The Effect of a Diet Moderately High in Protein and Fiber on Insulin Sensitivity Measured Using the Dynamic Insulin Sensitivity and Secretion Test (DISST)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Experimental Protocol
2.2. Diets
2.3. Insulin Sensitivity Measurements
2.4. Laboratory Analyses
2.5. Analysis and Statistics
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- McAuley, K.A.; Murphy, E.; McLay, R.T.; Chisholm, A.; Story, G.; Mann, J.I.; Thomson, R.; Bell, D.; Williams, S.M.; Goulding, A.; et al. Implementation of a successful lifestyle intervention programme for New Zealand Maori to reduce the risk of type 2 diabetes and cardiovascular disease. Asia Pac. J. Clin. Nutr. 2003, 12, 423–426. [Google Scholar] [PubMed]
- Cornier, M.A.; Donahoo, W.T.; Pereira, R.; Gurevich, I.; Westergren, R.; Enerback, S.; Eckel, P.J.; Goalstone, M.L.; Hill, J.O.; Eckel, R.H.; et al. Insulin sensitivity determines the effectiveness of dietary macronutrient composition on weight loss in obese women. Obes. Res. 2005, 13, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Accurso, A.; Bernstein, R.K.; Dahlqvist, A.; Draznin, B.; Feinman, R.D.; Fine, E.J.; Gleed, A.; Jacobs, D.B.; Larson, G.; Lustig, R.H.; et al. Dietary carbohydrate restriction in type 2 diabetes mellitus and metabolic syndrome: Time for a critical appraisal. Nutr. Metab. 2008, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Krauss, R.M.; Blanche, P.J.; Rawlings, R.S.; Fernstrom, H.S.; Williams, P.T. Separate effects of reduced carbohydrate intake and weight loss on atherogenic dyslipidemia. Am. J. Clin. Nutr. 2006, 83, 1025–1031. [Google Scholar] [PubMed]
- Santesso, N.; Akl, E.A.; Bianchi, M.; Mente, A.; Mustafa, R.; Heels-Ansdell, D.; Schunemann, H.J. Effects of higher-versus lower-protein diets on health outcomes: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2012, 66, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Mann, J.; Cummings, J.H.; Englyst, H.N.; Key, T.; Liu, S.; Riccardi, G.; Summerbell, C.; Uauy, R.; van Dam, R.M.; Venn, B.; et al. FAO/WHO scientific update on carbohydrates in human nutrition: Conclusions. Eur. J. Clin. Nutr. 2007, 61 (Suppl. S1), S132–S137. [Google Scholar] [CrossRef] [PubMed]
- Ferrannini, E.; Mari, A. How to measure insulin sensitivity. J. Hypertens. 1998, 16, 895–906. [Google Scholar] [CrossRef] [PubMed]
- McAuley, K.A.; Mann, J.I.; Chase, J.G.; Lotz, T.F.; Shaw, G.M. Point: HOMA—Satisfactory for the time being: HOMA: The best bet for the simple determination of insulin sensitivity, until something better comes along. Diabetes Care 2007, 30, 2411–2413. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.C.; Matthews, D.R.; Hermans, M.P. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 1998, 21, 2191–2192. [Google Scholar] [CrossRef] [PubMed]
- McAuley, K.A.; Williams, S.M.; Mann, J.I.; Walker, R.J.; Lewis-Barned, N.J.; Temple, L.A.; Duncan, A.W. Diagnosing insulin resistance in the general population. Diabetes Care 2001, 24, 460–464. [Google Scholar] [CrossRef] [PubMed]
- McAuley, K.A.; Berkeley, J.E.; Docherty, P.D.; Lotz, T.F.; Te Morenga, L.A.; Shaw, G.M.; Williams, S.M.; Chase, J.G.; Mann, J.I. The dynamic insulin sensitivity and secretion test—A novel measure of insulin sensitivity. Metabolism 2011, 60, 1748–1756. [Google Scholar] [CrossRef] [PubMed]
- Te Morenga, L.; Williams, S.; Brown, R.; Mann, J. Effect of a relatively high-protein, high-fiber diet on body composition and metabolic risk factors in overweight women. Eur. J. Clin. Nutr. 2010, 64, 1323–1331. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health. Food and Nutrition Guidelines for Healthy Adults: A Background Paper; Ministry of Health: Wellington, New Zealand, 2003.
- The New Zealand Institute for Plant & Food Research Limited. New Zealand Food Composition Database: New Zealand FOODFiles 2006. The New Zealand Institute for Plant & Food Research Limited and Ministry of Health. Available online: http://www.foodcomposition.co.nz/foodfiles (accessed on 16 October 2017).
