Lean Fish Consumption Is Associated with Beneficial Changes in the Metabolic Syndrome Components: A 13-Year Follow-Up Study from the Norwegian Tromsø Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials, Study Design, Settings and Participants
2.1.1. Questionnaires
- -
- How many times per week do you normally eat fatty fish (e.g., salmon/red meat fish) for dinner?
- -
- How many times per week do you normally eat lean fish (e.g., cod) for dinner?
- -
- How many times per week do you normally eat fish balls/fish pudding/fish cakes for dinner?
- -
- Have you taken cod liver oil or fish oil capsules during the last 14 days?
- -
- Have you taken vitamin D supplement during the last 14 days?
2.1.2. Physical Examination and Blood Samples
2.1.3. Metabolic Score
2.1.4. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. Changes during Follow-Up Period
3.2.1. Changes in MetS Components and Metabolic Score during the Follow-Up Period
3.2.2. Changes in Metabolic Score by Consumption of Fish during the Follow-Up Period
3.2.3. Changes in MetS Components by Consumption of Fish during the Follow-Up Period
4. Discussion
4.1. Abdominal Obesity
4.2. Improved Lipid Profile
4.3. Hypotensive Effects
4.4. Blood Glucose
4.5. Gender Differences
4.6. Contaminants and Other Undesirable Substances in Fish
4.7. Strengths and Weaknesses
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed]
- Laclaustra, M.; Corella, D.; Ordovas, J.M. Metabolic syndrome pathophysiology: The role of adipose tissue. Nutr. Metab. Cardiovasc. Dis. 2007, 17, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Cameron, A.J.; Boyko, E.J.; Sicree, R.A.; Zimmet, P.Z.; Soderberg, S.; Alberti, K.G.; Tuomilehto, J.; Chitson, P.; Shaw, J.E. Central obesity as a precursor to the metabolic syndrome in the AusDiab study and Mauritius. Obesity (Silver Spring) 2008, 16, 2707–2716. [Google Scholar] [CrossRef] [PubMed]
- Rask-Madsen, C.; Kahn, C.R. Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arterioscleros. Thromb. Vasc. Biol. 2012, 32, 2052–2059. [Google Scholar] [CrossRef] [PubMed]
- Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z. The metabolic syndrome. Lancet 2005, 365, 1415–1428. [Google Scholar] [CrossRef]
- Raatz, S.K.; Silverstein, J.T.; Jahns, L.; Picklo, M.J. Issues of fish consumption for cardiovascular disease risk reduction. Nutrients 2013, 5, 1081–1097. [Google Scholar] [CrossRef] [PubMed]
- Strom, M.; Halldorsson, T.I.; Mortensen, E.L.; Torp-Pedersen, C.; Olsen, S.F. Fish, n-3 fatty acids, and cardiovascular diseases in women of reproductive age: A prospective study in a large national cohort. Hypertension 2012, 59, 36–43. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Song, Y.; Daviglus, M.L.; Liu, K.; Van Horn, L.; Dyer, A.R.; Greenland, P. Accumulated evidence on fish consumption and coronary heart disease mortality: A meta-analysis of cohort studies. Circulation 2004, 109, 2705–2711. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Song, Y.; Daviglus, M.L.; Liu, K.; Van Horn, L.; Dyer, A.R.; Goldbourt, U.; Greenland, P. Fish consumption and incidence of stroke: A meta-analysis of cohort studies. Stroke 2004, 35, 1538–1542. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B.; Cho, E.; Rexrode, K.M.; Albert, C.M.; Manson, J.E. Fish and long-chain omega-3 fatty acid intake and risk of coronary heart disease and total mortality in diabetic women. Circulation 2003, 107, 1852–1857. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Huang, T.; Yu, Y.; Hu, X.; Yang, B.; Li, D. Fish consumption and CHD mortality: An updated meta-analysis of seventeen cohort studies. Public Health Nutr. 2012, 15, 725–737. [Google Scholar] [CrossRef] [PubMed]
- Takata, Y.; Zhang, X.; Li, H.; Gao, Y.T.; Yang, G.; Gao, J.; Cai, H.; Xiang, Y.B.; Zheng, W.; Shu, X.O. Fish intake and risks of total and cause-specific mortality in 2 population-based cohort studies of 134,296 men and women. Am. J. Epidemiol. 2013, 178, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Rylander, C.; Sandanger, T.M.; Engeset, D.; Lund, E. Consumption of lean fish reduces the risk of type 2 diabetes mellitus: A prospective population based cohort study of Norwegian women. PLoS ONE 2014, 9, e89845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, P.S.; Sharp, S.J.; Luben, R.N.; Khaw, K.T.; Bingham, S.A.; Wareham, N.J.; Forouhi, N.G. Association between type of dietary fish and seafood intake and the risk of incident type 2 diabetes: The European prospective investigation of cancer (EPIC)-Norfolk cohort study. Diabetes Care 2009, 32, 1857–1863. [Google Scholar] [CrossRef] [PubMed]
