Association between Vitamin Intake during Pregnancy and Risk of Small for Gestational Age
Abstract
:1. Introduction
2. Material and Methods
2.1. Cases
2.2. Controls
2.3. Data Collection
2.4. Dietary Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Interpretation and Clinical Significance of Findings
4.1.1. Vitamin A
4.1.2. Vitamin D
4.1.3. Vitamin E
4.1.4. Vitamin B Complex
4.1.5. Vitamin C
5. Multivitamin/Mineral Supplements
6. Strengths and Limitations
7. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Grisaru-Granovsky, S.; Reichman, B.; Lerner-Geva, L.; Boyko, V.; Hammerman, C.; Samueloff, A.; Schimmel, M.S.; Israel Neonatal Network. Mortality and morbidity in preterm small-for-gestational-age infants: A population-based study. Am. J. Obstet. Gynecol. 2012, 206, 150.e1–150.e7. [Google Scholar] [CrossRef] [PubMed]
- Kozuki, N.; Katz, J.; Lee, A.C.; Vogel, J.P.; Silveira, M.F.; Sania, A.; Stevens, G.A.; Cousens, S.; Caulfield, L.E.; Christian, P.; et al. Short maternal stature increases risk of small-for-gestational-age and preterm births in low-and middle-income countries: Individual participant data meta-analysis and population attributable fraction. J. Nutr. 2015, 145, 2542–2550. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.; Alramadhan, S.; Iniguez, C.; Duijts, L.; Jaddoe, V.W.; Den Dekker, H.T.; Crozier, S.; Godfrey, K.M.; Hindmarsh, P.; Vik, T.; et al. A systematic review of maternal smoking during pregnancy and fetal measurements with meta-analysis. PLoS ONE 2017, 12, e0170946. [Google Scholar] [CrossRef] [PubMed]
- Aghamohammadi, A.; Zafari, M. Crack abuse during pregnancy: Maternal, fetal and neonatal complication. J. Matern. Fetal Neonatal Med. 2016, 29, 795–797. [Google Scholar] [CrossRef] [PubMed]
- Herd, D.; Gruenewald, P.; Remer, L.; Guendelman, S. Community level correlates of low birthweight among African American, Hispanic and White women in California. Matern. Child Health J. 2015, 19, 2251–2260. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, M.; Suzuki, S. Habitual Alcohol Consumption during Pregnancy and Perinatal Outcomes. J. Nippon Med. Sch. 2015, 82, 163–165. [Google Scholar] [CrossRef] [PubMed]
- Katsuragi, S.; Okamura, T.; Kokubo, Y.; Ikeda, T.; Miyamoto, Y. Birthweight and cardiovascular risk factors in a Japanese general population. J. Obstet. Gynaecol. Res. 2017, 43, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Khoushabi, F.; Saraswathi, G. Impact of nutritional status on birth weight of neonates in Zahedan City, Iran. Nutr. Res. Pract. 2010, 4, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Werner, E.F.; Savitz, D.A.; Janevic, T.M.; Ehsanipoor, R.M.; Thung, S.F.; Funai, E.F.; Lipkind, H.S. Mode of delivery and neonatal outcomes in preterm, small-for-gestational-age newborns. Obstet. Gynecol. 2012, 120, 560–564. [Google Scholar] [CrossRef] [PubMed]
- OECD. OECD Family Databse. CO1.3: Low Birth Weight. 2016. Available online: http://www.oecd.org/els/family/CO_1_3_Low_birth_weight.pdf (accessed on 24 January 2017).