- Van Cauter, E.; Mestrez, F.; Sturis, J.; Polonsky, K.S. Estimation of insulin secretion rates from C-peptide levels. Comparison of individual and standard kinetic parameters for C-peptide clearance. Diabetes 1992, 41, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Lotz, T.F.; Chase, J.G.; McAuley, K.A.; Shaw, G.M.; Docherty, P.D.; Berkeley, J.E.; Williams, S.M.; Hann, C.E.; Mann, J.I. Design and clinical pilot testing of the model-based dynamic insulin sensitivity and secretion test (DISST). J. Diabetes Sci. Technol. 2010, 4, 1408–1423. [Google Scholar] [CrossRef] [PubMed]
- Assmann, G.; Schriewer, H.; Schmitz, G.; Hagele, E.O. Quantification of high-density-lipoprotein cholesterol by precipitation with phosphotungstic acid/MgCl2. Clin. Chem. 1983, 29, 2026–2030. [Google Scholar] [PubMed]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [PubMed]
- Cnaan, A.; Laird, N.; Slasor, P. Tutorial in biostatistics: Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data. Stat. Med. 1997, 16, 2349–2380. [Google Scholar] [CrossRef]
- Vickers, A.J.; Altman, D.G. Statistics notes: Analysing controlled trials with baseline and follow up measurements. BMJ 2001, 323, 1123–1124. [Google Scholar] [CrossRef] [PubMed]
- Lau, C.; Faerch, K.; Glumer, C.; Tetens, I.; Pedersen, O.; Carstensen, B.; Jorgensen, T.; Borch-Johnsen, K. Dietary glycemic index, glycemic load, fiber, simple sugars, and insulin resistance: The Inter99 study. Diabetes Care 2005, 28, 1397–1403. [Google Scholar] [CrossRef] [PubMed]
- McKeown, N.M.; Meigs, J.B.; Liu, S.; Saltzman, E.; Wilson, P.W.; Jacques, P.F. Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framingham Offspring Cohort. Diabetes Care 2004, 27, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Ylonen, K.; Saloranta, C.; Kronberg-Kippila, C.; Groop, L.; Aro, A.; Virtanen, S.M. Associations of dietary fiber with glucose metabolism in nondiabetic relatives of subjects with type 2 diabetes: The botnia Dietary study. Diabetes Care 2003, 26, 1979–1985. [Google Scholar] [CrossRef] [PubMed]
- Liese, A.D.; Roach, A.K.; Sparks, K.C.; Marquart, L.; D’Agostino, R.B., Jr.; Mayer-Davis, E.J. Whole-grain intake and insulin sensitivity: The insulin resistance atherosclerosis study. Am. J. Clin. Nutr. 2003, 78, 965–971. [Google Scholar] [PubMed]
- Steffen, L.M.; Jacobs, D.R., Jr.; Murtaugh, M.A.; Moran, A.; Steinberger, J.; Hong, C.P.; Sinaiko, A.R. Whole grain intake is associated with lower body mass and greater insulin sensitivity among adolescents. Am. J. Epidemiol. 2003, 158, 243–250. [Google Scholar] [CrossRef] [PubMed]
- McAuley, K.A.; Williams, S.M.; Mann, J.I.; Goulding, A.; Chisholm, A.; Wilson, N.; Story, G.; McLay, R.T.; Harper, M.J.; Jones, I.E. Intensive lifestyle changes are necessary to improve insulin sensitivity: A randomized controlled trial. Diabetes Care 2002, 25, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Uusitupa, M.; Lindi, V.; Louheranta, A.; Salopuro, T.; Lindstrom, J.; Tuomilehto, J. Long-term improvement in insulin sensitivity by changing lifestyles of people with impaired glucose tolerance: 4-Year results from the finnish diabetes prevention study. Diabetes 2003, 52, 2532–2538. [Google Scholar] [CrossRef] [PubMed]
- Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A.; Nathan, D.M. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar] [PubMed]
- Pan, X.R.; Li, G.W.; Hu, Y.H.; Wang, J.X.; Yang, W.Y.; An, Z.X.; Hu, Z.X.; Lin, J.; Xiao, J.Z.; Cao, H.B.; et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and diabetes study. Diabetes Care 1997, 20, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Tuomilehto, J.; Lindstrom, J.; Eriksson, J.G.; Valle, T.T.; Hamalainen, H.; Ilanne-Parikka, P.; Keinanen-Kiukaanniemi, S.; Laakso, M.; Louheranta, A.; Rastas, M.; et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 2001, 344, 1343–1350. [Google Scholar] [CrossRef] [PubMed]
- Virkamaki, A.; Ueki, K.; Kahn, C.R. Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J. Clin. Investig. 1999, 103, 931–943. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, P.R.; Kahn, B.B. Glucose transporters and insulin action—Implications for insulin resistance and diabetes mellitus. N. Engl. J. Med. 1999, 341, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Axelsen, M.; Kendall, C.W.; Augustin, L.S.; Vuksan, V.; Smith, U. Dietary fibre, lente carbohydrates and the insulin-resistant diseases. Br. J. Nutr. 2000, 83 (Suppl. S1), S157–S163. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.X.; Chen, G.R.; Xu, H.; Ge, R.S.; Lin, J. Activation of the AMP activated protein kinase by short-chain fatty acids is the main mechanism underlying the beneficial effect of a high fiber diet on the metabolic syndrome. Med. Hypotheses. 2009, 74, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Fukagawa, N.K.; Anderson, J.W.; Hageman, G.; Young, V.R.; Minaker, K.L. High-carbohydrate, high-fiber diets increase peripheral insulin sensitivity in healthy young and old adults. Am. J. Clin. Nutr. 1990, 52, 524–528. [Google Scholar] [PubMed]
- Chandalia, M.; Garg, A.; Lutjohann, D.; von Bergmann, K.; Grundy, S.M.; Brinkley, L.J. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N. Engl. J. Med. 2000, 342, 1392–1398. [Google Scholar] [CrossRef] [PubMed]
- Mann, J.I.; Kinmonth, A.L.; Todd, E.; Angus, R.M.; Simpson, H.C.; Hockaday, T.D. High fibre diets and diabetes. Lancet 1981, 1, 731–732. [Google Scholar] [CrossRef]
- Pereira, M.A.; Jacobs, D.R., Jr.; Pins, J.J.; Raatz, S.K.; Gross, M.D.; Slavin, J.L.; Seaquist, E.R. Effect of whole grains on insulin sensitivity in overweight hyperinsulinemic adults. Am. J. Clin. Nutr. 2002, 75, 848–855. [Google Scholar] [PubMed]
- Andersson, A.; Tengblad, S.; Karlstrom, B.; Kamal-Eldin, A.; Landberg, R.; Basu, S.; Aman, P.; Vessby, B. Whole-grain foods do not affect insulin sensitivity or markers of lipid peroxidation and inflammation in healthy, moderately overweight subjects. J. Nutr. 2007, 137, 1401–1407. [Google Scholar] [PubMed]
- Weickert, M.O.; Mohlig, M.; Schofl, C.; Arafat, A.M.; Otto, B.; Viehoff, H.; Koebnick, C.; Kohl, A.; Spranger, J.; Pfeiffer, A.F.H. Cereal fiber improves whole-body insulin sensitivity in overweight and obese women. Diabetes Care 2006, 29, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Juntunen, K.S.; Laaksonen, D.E.; Poutanen, K.S.; Niskanen, L.K.; Mykkanen, H.M. High-fiber rye bread and insulin secretion and sensitivity in healthy postmenopausal women. Am. J. Clin. Nutr. 2003, 77, 385–391. [Google Scholar] [PubMed]