- Nanri, A.; Mizoue, T.; Noda, M.; Takahashi, Y.; Matsushita, Y.; Poudel-Tandukar, K.; Kato, M.; Oba, S.; Inoue, M.; Tsugane, S. Fish intake and type 2 diabetes in Japanese men and women: The Japan Public Health Center-based Prospective Study. Am. J. Clin. Nutr. 2011, 94, 884–891. [Google Scholar] [CrossRef] [PubMed]
- Tørris, C.; Molin, M.; Cvancarova Småstuen, M. Fish consumption and its possible preventive role on the development and prevalence of metabolic syndrome—A systematic review. Diabetol. Metab. Syndr. 2014, 6, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baik, I.; Abbott, R.D.; Curb, J.D.; Shin, C. Intake of fish and n-3 fatty acids and future risk of metabolic syndrome. J. Am. Diet. Assoc. 2010, 110, 1018–1026. [Google Scholar] [CrossRef] [PubMed]
- Kouki, R.; Schwab, U.; Hassinen, M.; Komulainen, P.; Heikkila, H.; Lakka, T.A.; Rauramaa, R. Food consumption, nutrient intake and the risk of having metabolic syndrome: The DR’s EXTRA Study. Eur. J. Clin. Nutr. 2011, 65, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Ruidavets, J.B.; Bongard, V.; Dallongeville, J.; Arveiler, D.; Ducimetiere, P.; Perret, B.; Simon, C.; Amouyel, P.; Ferrieres, J. High consumptions of grain, fish, dairy products and combinations of these are associated with a low prevalence of metabolic syndrome. J. Epidemiol. Community Health 2007, 61, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Torris, C.; Molin, M.; Cvancarova, M.S. Lean fish consumption is associated with lower risk of metabolic syndrome: A Norwegian cross sectional study. BMC Public Health 2016, 16, 347. [Google Scholar] [CrossRef] [PubMed]
- Torris, C.; Molin, M.; Cvancarova Smastuen, M. Associations between fish consumption and metabolic syndrome. A large cross-sectional study from the Norwegian Tromso Study: Tromso 4. Diabetol. Metab. Syndr. 2016, 8, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaribaf, F.; Falahi, E.; Barak, F.; Heidari, M.; Keshteli, A.H.; Yazdannik, A.; Esmaillzadeh, A. Fish consumption is inversely associated with the metabolic syndrome. Eur. J. Clin. Nutr. 2014, 68, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.H.; Petrone, A.B.; Pankow, J.S.; Arnett, D.K.; North, K.E.; Ellison, R.C.; Hunt, S.C.; Djousse, L. Association of dietary omega-3 fatty acids with prevalence of metabolic syndrome: The National Heart, Lung, and Blood Institute Family Heart Study. Clin. Nutr. 2013, 32, 966–969. [Google Scholar] [CrossRef] [PubMed]
- Pasalic, D.; Dodig, S.; Corovic, N.; Pizent, A.; Jurasovic, J.; Pavlovic, M. High prevalence of metabolic syndrome in an elderly Croatian population—A multicentre study. Public Health Nutr. 2011, 14, 1650–1657. [Google Scholar] [CrossRef] [PubMed]
- Ramel, A.; Jonsdottir, M.T.; Thorsdottir, I. Consumption of cod and weight loss in young overweight and obese adults on an energy reduced diet for 8-weeks. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Skåre, J.U.; Brantsæter, A.L.; Frøyland, L.; Hemre, G.-I.; Knutsen, H.K.; Lillegaard, I.T.L.; Torstensen, B. Benefit-Risk Assessment of Fish and Fish Products in the Norwegian Diet—An Update (In Norwegian); VKM Report 2014: 15; Norwegian Scientific Committee for Food Safety (VKM): Oslo, Norway, 2014. [Google Scholar]
- Norwegian Food Safety Authority, The Norwegian Directorate of Health and University of Oslo. Norwegian Food Composition Database 2016. Available online: http://www.matvaretabellen.no (accessed on 16 May 2016).
- Gormley, T.; Neumann, T.; Fagan, J.; Brunton, N. Taurine content of raw and processed fish fillets/portions. Zeitschrift Lebensmittel Untersuchung Forschung A 2007, 225, 837–842. [Google Scholar] [CrossRef]
- Eggen, A.E.; Mathiesen, E.B.; Wilsgaard, T.; Jacobsen, B.K.; Njolstad, I. The sixth survey of the Tromso Study (Tromso 6) in 2007–2008: Collaborative research in the interface between clinical medicine and epidemiology: Study objectives, design, data collection procedures, and attendance in a multipurpose population-based health survey. Scand. J. Public Health 2013, 41, 65–80. [Google Scholar] [PubMed]
