001 | |
B. atrox (Alto Marañon, Peru) | PoliVal-ICP | <0.0001 | 0.1637 | 0.0003 | 0.0023 |
SAB | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Bothrofav | <0.0001 | <0.0001 | 0.0065 | <0.0001 |
Central America and Mexico | ||||
---|---|---|---|---|
B. asper (Costa Rica) | B. asper (Mérida, Yucatán, Mexico) | B. asper (San Andres, Tuxtla, Veracruz, Mexico) | ||
South America | B. asper (Ecuador) | <0.0001 | 0.0044 | <0.0001 |
B. atrox (French Guiana) | <0.0001 | 0.0213 | <0.0001 | |
B. atrox (Alto Marañon, Peru) | <0.0001 | 0.7904 | 0.0019 |
Species | Locality | Abbreviation | Additional Information |
---|---|---|---|
Bothrops asper | Costa Rica | N.A. | Pooled from adults collected in the Pacific region (n = 40) |
Bothrops asper | Ecuador | N.A. | Pooled from captive-born adult males (n = 2) |
Bothrops asper | Mérida, Yucatán, Mexico | Yucatán, Mexico | Adult (individual) |
Bothrops asper | San Andres, Tuxtla, Veracruz, Mexico | S.A.T, Mexico | Adult (individual) |
Bothrops atrox | French Guiana | N.A. | Pooled from captive-born and wild adults (male + females, n = 66) |
Bothrops atrox | Alto Marañon, Peru | A.M., Peru | Pooled from wild adults caught in the Amazon rainforest and kept in captivity (n values not supplied) |
Antivenom | Lot # and Expiry | Immunising Mixture * | Preparation | Neutralising Potency (Specified by Manufacturer) |
---|---|---|---|---|
Antivipmyn®, Instituto Bioclon, Mexico | Lot: B-6F-16; Exp: October 2010 | Bothrops asper (Mexico), Crotalus simus simus (Mexico) | Polyspecific equine F(ab’)2 preparation | 1 vial neutralises >780 LD50 of Bothrops sp. and >790 of Crotalus sp. |
Antivipmyn-Tri®, Instituto Bioclon, Mexico | Lot: B-4F-13; Exp: 28 June 2009 | Bothrops asper (Colombia), Crotalus simus simus (Mexico), and Lachesis muta (Not stated) | Polyspecific equine F(ab’)2 preparation | Unknown |
Soro Antibotrópico (SAB)®, Instituto Butantan, Brazil | Lot: 1305077; Exp: May 2016 | Bothrops jararaca (Brazil) (50%), Bothrops jararacussu (Brazil) (12.5%), Bothrops neuwiedi (Brazil) (12.5%), Bothrops alternatus (Brazil) (12.5%), Bothrops moojeni (Brazil) (12.5%) | Polyspecific equine IgG F(ab′)2 preparation | 1 mL neutralises 5 mg venom of Botrops jararaca (Brazil) |
Central American polyspecific antivenom (PoliVal-ICP)®, Instituto Clodomiro Picado, Universidad de Costa Rica | Lot: 5720416; Exp: April 2021 | Bothrops asper (Costa Rica), Crotalus simus (Costa Rica), and Lachesis stenophrys (Costa Rica) [69] | Polyspecific equine whole IgG—purified by caprylic acid fractionation [69] | 1ml neutralises 3 mg venom of Bothrops asper (Costa Rica) |
Bothrofav®, MicroPharm, United Kingdom | Lot P4AP61V; Exp: October 2020 | Bothrops lanceolatus | Monospecific equine F(ab′)2 preparation | Unknown |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourke, L.A.; Zdenek, C.N.; Neri-Castro, E.; Bénard-Valle, M.; Alagón, A.; Gutiérrez, J.M.; Sanchez, E.F.; Aldridge, M.; Fry, B.G. Pan-American Lancehead Pit-Vipers: Coagulotoxic Venom Effects and Antivenom Neutralisation of Bothrops asper and B. atrox Geographical Variants. Toxins 2021, 13, 78. https://doi.org/10.3390/toxins13020078
Bourke LA, Zdenek CN, Neri-Castro E, Bénard-Valle M, Alagón A, Gutiérrez JM, Sanchez EF, Aldridge M, Fry BG. Pan-American Lancehead Pit-Vipers: Coagulotoxic Venom Effects and Antivenom Neutralisation of Bothrops asper and B. atrox Geographical Variants. Toxins. 2021; 13(2):78. https://doi.org/10.3390/toxins13020078
Chicago/Turabian StyleBourke, Lachlan A., Christina N. Zdenek, Edgar Neri-Castro, Melisa Bénard-Valle, Alejandro Alagón, José María Gutiérrez, Eladio F. Sanchez, Matt Aldridge, and Bryan G. Fry. 2021. "Pan-American Lancehead Pit-Vipers: Coagulotoxic Venom Effects and Antivenom Neutralisation of Bothrops asper and B. atrox Geographical Variants" Toxins 13, no. 2: 78. https://doi.org/10.3390/toxins13020078
APA StyleBourke, L. A., Zdenek, C. N., Neri-Castro, E., Bénard-Valle, M., Alagón, A., Gutiérrez, J. M., Sanchez, E. F., Aldridge, M., & Fry, B. G. (2021). Pan-American Lancehead Pit-Vipers: Coagulotoxic Venom Effects and Antivenom Neutralisation of Bothrops asper and B. atrox Geographical Variants. Toxins, 13(2), 78. https://doi.org/10.3390/toxins13020078