- Jarvi, A.E.; Karlstrom, B.E.; Granfeldt, Y.E.; Bjorck, I.E.; Asp, N.G.; Vessby, B.O. Improved glycemic control and lipid profile and normalized fibrinolytic activity on a low-glycemic index diet in type 2 diabetic patients. Diabetes Care 1999, 22, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Ostman, E.M.; Frid, A.H.; Groop, L.C.; Bjorck, I.M. A dietary exchange of common bread for tailored bread of low glycaemic index and rich in dietary fibre improved insulin economy in young women with impaired glucose tolerance. Eur. J. Clin. Nutr. 2006, 60, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Kiens, B.; Richter, E.A. Types of carbohydrate in an ordinary diet affect insulin action and muscle substrates in humans. Am. J. Clin. Nutr. 1996, 63, 47–53. [Google Scholar] [PubMed]
- Piatti, P.M.; Monti, F.; Fermo, I.; Baruffaldi, L.; Nasser, R.; Santambrogio, G.; Librenti, M.C.; Galli-Kienle, M.; Pontiroli, A.E.; Pozza, G. Hypocaloric high-protein diet improves glucose oxidation and spares lean body mass: Comparison to hypocaloric high-carbohydrate diet. Metabolism 1994, 43, 1481–1487. [Google Scholar] [CrossRef]
- Farnsworth, E.; Luscombe, N.D.; Noakes, M.; Wittert, G.; Argyiou, E.; Clifton, P.M. Effect of a high-protein, energy-restricted diet on body composition, glycemic control, and lipid concentrations in overweight and obese hyperinsulinemic men and women. Am. J. Clin. Nutr. 2003, 78, 31–39. [Google Scholar] [PubMed]
- Parker, B.; Noakes, M.; Luscombe, N.; Clifton, P. Effect of a high-protein, high-monounsaturated fat weight loss diet on glycemic control and lipid levels in type 2 diabetes. Diabetes Care 2002, 25, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Gannon, M.C.; Nuttall, F.Q.; Saeed, A.; Jordan, K.; Hoover, H. An increase in dietary protein improves the blood glucose response in persons with type 2 diabetes. Am. J. Clin. Nutr. 2003, 78, 734–741. [Google Scholar] [PubMed]
- Tremblay, F.; Lavigne, C.; Jacques, H.; Marette, A. Role of dietary proteins and amino acids in the pathogenesis of insulin resistance. Annu. Rev. Nutr. 2007, 27, 293–310. [Google Scholar] [CrossRef] [PubMed]
- Hattersley, J.; Pfeiffer, A.; Roden, M.; Petzke, K.; Hoffmann, D.; Rudovich, N.; Randeva, H.; Vatish, M.; Osterhoff, M.; Goegebakan, O.; et al. Modulation of amino acid metabolic signatures by supplemented isoenergetic diets differing in protein and cereal fiber content. J. Clin. Endocrinol. Metab. 2014, 99, E2599–E2609. [Google Scholar] [CrossRef] [PubMed]
- Linn, T.; Santosa, B.; Gronemeyer, D.; Aygen, S.; Scholz, N.; Busch, M.; Bretzel, R.G. Effect of long-term dietary protein intake on glucose metabolism in humans. Diabetologia 2000, 43, 1257–1265. [Google Scholar] [CrossRef] [PubMed]
- Weickert, M.O.; Roden, M.; Isken, F.; Hoffmann, D.; Nowotny, P.; Osterhoff, M.; Blaut, M.; Alpert, C.; Gogebakan, O.; Bumke-Vogt, C.; et al. Effects of supplemented isoenergetic diets differing in cereal fiber and protein content on insulin sensitivity in overweight humans. Am. J. Clin. Nutr. 2011, 94, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Chiu, S.; Williams, P.T.; Dawson, T.; Bergman, R.N.; Stefanovski, D.; Watkins, S.M.; Krauss, R.M. Diets high in protein or saturated fat do not affect insulin sensitivity or plasma concentrations of lipids and lipoproteins in overweight and obese adults. J. Nutr. 2014, 144, 1753–1759. [Google Scholar] [CrossRef] [PubMed]