- Jacobsen, B.K.; Eggen, A.E.; Mathiesen, E.B.; Wilsgaard, T.; Njolstad, I. Cohort profile: The Tromso Study. Int. J. Epidemiol. 2012, 41, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Eggen, A.E.; Mathiesen, E.B.; Wilsgaard, T.; Jacobsen, B.K.; Njolstad, I. Trends in cardiovascular risk factors across levels of education in a general population: Is the educational gap increasing? The Tromso study 1994–2008. J. Epidemiol. Community Health 2014, 68, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, B.K.; Nilsen, H. High education is associated with low fat and high fibre, beta-carotene and vitamin C—Computation of nutrient intake based on a short food frequency questionnaire in 17,265 men and women in the Tromsø Study. Nor. Epidemiol. 2000, 10, 57–62. [Google Scholar] [CrossRef]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [PubMed]
- Thorsdottir, I.; Tomasson, H.; Gunnarsdottir, I.; Gisladottir, E.; Kiely, M.; Parra, M.D.; Bandarra, N.M.; Schaafsma, G.; Martinez, J.A. Randomized trial of weight-loss-diets for young adults varying in fish and fish oil content. Int. J. Obes. (Lond.) 2007, 31, 1560–1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vazquez, C.; Botella-Carretero, J.I.; Corella, D.; Fiol, M.; Lage, M.; Lurbe, E.; Richart, C.; Fernandez-Real, J.M.; Fuentes, F.; Ordonez, A.; et al. White fish reduces cardiovascular risk factors in patients with metabolic syndrome: The WISH-CARE study, a multicenter randomized clinical trial. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Westerterp-Plantenga, M.S.; Lemmens, S.G.; Westerterp, K.R. Dietary protein—Its role in satiety, energetics, weight loss and health. Br. J. Nutr. 2012, 108 (Suppl. 2), S105–S112. [Google Scholar] [CrossRef] [PubMed]
- Uhe, A.M.; Collier, G.R.; O’Dea, K. A comparison of the effects of beef, chicken and fish protein on satiety and amino acid profiles in lean male subjects. J. Nutr. 1992, 122, 467–472. [Google Scholar] [PubMed]
- Borzoei, S.; Neovius, M.; Barkeling, B.; Teixeira-Pinto, A.; Rossner, S. A comparison of effects of fish and beef protein on satiety in normal weight men. Eur. J. Clin. Nutr. 2006, 60, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Imae, M.; Asano, T.; Murakami, S. Potential role of taurine in the prevention of diabetes and metabolic syndrome. Amino Acids 2014, 46, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.J.; Arneja, A.S.; Tappia, P.S.; Dhalla, N.S. The potential health benefits of taurine in cardiovascular disease. Exp. Clin. Cardiol. 2008, 13, 57–65. [Google Scholar] [PubMed]
- Winnicki, M.; Somers, V.K.; Accurso, V.; Phillips, B.G.; Puato, M.; Palatini, P.; Pauletto, P. Fish-rich diet, leptin, and body mass. Circulation 2002, 106, 289–291. [Google Scholar] [CrossRef] [PubMed]
- Considine, R.V.; Sinha, M.K.; Heiman, M.L.; Kriauciunas, A.; Stephens, T.W.; Nyce, M.R.; Ohannesian, J.P.; Marco, C.C.; McKee, L.J.; Bauer, T.L.; et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 1996, 334, 292–295. [Google Scholar] [CrossRef] [PubMed]
- Dahl, L.; Johansson, L.; Julshamn, K.; Meltzer, H.M. The iodine content of Norwegian foods and diets. Public Health Nutr. 2004, 7, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Nordic Council of Ministers. Nordic Nutrition Recommendations 2012: Integrating Nutrition and Physical Activity, 5th ed.; Nordic Council of Ministers: Copenhagen, Denmark, 2014; Volume 2014:002. [Google Scholar]
- World Health Organization; Food and Agriculture Organization of the United Nations. Vitamin & Mineral Requirements in Human Nutrition; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Calder, P.C. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 2006, 83 (Suppl. 6), 1505S–1519S. [Google Scholar] [PubMed]
- Li, K.; Huang, T.; Zheng, J.; Wu, K.; Li, D. Effect of marine-derived n-3 polyunsaturated fatty acids on C-reactive protein, interleukin 6 and tumor necrosis factor alpha: A meta-analysis. PLoS ONE 2014, 9, e88103. [Google Scholar]
- Pilon, G.; Ruzzin, J.; Rioux, L.E.; Lavigne, C.; White, P.J.; Froyland, L.; Jacques, H.; Bryl, P.; Beaulieu, L.; Marette, A. Differential effects of various fish proteins in altering body weight, adiposity, inflammatory status, and insulin sensitivity in high-fat-fed rats. Metab. Clin. Exp. 2011, 60, 1122–1130. [Google Scholar] [CrossRef] [PubMed]