- Delnord, M.; Blondel, B.; Zeitlin, J. What contributes to disparities in the preterm birth rate in European countries? Curr. Opin. Obstet. Gynecol. 2015, 27, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Morrison, J.L.; Regnault, T.R. Nutrition in Pregnancy: Optimising Maternal Diet and Fetal Adaptations to Altered Nutrient Supply. Nutrients 2016, 8, 342. [Google Scholar] [CrossRef] [PubMed]
- Dewey, K.G. Reducing stunting by improving maternal, infant and young child nutrition in regions such as South Asia: Evidence, challenges and opportunities. Matern. Child Nutr. 2016, 12, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Virmani, D.; Jaipal, M.; Gupta, S.; Toteja, G.; Investigators of LBW Micronutrient Study Group. Vitamin A status of low and normal birth weight infants at birth and in early infancy. Indian Pediatr. 2013, 50, 951–953. [Google Scholar] [CrossRef] [PubMed]
- Leffelaar, E.R.; Vrijkotte, T.G.; van Eijsden, M. Maternal early pregnancy vitamin D status in relation to fetal and neonatal growth: Results of the multi-ethnic Amsterdam Born Children and their Development cohort. Br. J. Nutr. 2010, 104, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Biesalski, H.K.; Tinz, J. Multivitamin/mineral supplements: Rationale and safety—A systematic review. Nutrition 2017, 33, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Haider, B.A.; Bhutta, Z.A. Multiple-micronutrient supplementation for women during pregnancy. Cochrane Database Syst. Rev. 2006, 18. [Google Scholar] [CrossRef]
- Rumbold, A.; Ota, E.; Nagata, C.; Shahrook, S.; Crowther, C.A. Vitamin C supplementation in pregnancy. Cochrane Database Syst. Rev. 2005, 18. [Google Scholar] [CrossRef]
- Wang, S.; Ge, X.; Zhu, B.; Xuan, Y.; Huang, K.; Rutayisire, E.; Mao, L.; Huang, S.; Yan, S.; Tao, F. Maternal Continuing Folic Acid Supplementation after the First Trimester of Pregnancy Increased the Risk of Large-for-Gestational-Age Birth: A Population-Based Birth Cohort Study. Nutrients 2016, 8, 493. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Wang, L.; Li, Z.; Chen, S.; Li, N.; Ye, R. Effects of vitamin D supplementation during pregnancy on neonatal vitamin D and calcium concentrations: A systematic review and meta-analysis. Nutr. Res. 2015, 35, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Fu, L.; Hao, J.H.; Yu, Z.; Zhu, P.; Wang, H.; Xu, Y.Y.; Zhang, C.; Tao, F.B.; Xu, D.X. Maternal vitamin D deficiency during pregnancy elevates the risks of small for gestational age and low birth weight infants in Chinese population. J. Clin. Endocrinol. Metab. 2015, 100, 1912–1919. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.M.; Beddaoui, M.; Kramer, M.S.; Platt, R.W.; Basso, O.; Kahn, S.R. Maternal antioxidant levels in pregnancy and risk of preeclampsia and small for gestational age birth: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0135192. [Google Scholar] [CrossRef] [PubMed]
- Dwarkanath, P.; Barzilay, J.R.; Thomas, T.; Thomas, A.; Bhat, S.; Kurpad, A.V. High folate and low vitamin B-12 intakes during pregnancy are associated with small-for-gestational age infants in South Indian women: A prospective observational cohort study. Am. J. Clin. Nutr. 2013, 98, 1450–1458. [Google Scholar] [CrossRef] [PubMed]
- Hogeveen, M.; Blom, H.J.; van der Heijden, E.H.; Semmekrot, B.A.; Sporken, J.M.; Ueland, P.M.; den Heijer, M. Maternal homocysteine and related B vitamins as risk factors for low birthweight. Am. J. Obstet. Gynecol. 2010, 202, 572.e1–572.e6. [Google Scholar] [CrossRef] [PubMed]
- Morgan, C.; Dodds, L.; Langille, D.B.; Weiler, H.A.; Armson, B.A.; Forest, J.-C.; Giguère, Y.; Woolcott, C.G. Cord blood vitamin D status and neonatal outcomes in a birth cohort in Quebec, Canada. Arch. Gynecol. Obstet. 2016, 293, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Baker, P.N.; Wheeler, S.J.; Sanders, T.A.; Thomas, J.E.; Hutchinson, C.J.; Clarke, K.; Berry, J.L.; Jones, R.L.; Seed, P.T.; Poston, L. A prospective study of micronutrient status in adolescent pregnancy. Am. J. Clin. Nutr. 2009, 89, 1114–1124. [Google Scholar] [CrossRef] [PubMed]