- Gadgil, M.D.; Appel, L.J.; Yeung, E.; Anderson, C.A.; Sacks, F.M.; Miller, E.R. The effects of carbohydrate, unsaturated fat, and protein intake on measures of insulin sensitivity: Results from the OmniHeart trial. Diabetes Care 2013, 36, 1132–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krebs, M.; Krssak, M.; Bernroider, E.; Anderwald, C.; Brehm, A.; Meyerspeer, M.; Nowotny, P.; Roth, E.; Waldhausl, W.; Roden, M. Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes 2002, 51, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Flakoll, P.J.; Wentzel, L.S.; Rice, D.E.; Hill, J.O.; Abumrad, N.N. Short-term regulation of insulin-mediated glucose utilization in four-day fasted human volunteers: Role of amino acid availability. Diabetologia 1992, 35, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Patti, M.E.; Brambilla, E.; Luzi, L.; Landaker, E.J.; Kahn, C.R. Bidirectional modulation of insulin action by amino acids. J. Clin. Investig. 1998, 101, 1519–1529. [Google Scholar] [CrossRef] [PubMed]
- Yoon, M.-S. The emerging role of branched-chain amino acids in insulin resistance and metabolism. Nutrients 2016, 8, 405. [Google Scholar] [CrossRef] [PubMed]
- Layman, D.K.; Baum, J.I. Dietary protein impact on glycemic control during weight loss. J. Nutr. 2004, 134, 968S–973S. [Google Scholar] [PubMed]
- Raben, A.; Agerholm-Larsen, L.; Flint, A.; Holst, J.J.; Astrup, A. Meals with similar energy densities but rich in protein, fat, carbohydrate, or alcohol have different effects on energy expenditure and substrate metabolism but not on appetite and energy intake. Am. J. Clin. Nutr. 2003, 77, 91–100. [Google Scholar] [PubMed]
- Nuttall, F.Q.; Gannon, M.C.; Wald, J.L.; Ahmed, M. Plasma glucose and insulin profiles in normal subjects ingesting diets of varying carbohydrate, fat, and protein content. J. Am. Coll. Nutr. 1985, 4, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Nuttall, F.Q.; Ngo, A.; Gannon, M.C. Regulation of hepatic glucose production and the role of gluconeogenesis in humans: Is the rate of gluconeogenesis constant? Diabetes Metab. Res. Rev. 2008, 24, 438–458. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.T.; Kola, B.; Korbonits, M. AMPK as a mediator of hormonal signalling. J. Mol. Endocrinol. 2010, 44, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Harber, M.P.; Schenk, S.; Barkan, A.L.; Horowitz, J.F. Alterations in carbohydrate metabolism in response to short-term dietary carbohydrate restriction. Am. J. Physiol. Endocrinol. Metab. 2005, 289, E306–E312. [Google Scholar] [CrossRef] [PubMed]
- Bryant, N.J.; Govers, R.; James, D.E. Regulated transport of the glucose transporter GLUT4. Nat. Rev. Mol. Cell Biol. 2002, 3, 267–277. [Google Scholar] [CrossRef] [PubMed]
Standard Diet Group | HPHFib Group | |
---|---|---|
n | 39 | 44 |
Age (years) 1 | 39 (18–65) | 44 (21–61) |
Body Mass Index (BMI) (kg/m2) 2 | 32.3 (5.1) | 32.9 (5.5) |
Weight (kg) 2 | 89.1 (14.3) | 87.8 (16.0) |