- Derby, C.A.; Crawford, S.L.; Pasternak, R.C.; Sowers, M.; Sternfeld, B.; Matthews, K.A. Lipid changes during the menopause transition in relation to age and weight: The Study of Women’s Health Across the Nation. Am. J. Epidemiol. 2009, 169, 1352–1361. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.J.; Kim, T.H.; Ryu, W.S.; Ryoo, U.H. Influence of menopause on high density lipoprotein-cholesterol and lipids. J. Korean Med. Sci. 2000, 15, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Lara, J.J.; Economou, M.; Wallace, A.M.; Rumley, A.; Lowe, G.; Slater, C.; Caslake, M.; Sattar, N.; Lean, M.E. Benefits of salmon eating on traditional and novel vascular risk factors in young, non-obese healthy subjects. Atherosclerosis 2007, 193, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Telle-Hansen, V.H.; Larsen, L.N.; Hostmark, A.T.; Molin, M.; Dahl, L.; Almendingen, K.; Ulven, S.M. Daily intake of cod or salmon for 2 weeks decreases the 18:1n-9/18:0 ratio and serum triacylglycerols in healthy subjects. Lipids 2012, 47, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Park, S.; Yang, H.; Choi, Y.J.; Huh, K.B.; Chang, N. Association between fish and shellfish, and omega-3 PUFAs intake and CVD risk factors in middle-aged female patients with type 2 diabetes. Nutr. Res. Pract. 2015, 9, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Erkkila, A.T.; Schwab, U.S.; de Mello, V.D.; Lappalainen, T.; Mussalo, H.; Lehto, S.; Kemi, V.; Lamberg-Allardt, C.; Uusitupa, M.I. Effects of fatty and lean fish intake on blood pressure in subjects with coronary heart disease using multiple medications. Eur. J. Nutr. 2008, 47, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Aadland, E.K.; Lavigne, C.; Graff, I.E.; Eng, O.; Paquette, M.; Holthe, A.; Mellgren, G.; Jacques, H.; Liaset, B. Lean-seafood intake reduces cardiovascular lipid risk factors in healthy subjects: Results from a randomized controlled trial with a crossover design. Am. J. Clin. Nutr. 2015, 102, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Drotningsvik, A.; Mjos, S.A.; Hogoy, I.; Remman, T.; Gudbrandsen, O.A. A low dietary intake of cod protein is sufficient to increase growth, improve serum and tissue fatty acid compositions, and lower serum postprandial glucose and fasting non-esterified fatty acid concentrations in obese Zucker fa/fa rats. Eur. J. Nutr. 2015, 54, 1151–1160. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Bi, L.F.; Fang, J.H.; Su, X.L.; Da, G.L.; Kuwamori, T.; Kagamimori, S. Beneficial effects of taurine on serum lipids in overweight or obese non-diabetic subjects. Amino Acids 2004, 26, 267–271. [Google Scholar] [CrossRef] [PubMed]
- El Khoury, D.; Anderson, G.H. Recent advances in dietary proteins and lipid metabolism. Curr. Opin. Lipidol. 2013, 24, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Schmedes, M.; Aadland, E.K.; Sundekilde, U.K.; Jacques, H.; Lavigne, C.; Graff, I.E.; Eng, O.; Holthe, A.; Mellgren, G.; Young, J.F.; et al. Lean-seafood intake decreases urinary markers of mitochondrial lipid and energy metabolism in healthy subjects: Metabolomics results from a randomized crossover intervention study. Mol. Nutr. Food Res. 2016, 60, 1661–1672. [Google Scholar] [CrossRef] [PubMed]
- Dunn, S.L.; Siu, W.; Freund, J.; Boutcher, S.H. The effect of a lifestyle intervention on metabolic health in young women. Diabetes Metab. Syndr. Obes. 2014, 7, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.C.; Ivester, P.; Hester, A.G.; Sergeant, S.; Case, L.D.; Morgan, T.; Kouba, E.O.; Chilton, F.H. The impact of polyunsaturated fatty acid-based dietary supplements on disease biomarkers in a metabolic syndrome/diabetes population. Lipids Health Dis. 2014, 13, 196. [Google Scholar] [CrossRef]
- Lewis, A.; Lookinland, S.; Beckstrand, R.L.; Tiedeman, M.E. Treatment of hypertriglyceridemia with omega-3 fatty acids: A systematic review. J. Am. Acad. Nurse Pract. 2004, 16, 384–395. [Google Scholar] [CrossRef] [PubMed]