Systolic blood pressure (mm Hg) 2 | 120 (14) | 119 (14) |
Diastolic blood pressure (mm Hg) 2 | 78 (8) | 78 (8) |
Glucose status | ||
Normal | 36 (92.3) | 38 (86.4) |
Impaired glucose tolerance | 2 (5.1) | 6 (13.6) |
Diabetes | 1 (2.6) | |
Menstrual Status | ||
Premenopausal | 22 (56.4) | 26 (59.1) |
Post-menopausal | 16 (41.0) | 12 (27.3) |
Hysterectomy | 1 (2.6) | 6 (13.6) |
Smoking history | ||
Never smoked | 24 (61.5) | 31 (70.5) |
Former smoker | 15 (38.5) | 11 (25.0) |
Current smoker | 0 | 2 (4.5) |
On metformin | 2 (5.1) | 2 (4.5) |
On lipid lowering medications | 3 (7.7) | 3 (6.8) |
On blood pressure medications | 4 (10.3 | 4 (9.1) |
Insulin resistance 3 | 13 (33.3) | 23 (52.3) |
DISST Insulin resistance 4 | 31% | 28% |
Baseline Mean (SD) | Week 4 Mean (SD) | Week 10 Mean (SD) | Within Treatment p-Value 1 | Overall Effect (95% CI) 2 | p-Value for Overall Effect | |
---|---|---|---|---|---|---|
Energy (kJ) | ||||||
StdD | 8660 (2447) | 7252 (1723) | 7418 (1845) | 0.0081 | ||
HPHFib | 8332 (2414) | 7549 (1473) | 7155 (1218) | 0.0064 | 193 (−408, 794) | 0.386 |
Protein (% TE) | ||||||
StdD | 18 (3) | 21 (6) | 19 (4) | 0.6986 | ||
HPHFib | 18 (4) | 25 (4) | 24 (5) | <0.0001 | 5.0 (3.2, 6.8) | < 0.0001 |
Fat (% TE) | ||||||
StdD | 32 (7) | 28 (5) | 30 (6) | 0.4272 | ||
HPHFib | 31 (6) | 25 (6) | 25 (5) | 0.0002 | −4.5 (−6.8, −2.3) | <0.0001 |
Saturated fat (% TE) | ||||||
StdD | 13 (4) | 11 (3) | 11 (3) | 0.033 | ||
HPHFib | 12 (3) | 8 (3) | 8 (3) | <0.0001 | −3.1 (−4.2, −2.0) | <0.0001 |
Available carbohydrate (% TE) | ||||||
StdD | 45 (8) | 47 (8) | 46 (6) | 0.8512 | ||
HPHFib | 46 (6) | 45 (5) | 45 (5) | 0.8963 | −1.7 (−4.3, 1.0) | 0.211 |
Dietary fibre (g/day) | ||||||
StdD | 24 (7) | 24 (8) | 22 (7) | 0.2023 | ||
HPHFib | 24 (6) | 33 (9) | 30 (7) | 0.0004 | 9.6 (6.0, 13.1) | <0.0001 |
Soluble fibre (g/day) | ||||||
StdD | 11 (3) | 10 (3) | 10 (4) | 0.2454 | ||
HPHFib | 11 (4) | 14 (4) | 13 (3) | 0.0874 | 3.6 (2.0, 5.1) | <0.0001 |
Insoluble fibre (g/day) | ||||||
StdD | 13 (4) | 13 (5) | 12 (5) | 0.2838 | ||
HPHFib | 12 (3) | 18 (5) | 16 (4) | 0.0006 | 5.0 (2.9, 7.0) | 0.0001 |
Standard Diet | HPHFib | Difference between Groups Adjusted for Baseline Value 2 | p-Value for Overall Effect | |
---|---|---|---|---|
Weight (kg) | ||||
Baseline | 89.2 (14.7) | 85.4 (14.8) | ||
Week 4 | 89.0 (15.2) | 84.2 (14.5) | −1.3 (−1.8, −0.7) | <0.0001 |
Week 10 | 89.0 (15.1) | 83.9 (14.5) | −1.1 (−1.9, −0.3) | 0.006 |
Fat mass (kg) | ||||
Baseline | 40.9 (11.2) | 39.1 (11.2) | ||
Week 10 | 41.2 (11.5) | 38.1 (10.8) | −1.0 (−1.8, −0.2) | 0.014 |
Fat mass (%) | ||||
Baseline | 45.8 (6.3) | 45.6 (6.0) | ||
Week 10 | 46.2 (6.3) | 45.0 (6.1) | −0.6 (−1.30, 0.02) | 0.059 |
Truncal fat mass (kg) | ||||
Baseline | 21 (6.7) | 19.9 (6.0) | ||
Week 10 | 21.3 (6.9) | 19.3 (5.8) | −0.7 (−1.3, −0.1) | 0.034 |
Lean mass (kg) | ||||
Baseline | 44.3 (5.2) | 42.5 (4.8) | ||
Week 10 | 43.9 (5.1) | 42.4 (4.7) | 0.1 (−0.5, 0.6) | 0.843 |
Waist circumference (cm) | ||||
Baseline | 96.6 (11.5) | 94.5 (13.3) | ||
Week 4 | 95.6 (11.3) | 93.2 (13.1) | −0.8 (−2.3, 0.6) | 0.266 |
Week 10 | 95.8 (12.0) | 92.3 (12.6) | −1.3 (−2.8, 0.2) | 0.084 |