- Yanai, H.; Hamasaki, H.; Katsuyama, H.; Adachi, H.; Moriyama, S.; Sako, A. Effects of intake of fish or fish oils on the development of diabetes. J. Clin. Med. Res. 2015, 7, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, M.H.; Molgaard, C.; Hellgren, L.I.; Lauritzen, L. Effects of fish oil supplementation on markers of the metabolic syndrome. J. Pediatr. 2010, 157, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.; Derosa, G.; Di Gregori, V.; Bove, M.; Gaddi, A.V.; Borghi, C. Omega 3 polyunsaturated fatty acids supplementation and blood pressure levels in hypertriglyceridemic patients with untreated normal-high blood pressure and with or without metabolic syndrome: A retrospective study. Clin. Exp. Hypertens. 2010, 32, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Davidson, M.H. Mechanisms for the hypotriglyceridemic effect of marine omega-3 fatty acids. Am. J. Cardiol. 2006, 98, 27i–33i. [Google Scholar] [CrossRef] [PubMed]
- Visioli, F.; Rise, P.; Barassi, M.C.; Marangoni, F.; Galli, C. Dietary intake of fish vs. formulations leads to higher plasma concentrations of n-3 fatty acids. Lipids 2003, 38, 415–418. [Google Scholar] [CrossRef] [PubMed]
- Sosial-og, H. Utviklingen i Norsk Kosthold 2011: Matforsyningsstatistikk og Forbruksundersøkelser; Helsedirektoratet: Oslo, Norway, 2012; Volume 2011. (In Norwegian) [Google Scholar]
- Dragnes, B.T.; Larsen, R.; Ernstsen, M.H.; Maehre, H.; Elvevoll, E.O. Impact of processing on the taurine content in processed seafood and their corresponding unprocessed raw materials. Int. J. Food Sci. Nutr. 2009, 60, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Yanai, H.; Katsuyama, H.; Hamasaki, H.; Abe, S.; Tada, N.; Sako, A. Effects of Dietary Fat Intake on HDL Metabolism. J. Clin. Med. Res. 2015, 7, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Ramel, A.; Martinez, J.A.; Kiely, M.; Bandarra, N.M.; Thorsdottir, I. Moderate consumption of fatty fish reduces diastolic blood pressure in overweight and obese European young adults during energy restriction. Nutrition 2010, 26, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Ait-Yahia, D.; Madani, S.; Savelli, J.-L.; Prost, J.; Bouchenak, M.; Belleville, J. Dietary fish protein lowers blood pressure and alters tissue polyunsaturated fatty acid composition in spontaneously hypertensive rats. Nutrition 2003, 19, 342–346. [Google Scholar] [CrossRef]
- Ouellet, V.; Marois, J.; Weisnagel, S.J.; Jacques, H. Dietary cod protein improves insulin sensitivity in insulin-resistant men and women: A randomized controlled trial. Diabet. Care 2007, 30, 2816–2821. [Google Scholar] [CrossRef] [PubMed]
- Madani, Z.; Louchami, K.; Sener, A.; Malaisse, W.J.; Ait Yahia, D. Dietary sardine protein lowers insulin resistance, leptin and TNF-alpha and beneficially affects adipose tissue oxidative stress in rats with fructose-induced metabolic syndrome. Int. J. Mol. Med. 2012, 29, 311–318. [Google Scholar] [PubMed]
- Karastergiou, K.; Smith, S.R.; Greenberg, A.S.; Fried, S.K. Sex differences in human adipose tissues—The biology of pear shape. Biol. Sex Differ. 2012, 3, 13. [Google Scholar] [CrossRef] [PubMed]
- Guarner-Lans, V.; Rubio-Ruiz, M.E.; Perez-Torres, I.; Banos de MacCarthy, G. Relation of aging and sex hormones to metabolic syndrome and cardiovascular disease. Exp. Gerontol. 2011, 46, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Seeley, R.J.; Clegg, D.J. Sexual Differences in the Control of Energy Homeostasis. Front. Neuroendocrinol. 2009, 30, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Alemany, M. Do the interactions between glucocorticoids and sex hormones regulate the development of the metabolic syndrome? Front. Endocrinol. 2012, 3, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, L.M.; Gent, L.; Davis, K.; Clegg, D.J. Metabolic impact of sex hormones on obesity. Brain Res. 2010, 1350, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.W.; Novak, R.F.; Anderson, H.A.; Birnbaum, L.S.; Blystone, C.; Devito, M.; Jacobs, D.; Kohrle, J.; Lee, D.H.; Rylander, L.; et al. Evaluation of the association between persistent organic pollutants (POPs) and diabetes in epidemiological studies: A national toxicology program workshop review. Environ. Health Perspect. 2013, 121, 774–783. [Google Scholar] [CrossRef] [PubMed]
- Valera, B.; Ayotte, P.; Poirier, P.; Dewailly, E. Associations between plasma persistent organic pollutant levels and blood pressure in Inuit adults from Nunavik. Environ. Int. 2013, 59, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Lim, J.E.; Park, H.; Jee, S.H. Body burden of persistent organic pollutants on hypertension: A meta-analysis. Environ. Sci. Pollut. Res. Int. 2016, 23, 14284–14293. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.N.; Kim, Y.A.; Yang, A.R.; Lee, B.H. Relationship between Blood Mercury Level and Risk of Cardiovascular Diseases: Results from the Fourth Korea National Health and Nutrition Examination Survey (KNHANES IV) 2008–2009. Prev. Nutr. Food Sci. 2014, 19, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Seo, E. Association between Toenail Mercury and Metabolic Syndrome Is Modified by Selenium. Nutrients 2016, 8. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Hernández, Á.; Camacho, M.; Henríquez-Hernández, L.A.; Boada, L.D.; Valerón, P.F.; Zaccaroni, A.; Zumbado, M.; Almeida-González, M.; Rial-Berriel, C.; Luzardo, O.P. Comparative study of the intake of toxic persistent and semi persistent pollutants through the consumption of fish and seafood from two modes of production (wild-caught and farmed). Sci. Total Environ. 2016, 575, 919–931. [Google Scholar] [CrossRef] [PubMed]
- Cantin, J.; Latour, E.; Ferland-Verry, R.; Morales Salgado, S.; Lambert, J.; Faraj, M.; Nigam, A. Validity and reproducibility of a food frequency questionnaire focused on the Mediterranean diet for the Quebec population. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 154–161. [Google Scholar] [CrossRef] [PubMed]
Nutrients | Cod | Salmon | ||
---|---|---|---|---|
Wild | Farmed | Wild | Farmed | |
Energy (kJ) | 343 | 358 | 760 | 932 |
Fat (g) | 1.1 | 0.5 | 12 | 16 |
SFA (g) 1 | 0.1 | 0.1 | 1.8 | 3 |
MUFA (g) 1 | 0.1 | 0 | 4.4 | 5.9 |
PUFA (g) 1 | 0.3 | 0.2 | 1.9 | 5 |
Omega-3 (g) | 0.5 | 0.2 | 1 | 1.5 |
Protein (g) | 17.9 | 20 | 19.7 | 20 |
Taurine (mg) | 108 | - 2 | 60 | 60 |
Fat soluble vitamins | ||||
Retinol (µg) | 12 | 2 | 0 | 26 |
Vitamin D (µg) | 2 | 0.7 | 8 | 10 |
Water soluble vitamins | ||||
Niacin (mg) | 1.8 | 3.9 | 7 | 7.3 |
Vitamin B6 (mg) | 0.12 | 0.26 | 0.6 | 0.51 |
Folate (µg) | 11 | 11 | 13 | 7 |
Vitamin B12 (µg) | 1.5 | 1 | 6.9 | 3.5 |
Minerals and trace elements | ||||
Selenium (µg) | 22 | 30 | 50 | 30 |
Iodine (µg) | 119 | 300 | - 2 | 10 |
n/Total 1 | Never | Less than Once | Once | 2–3 or More | p 1 | |
---|---|---|---|---|---|---|
Fatty fish consumption | ||||||
Females | 10,269/19,822 | 11.2 | 53.5 | 29.2 | 6.0 | <0.0001 |
Males | 9553/19,822 | 9.6 | 51.6 | 30.4 | 8.3 | <0.0001 |
Higher education 2 | 8610/19,773 | 10.5 | 57.2 | 27.4 | 4.9 | <0.0001 |
Physical activity 3 | 6670/19,717 | 10.1 | 53.5 | 29.7 | 6.7 | 0.2 |
Smoking | 7345/19,802 | 12.1 | 50.9 | 29.3 | 7.7 | <0.0001 |
Cod liver oil 4 | 6283/18,746 | 8.5 | 49.5 | 33.3 | 8.8 | <0.0001 |
Lean fish consumption | ||||||
Females | 10,791/20,806 | 2.5 | 19.6 | 48.1 | 29.9 | <0.0001 |
Males | 10,015/20,806 | 2.7 | 19.9 | 45.2 | 32.2 | <0.0001 |
Higher education 2 | 8910/20,747 | 3.0 | 22.8 | 49.3 | 24.9 | <0.0001 |
Physical activity 3 | 6958/20,687 | 2.6 | 19.8 | 48.7 | 28.9 | <0.0001 |
Smoking | 7675/20,789 | 3.1 | 21.1 | 45.2 | 30.5 | <0.0001 |
Cod liver oil 4 | 6590/19,547 | 1.9 | 16.3 | 47.9 | 33.9 | <0.0001 |
Processed fish consumption 5 | ||||||
Females | 10,578/20,210 | 4.3 | 26.8 | 55.1 | 13.8 | <0.0001 |
Males | 9632/20,210 | 7.3 | 34.3 | 49.1 | 9.4 | <0.0001 |
Higher education 2 | 8762/20,153 | 6.6 | 28.9 | 52.6 | 11.8 | <0.0001 |
Physical activity 3 | 6799/20,099 | 6.3 | 29.7 | 53.1 | 11.0 | <0.01 |
Smoking | 7460/20,194 | 6.3 | 31.9 | 50.4 | 11.4 | <0.0001 |
Cod liver oil 4 | 6424/19,106 | 5.1 | 29.3 | 53.5 | 12.1 | 0.001 |
n 1 | Never | Less than Once | Once | 2–3 or More | p 2 | |
---|---|---|---|---|---|---|
Fatty fish | ||||||
Age (years) | 19,822 | 38.7 (10.7) | 42.3 (11.0) | 46.5 (11.3) | 50.1 (11.3) | <0.0001 |
BMI | 19,798 | 24.6 (4.0) | 24.8 (3.7) | 25.3 (3.8) | 25.7 (3.8) | <0.0001 |
WC (cm) | 4361 | 89.1 (12.8) | 88.9 (11.2) | 89.8 (11.1) | 91.8 (11.7) | <0.0001 |
TG (mmol/L) | 19,785 | 1.53 (1.06) | 1.49 (1.00) | 1.53 (1.07) | 1.57 (1.02) | 0.007 |
HDL-C (mmol/L) | 19,767 | 1.46 (0.39) | 1.49 (0.39) | 1.52 (0.42) | 1.52 (0.42) | <0.0001 |
SBP (mmHg) | 19,806 | 132.0 (16.4) | 133.8 (17.0) | 136.5 (18.5) | 138.9 (19.4) | <0.0001 |
DBP (mmHg) | 19,806 | 77.4 (12.0) | 78.6 (12.3) | 80.4 (13.0) | 82.1 (13.6) | <0.0001 |
Glucose (mmol/L) 4 | 5137 | 4.9 (1.4) | 4.8 (1.1) | 4.9 (1.4) | 4.9 (1.2) | 0.01 |