Std Diet | HPHFib | Difference between Groups Adjusted for Baseline Value 1 | p-Value | Difference between Groups Adjusted for Baseline Value and Weight Change 1 | p-Value for Overall Effect | |
---|---|---|---|---|---|---|
DISST IS (e−4L/pmol/min) | ||||||
Baseline | 0.95 (0.33, 2.63) | 0.97 (0.39, 2.61) | ||||
Week 4 | 1.02 (0.38, 2.43) | 0.91 (0.19, 2.47) | −9.7% (−24.2%, 7.4%) | 0.245 | −13.6% (−29.5%, 6.1%) | 0.16 |
Week 10 | 0.98 (0.35, 3.14) | 0.86 (0.25, 1.8) | −13.4% (−26.4%, 2%) | 0.084 | −19.3% (−31.8%, −4.5%) | 0.013 |
Overall1 | −12.1% (−23.5%, 1%) | 0.069 | −17.8% (−28.6%, −5.3%) | 0.007 | ||
Basal insulin secretion, Ub, (pmol/min) | ||||||
Baseline | 215 (95, 380) | 229 (94, 512) | ||||
Week 4 | 205 (99, 384) | 229 (109, 429) | 1.3% (−6%, 9.3%) | 0.727 | 6.4% (−2.4%, 16%) | 0.154 |
Week 10 | 218 (91, 444) | 206 (88, 462) | −12.1% (−20.4%, −2.9%) | 0.012 | −9.2% (−18.3%, 1%) | 0.074 |
Overall | Significant time × diet effect | |||||
1st phase AUC insulin secretion, AUC5−15, (pmol) | ||||||
Baseline | 4913 (1164, 16037) | 5788 (2193, 13638) | ||||
Week 4 | 4619 (1195, 14788) | 6028 (1686, 15186) | 11% (−2.1%, 25.8%) | 0.101 | 9.4% (−5.5%, 26.7%) | 0.223 |
Week 10 | 4793 (1503, 13921) | 5899 (2485, 16160) | 6.9% (−3.8%, 18.8%) | 0.209 | 7.2% (−4.1%, 19.9%) | 0.216 |
Overall | 9.2% (−0.5%, 19.9%) | 0.064 | 9.2% (−1.2%, 20.7%) | 0.084 | ||
2nd phase AUC insulin secretion, U2nd, (pmol) | ||||||
Baseline | 6143 (1588, 12350) | 6388 (2750, 15932) | ||||
Week 4 | 5919 (1850, 12631) | 6470 (2269, 17434) | 1.9% (−8.3%, 13.3%) | 0.719 | 5% (−7.2%, 18.9%) | 0.433 |
Week 10 | 6088 (1933, 13892) | 5969 (2238, 19210) | −6% (−16.5%, 5.7%) | 0.297 | −6.6% (−17.9%, 6.2%) | 0.29 |
Overall | −2% (−11.2%, 8.1%) | 0.688 | −1.8% (−11.9%, 9.3%) | 0.734 | ||
Total insulin secretion, Utotal, (pmol/L) | ||||||
Baseline | 15266 (7175, 27275) | 16456 (6793, 37618) | ||||
Week 4 | 14538 (7156, 25774) | 16927 (8061, 39962) | 5.4% (−1.6%, 12.9%) | 0.133 | 7.1% (−1.2%, 16.2%) | 0.096 |
Week 10 | 15102 (7234, 27159) | 15835 (6231, 43324) | −3% (−10%, 4.4%) | 0.411 | −2.9% (−10.4%, 5.3%) | 0.473 |
Overall | Significant time*diet effect |
Standard Diet | HPHFib | Difference Adjusted for Baseline Value 1 | p-Value | Difference Adjusted for Baseline Value and Weight Change 1 | p-Value for Overall Effect | |
---|---|---|---|---|---|---|
Fasting plasma glucose (mmol/L) | ||||||
Baseline | 4.7 (3.8, 8.1) | 4.7 (4.1, 5.7) | ||||
Week 4 | 4.7 (3.6, 6.4) | 4.6 (3.8, 5.9) | −0.5% (−3.3%, 2.4%) | 0.74 | 1.2% (−2%, 4.5%) | 0.449 |
Week 10 | 4.8 (3.9, 6.1) | 4.6 (3.8, 5.8) | −3.8% (−6.7%, −0.8%) | 0.014 | −3.1% (−6.3%, 0.1%) | 0.057 |
Fasting plasma insulin (pmol/L) | ||||||
Baseline | 61.2 (18.8, 174.3) | 77.5 (11.8, 729.9) | ||||
Week 4 | 57.0 (13.2, 206.3) | 66.1 (13.9, 190.3) | −4.1% (−20.2%, 15.2%) | 0.649 | 4.7% (−15.1%, 29.1%) | 0.664 |
Week 10 | 59.8 (20.8, 197.9) | 63.4 (9, 206.3) | −10% (−26.6%, 10.2%) | 0.302 | −2.1% (-21%, 21.3%) | 0.844 |
McAuley IS index | ||||||
Baseline | 7.26 (3.3, 10.26) | 6.69 (3.38, 14.23) | ||||
Week 4 | 7.45 (3.6, 13.95) | 7.15 (4.61, 11.89) | 4.2% (−3.6%, 12.6%) | 0.295 | 0.4% (−8.1%, 9.6%) | 0.932 |
Week 10 | 7.20 (3.55, 12.81) | 7.30 (3.85, 15.26) | 8.5% (−0.1%, 17.9%) | 0.053 | 5.3% (−3.6%, 15%) | 0.245 |
HOMA−IR Index | ||||||