Energy (MJ/day) | 16,660 | 7.35 (2.17) | 7.87 (2.16) | 8.21 (2.22) | 8.67 (2.35) | <0.0001 |
Fibre (g/day) | 16,660 | 18.9 (6.9) | 21.3 (7.1) | 22.7 (7.0) | 23.0 (7.3) | <0.0001 |
Protein (g/day) | 16,660 | 68.1 (20.1) | 76.0 (20.0) | 82.1 (20.8) | 95.4 (23.8) | <0.0001 |
Total fat (g/day) | 16,660 | 63.2 (24.7) | 66.0 (23.1) | 67.8 (23.2) | 74.2 (25.9) | <0.0001 |
n-3 FA(g/day) | 16,660 | 0.32 (0.46) | 0.65 (0.49) | 1.00 (0.62) | 1.83 (0.88) | <0.0001 |
Saturated fat (g/day) | 16,660 | 27.4 (11.2) | 27.8 (10.2) | 27.9 (10.2) | 29.0 (11.0) | 0.001 |
Alcohol (g/day) 3 | 16,660 | 3.0 (4.2) | 3.2 (4.2) | 3.5 (4.6) | 3.6 (5.2) | <0.0001 |
Lean fish | ||||||
Age (year) | 20,806 | 36.2 (10.0) | 39.3 (10.2) | 43.5 (10.9) | 49.8 (12.2) | <0.0001 |
BMI | 20,778 | 24.5 (3.9) | 24.8 (3.7) | 24.9 (3.7) | 25.5 (3.9) | <0.0001 |
WC (cm) | 4787 | 86.9 (13.9) | 89.2 (11.9) | 88.9 (11.3) | 90.5 (11.2) | <0.0001 |
TG (mmol/L) | 20,763 | 1.58 (1.04) | 1.52 (1.05) | 1.50 (1.01) | 1.54 (1.05) | 0.01 |
HDL-C (mmol/L) | 20,743 | 1.43 (0.41) | 1.46 (0.38) | 1.50 (0.41) | 1.52 (0.41) | <0.0001 |
SBP (mmHg) | 20,790 | 131.5 (14.9) | 132.7 (16.5) | 134.0 (17.2) | 138.2 (19.9) | <0.0001 |
DBP (mmHg) | 20,790 | 76.8 (11.0) | 77.6 (12.0) | 78.8 (12.5) | 81.6 (13.3) | <0.0001 |
Glucose (mmol/L) 4 | 5590 | 5.1 (2.6) | 4.7 (0.9) | 4.8 (1.3) | 4.9 (4.9) | 0.007 |
Energy (MJ/day) | 16,903 | 7.4 (2.3) | 7.6 (2.2) | 7.9 (2.2) | 8.4 (2.3) | <0.0001 |
Fibre (g/day) | 16,903 | 17.2 (7.1) | 18.9 (6.7) | 21.6 (6.9) | 23.7 (7.1) | <0.0001 |
Protein (g/day) | 16,903 | 67.0 (22.2) | 71.3 (20.1) | 76.5 (19.8) | 86.4 (21.6) | <0.0001 |
Total fat (g/day) | 16,903 | 66.7 (26.2) | 66.8 (24.3) | 66.1 (22.9) | 67.2 (24.0) | 0.05 |
n-3 FA(g/day) | 16,903 | 0.34 (0.51) | 0.62 (0.53) | 0.77 (0.60) | 0.96 (0.73) | <0.0001 |
Saturated fat (g/day) | 16,903 | 29.1 (12.1) | 28.2 (10.7) | 27.6 (10.0) | 27.9 (10.4) | 0.001 |
Alcohol (g/day) 3 | 16,903 | 3.8 (6.1) | 3.5 (4.6) | 3.4 (3.4) | 2.9 (2.9) | <0.0001 |
Processed fish | ||||||
Age (year) | 20,210 | 42.7 (11.9) | 45.0 (11.7) | 43.6 (11.3) | 42.1 (11.6) | <0.0001 |
BMI | 20,183 | 25.0 (3.7) | 25.2 (3.8) | 24.9 (3.7) | 24.8 (3.8) | <0.0001 |
WC (cm) | 4485 | 91.1 (11.6) | 90.0 (11.4) | 89.1 (11.2) | 89.0 (11.8) | 0.007 |
TG (mmol/L) | 20,172 | 1.60 (1.09) | 1.55 (1.01) | 1.49 (1.03) | 1.48 (1.03) | <0.0001 |
HDL-C (mmol/L) | 20,152 | 1.46 (0.43) | 1.49 (0.41) | 1.50 (0.40) | 1.50 (0.39) | 0.003 |
SBP (mmHg) | 20,195 | 135.1 (17.0) | 135.7 (17.9) | 134.2 (17.6) | 133.7 (17.7) | <0.0001 |
DBP (mmHg) | 20,195 | 79.6 (12.2) | 79.9 (12.7) | 78.9 (12.5) | 78.3 (12.7) | <0.0001 |
Glucose (mmol/L) 4 | 5275 | 4.9 (2.1) | 4.8 (1.0) | 4.9 (1.2) | 4.9 (1.5) | 0.1 |
Energy (MJ/day) | 16,814 | 7.63 (2.21) | 7.87 (2.25) | 7.97 (2.19) | 8.26 (2.19) | <0.0001 |
Fibre (g/day) | 16,814 | 20.1 (7.46) | 21.3 (7.30) | 21.6 (7.05) | 21.9 (6.83) | <0.0001 |
Protein (g/day) | 16,814 | 75.7 (22.7) | 77.4 (21.7) | 77.5 (20.6) | 82.0 (21.9) | <0.0001 |
Total fat (g/day) | 16,814 | 63.5 (23.9) | 65.2 (24.1) | 66.9 (23.1) | 70.5 (23.6) | <0.0001 |
n-3 FA(g/day) | 16,814 | 0.68 (0.72) | 0.79 (0.64) | 0.78 (0.62) | 0.81 (0.69) | <0.0001 |
Saturated fat (g/day) | 16,814 | 27.1 (11.1) | 27.2 (10.7) | 27.9 (10.3) | 29.6 (10.3) | <0.0001 |
Alcohol (g/day) 3 | 16,814 | 4.2 (5.8) | 3.5 (4.6) | 3.1 (4.2) | 2.8 (4.0) | <0.0001 |
Baseline | Follow-Up | Mean Difference | p 1 | ||
---|---|---|---|---|---|
Metabolic score | Women | 0.80 (0.01) | 1.57 (0.02) | 0.76 (0.02) | <0.0001 |
Men | 1.10 (0.01) | 1.82 (0.02) | 0.72 (0.02) | <0.0001 | |
Waist circumference | Women | 83.0 (0.3) | 91.8 (0.2) | 8.8 (0.2) | <0.0001 |
Men | 94.4 (0.2) | 100.6 (0.2) | 6.2 (0.2) | <0.0001 | |
Triglycerides 2 | Women | 1.28 (0.01) | 1.41 (0.02) | 0.13 (0.01) | <0.0001 |
Men | 1.81 (0.02) | 1.68 (0.02) | −0.13 (0.02) | <0.0001 | |
HDL-C 2 | Women | 1.64 (0.01) | 1.64 (0.01) | −0.01 (0.01) | 0.30 |
Men | 1.33 (0.004) | 1.35 (0.01) | 0.02 (0.004) | <0.0001 | |
Systolic blood pressure | Women | 131.4 (0.2) | 136.5 (0.4) | 5.1 (0.3) | <0.0001 |
Men | 139.6 (0.2) | 142.1 (0.3) | 2.5 (0.3) | <0.0001 | |
Diastolic blood pressure | Women | 77.3 (0.2) | 75.5 (0.2) | −1.8 (0.2) | <0.0001 |
Men | 82.0 (0.2) | 81.7 (0.2) | −0.3 (0.2) | 0.08 | |
Glucose 2 | Women | 4.74 (0.03) | 5.19 (0.02) | 0.45 (0.03) | <0.0001 |
Men | 4.82 (0.03) | 5.43 (0.03) | 0.61 (0.03) | <0.0001 |
Model | Women | Men | |||||
---|---|---|---|---|---|---|---|
B | 95% CI | p | B | 95% CI | p | ||
Fatty fish | 1 | 0.03 | −0.004 to 0.07 | 0.09 | 0.01 | −0.03 to 0.05 | 0.7 |
2 | 0.06 | 0.02 to 0.10 | <0.01 | 0.02 | −0.03 to 0.06 | 0.5 | |
Lean fish | 1 | −0.05 | −0.09 to −0.01 | 0.02 | −0.10 | −0.15 to −0.05 | <0.0001 |
2 | −0.05 | −0.09 to −0.00 | 0.05 | −0.07 | −0.13 to −0.02 | <0.01 | |
Processed fish | 1 | 0.03 | −0.002 to 0.07 | 0.06 | 0.01 | −0.03 to 0.05 | 0.7 |
2 | 0.03 | −0.01 to 0.07 | 0.1 | <−0.01 | −0.04 to 0.04 | 1.0 |
Model | Women | Men | |||||
---|---|---|---|---|---|---|---|
B | 95% CI | p | B | 95% CI | p | ||
WC | |||||||
Fatty fish | 1 | 0.97 | 0.29 to 1.65 | <0.01 | 0.60 | 0.01 to 1.18 | 0.05 |
2 | 1.60 | 0.80 to 2.40 | <0.0001 | 0.99 | 0.32 to 1.65 | <0.01 | |
Lean fish | 1 | −0.22 | −1.09 to 0.65 | 0.6 | −1.15 | −1.96 to −0.35 | <0.01 |
2 | 0.05 | −0.93 to −1.03 | 0.9 | −0.45 | −1.34 to 0.44 | 0.3 | |
Processed fish | 1 | 0.004 | −0.68 to 0.69 | 1.0 | −0.09 | −0.66 to 0.48 | 0.8 |
2 | 0.06 | −0.74 to 0.86 | 0.9 | 0.07 | −0.57 to 0.71 | 0.8 | |
SBP | |||||||
Fatty fish | 1 | 0.32 | −0.36 to 0.99 | 0.4 | 0.18 | −0.49 to 0.85 | 0.6 |
2 | 0.21 | −0.55 to 0.96 | 0.6 | 0.04 | −0.70 to 0.78 | 0.9 | |
Lean fish | 1 | −0.44 | −1.22 to 0.34 | 0.3 | −0.86 | −1.66 to −0.06 | 0.04 |
2 | −0.31 | −1.15 to 0.53 | 0.5 | −0.78 | −1.64 to 0.08 | 0.08 | |
Processed fish | 1 | 0.62 | −0.06 to 1.30 | 0.1 | 0.49 | −0.15 to 1.13 | 0.1 |
2 | 0.09 | −0.66 to 0.83 | 0.8 | 0.19 | −0.51 to 0.90 | 0.6 | |
DBP | |||||||
Fatty fish | 1 | 0.29 | −0.17 to 0.75 | 0.2 | 0.10 | −0.37 to 0.56 | 0.7 |
2 | 0.37 | −0.15 to 0.89 | 0.2 | −0.10 | −0.61 to 0.42 | 0.7 | |
Lean fish | 1 | −0.23 | −0.76 to 0.31 | 0.4 | −0.63 | −1.18 to −0.07 | 0.03 |
2 | −0.18 | −0.76 to 0.40 | 0.5 | −0.43 | −1.04 to 0.17 | 0.2 | |
Processed fish | 1 | 0.20 | −0.26 to 0.66 | 0.4 | 0.13 | −0.31 to 0.57 | 0.6 |
2 | 0.26 | −0.25 to 0.78 | 0.3 | 0.09 | −0.40 to 0.58 | 0.7 |
Model | Women | Men | |||||
---|---|---|---|---|---|---|---|
B | 95% CI | p | B | 95% CI | p | ||
Triglyceride | |||||||
Fatty fish | 1 | 0.004 | −0.03 to 0.04 | 0.8 | −0.0003 | −0.05 to 0.046 | 1.0 |
2 | 0.001 | −0.04 to 0.04 | 1.0 | 0.02 | −0.03 to 0.07 | 0.5 | |
Lean fish | 1 | −0.04 | −0.08 to −0.00 | 0.04 | −0.11 | −0.17 to −0.06 | <0.0001 |
2 | −0.03 | −0.07 to 0.01 | 0.1 | −0.11 | −0.17 to −0.05 | 0.001 | |
Processed fish | 1 | 0.01 | −0.021 to 0.05 | 0.5 | 0.01 | −0.03 to 0.06 | 0.5 |
2 | 0.02 | −0.02 to 0.05 | 0.4 | 0.02 | −0.03 to 0.07 | 0.4 | |
HDL–C | |||||||
Fatty fish | 1 | 0.01 | −0.00 to 0.03 | 0.1 | 0.02 | 0.00 to 0.03 | 0.03 |
2 | 0.001 | −0.02 to 0.02 | 0.9 | 0.002 | −0.01 to 0.02 | 0.8 | |
Lean fish | 1 | 0.03 | 0.01 to 0.05 | <0.01 | 0.04 | 0.02 to 0.05 | <0.0001 |
2 | 0.02 | 0.00 to 0.04 | 0.05 | 0.03 | 0.01 to 0.05 | 0.005 | |
Processed fish | 1 | −0.02 | −0.04 to −0.01 | 0.01 | −0.02 | −0.04 to −0.01 | 0.001 |
2 | −0.02 | −0.04 to −0.01 | 0.01 | −0.02 | −0.04 to −0.01 | 0.002 | |
Glucose | |||||||
Fatty fish | 1 | 0.04 | −0.02 to 0.10 | 0.2 | 0.05 | −0.03 to 0.12 | 0.2 |
2 | 0.06 | −0.00 to 0.12 | 0.05 | 0.04 | −0.05 to 0.12 | 0.4 | |
Lean fish | 1 | −0.04 | −0.11 to 0.03 | 0.3 | 0.04 | −0.07 to 0.14 | 0.5 |
2 | −0.03 | −0.10 to 0.04 | 0.4 | 0.08 | −0.03 to 0.20 | 0.2 | |
Processed fish | 1 | 0.01 | −0.05 to 0.06 | 0.8 | 0.04 | −0.00 to 0.15 | 0.05 |
2 | −0.01 | −0.07 to 0.05 | 0.7 | 0.04 | −0.05 to 0.12 | 0.4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tørris, C.; Molin, M.; Småstuen, M.C. Lean Fish Consumption Is Associated with Beneficial Changes in the Metabolic Syndrome Components: A 13-Year Follow-Up Study from the Norwegian Tromsø Study. Nutrients 2017, 9, 247. https://doi.org/10.3390/nu9030247
Tørris C, Molin M, Småstuen MC. Lean Fish Consumption Is Associated with Beneficial Changes in the Metabolic Syndrome Components: A 13-Year Follow-Up Study from the Norwegian Tromsø Study. Nutrients. 2017; 9(3):247. https://doi.org/10.3390/nu9030247
Chicago/Turabian StyleTørris, Christine, Marianne Molin, and Milada Cvancarova Småstuen. 2017. "Lean Fish Consumption Is Associated with Beneficial Changes in the Metabolic Syndrome Components: A 13-Year Follow-Up Study from the Norwegian Tromsø Study" Nutrients 9, no. 3: 247. https://doi.org/10.3390/nu9030247