Baseline | 1.28 (0.39, 3.69) | 1.60 (0.24, 12.35) | ||||
Week 4 | 1.19 (0.28, 4.18) | 1.37 (0.29, 3.79) | −4.4% (−20.2%, 14.5%) | 0.621 | 4.4% (−15.1%, 28.3%) | 0.68 |
Week 10 | 1.26 (0.44, 4.08) | 1.31 (0.18, 3.98) | −11.2% (−27.3%, 8.4%) | 0.24 | −3.8% (−22.1%, 18.8%) | 0.714 |
Standard Diet | HPHFib | Difference Adjusted for Baseline Value 1 | p-Value | Difference Adjusted for Baseline Value and Weight Change 1 | p-Value | |
---|---|---|---|---|---|---|
Total cholesterol (mmol/L) | ||||||
Baseline | 4.87 (1.45) | 4.57 (0.82) | ||||
Week 4 | 4.92 (1.58) | 4.32 (0.82) | −0.28 (−0.51, −0.04) | 0.021 | −0.25 (−0.48, −0.02) | 0.031 |
Week 10 | 5.03 (1.62) | 4.36 (0.79) | −0.40 (−0.66, −0.15) | 0.002 | −0.36 (−0.63, −0.09) | 0.01 |
LDL cholesterol (mmol/L) | ||||||
Baseline | 2.94 (1.00) | 2.8 (0.74) | ||||
Week 4 | 2.92 (0.89) | 2.69 (0.77) | −0.11 (−0.3, 0.09) | 0.274 | −0.15 (−0.37, 0.07) | 0.173 |
Week 10 | 3.00 (0.98) | 2.66 (0.71) | −0.25 (−0.48, −0.03) | 0.029 | −0.23 (−0.47, 0.01) | 0.065 |
HDL cholesterol (mmol/L) | ||||||
Baseline | 1.13 (0.29) | 1.19 (0.34) | ||||
Week 4 | 1.10 (0.28) | 1.09 (0.28) | −0.07 (−0.13, −0.02) | 0.008 | −0.07 (−0.13, −0.01) | 0.032 |
Week 10 | 1.12 (0.29) | 1.17 (0.34) | −0.02 (−0.09, 0.05) | 0.534 | −0.02 (−0.1, 0.05) | 0.486 |
Triglycerides (mmol/L) | ||||||
Baseline | 1.42 (1.45) | 1.32 (0.60) | ||||
Week 4 | 1.37 (0.95) | 1.21 (0.51) | −0.09 (−0.28, 0.1) | 0.351 | −0.1 (−0.3, 0.09) | 0.295 |
Week 10 | 1.42 (1.03) | 1.21 (0.68) | −0.14 (−0.38, 0.11) | 0.272 | −0.09 (−0.35, 0.17) | 0.506 |
Systolic BP (mmHg) | ||||||
Baseline | 120.7 (14.2) | 118.7 (15.0) | ||||
Week 4 | 124.1 (13.9) | 117.0 (15.9) | −3.8 (−11.0, 3.5) | 0.299 | −5.1 (−13.4, 3.1) | 0.217 |
Week 10 | 121.9 (15.0) | 117.1 (12.8) | −2.0 (−7.4, 3.4) | 0.469 | −1.5 (−7.2, 4.3) | 0.607 |
Diastolic BP (mmHg) | ||||||
Baseline | 77.8 (8.3) | 78.2 (8.1) | ||||
Week 4 | 76.1 (8.1) | 75.2 (10.2) | −0.78 (−5.3, 3.7) | 0.972 | −1.1 (−6.0, 3.8) | 0.641 |
Week 10 | 75.7 (8.1) | 74.8 (8.0) | −0.27 (−3.6, 3.1) | 0.875 | −0.1 (−3.6, 3.5) | 0.972 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Te Morenga, L.; Docherty, P.; Williams, S.; Mann, J. The Effect of a Diet Moderately High in Protein and Fiber on Insulin Sensitivity Measured Using the Dynamic Insulin Sensitivity and Secretion Test (DISST). Nutrients 2017, 9, 1291. https://doi.org/10.3390/nu9121291
Te Morenga L, Docherty P, Williams S, Mann J. The Effect of a Diet Moderately High in Protein and Fiber on Insulin Sensitivity Measured Using the Dynamic Insulin Sensitivity and Secretion Test (DISST). Nutrients. 2017; 9(12):1291. https://doi.org/10.3390/nu9121291
Chicago/Turabian StyleTe Morenga, Lisa, Paul Docherty, Sheila Williams, and Jim Mann. 2017. "The Effect of a Diet Moderately High in Protein and Fiber on Insulin Sensitivity Measured Using the Dynamic Insulin Sensitivity and Secretion Test (DISST)" Nutrients 9, no. 12: 1291. https://doi.org/10.3390/nu9121291
APA StyleTe Morenga, L., Docherty, P., Williams, S., & Mann, J. (2017). The Effect of a Diet Moderately High in Protein and Fiber on Insulin Sensitivity Measured Using the Dynamic Insulin Sensitivity and Secretion Test (DISST). Nutrients, 9(12), 1291. https://doi.org/10.3390/nu9121291