- Nilsen, R.M.; Vollset, S.E.; Monsen, A.L.B.; Ulvik, A.; Haugen, M.; Meltzer, H.M.; Magnus, P.; Ueland, P.M. Infant birth size is not associated with maternal intake and status of folate during the second trimester in Norwegian pregnant women. J. Nutr. 2010, 140, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Sukumar, N.; Rafnsson, S.B.; Kandala, N.-B.; Bhopal, R.; Yajnik, C.S.; Saravanan, P. Prevalence of vitamin B-12 insufficiency during pregnancy and its effect on offspring birth weight: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2006, 103, 1232–1251. [Google Scholar] [CrossRef] [PubMed]
- Delgado Beltrán, P.; Melchor Marcos, J.C.; Rodríguez-Alarcón Gómez, J.; Linares Uribe, A.; Fernández-Llebrez del Rey, L.; Barbazán Cortés, M.J.; Ocerin Bengoa, I.; Aranguren Dúo, G. The fetal development curves of newborn infants in the Hospital de Cruces (Vizcaya). I. Weight. An. Esp. Pediatr. 1994, 44, 50–54. [Google Scholar]
- Alvarez-Dardet, C.; Alonso, J.; Domingo, A.; Regidor, E. La Medición de la Clase Social en Ciencias de la Salud: Informe de un Grupo de Trabajo de la Sociedad Española de Epidemiología, 1st ed.; SG Editors: Barcelona, Spain, 1995. [Google Scholar]
- Black, S.D. Inequalities in Health: The Black Report, 1st ed.; Penguin: Harmondsworth, UK, 1982. [Google Scholar]
- Kessner, D.; Singer, J.; Kalk, C.; Schlesinger, E. Infant Death: An Analysis by Maternal Risk and Health Care. Contrasts in Health Status; Institute of Medicine, National Academy of Sciences: Washington, DC, USA, 1973; pp. 1–59. [Google Scholar]
- Martin-Moreno, J.M.; Boyle, P.; Gorgojo, L.; Maisonneuve, P.; Fernandez-rodriguez, J.C.; Salvini, S.; Willett, W.C. Development and validation of a food frequency questionnaire in Spain. Int. J. Epidemiol. 1993, 22, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Mataix Verdú, J. Tabla de Composición de Alimentos Españoles (Spanish Food Composition Tables), 4th ed.; Universidad de Granada: Granada, Spain, 2003. [Google Scholar]
- Moreiras, O.; Carbajal, A.; Cabrera, L.; Cuadrado, C. Tablas de Composición de Alimentos (Food Composition Tables), 7th ed.; Pirámide: Madrid, Spain, 2003. [Google Scholar]
- Willett, W.; Stampfer, M. Implications of total energy intake for epidemiologic analyses. In Nutritional Epidemiology, 2nd ed.; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Rajasingam, D.; Seed, P.T.; Briley, A.L.; Shennan, A.H.; Poston, L. A prospective study of pregnancy outcome and biomarkers of oxidative stress in nulliparous obese women. Am. J. Obstet. Gynecol. 2009, 200, 395.e1–395.e9. [Google Scholar] [CrossRef] [PubMed]
- Gebremedhin, S.; Enquselassie, F.; Umeta, M. Independent and joint effects of prenatal Zinc and Vitamin A Deficiencies on birthweight in rural Sidama, Southern Ethiopia: Prospective cohort study. PLoS ONE 2012, 7, e50213. [Google Scholar] [CrossRef] [PubMed]
- Watson, P.; McDonald, B. The association of maternal diet and dietary supplement intake in pregnant New Zealand women with infant birthweight. Eur. J. Clin. Nutr. 2010, 64, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Al-Qaisi, M.Q.A.; Al-Obaidi, F.H.; Arif, H. Effect of maternal vitamin A and iron status on fetal outcome. Int. J. Pharma Bio Sci. 2015, 6, B1229–B1236. [Google Scholar]
- Camargo, C.A.; Rifas-Shiman, S.L.; Litonjua, A.A.; Rich-Edwards, J.W.; Weiss, S.T.; Gold, D.R.; Kleinman, K.; Gillman, M.W. Maternal intake of vitamin D during pregnancy and risk of recurrent wheeze in children at 3 y of age. Am. J. Clin. Nutr. 2007, 85, 788–795. [Google Scholar] [PubMed]
- Rodriguez, A.; García-Esteban, R.; Basterretxea, M.; Lertxundi, A.; Rodríguez-Bernal, C.; Iniguez, C.; Rodriguez-Dehli, C.; Tardón, A.; Espada, M.; Sunyer, J.; et al. Associations of maternal circulating 25-hydroxyvitamin D3 concentration with pregnancy and birth outcomes. BJOG 2015, 122, 1695–1704. [Google Scholar] [CrossRef] [PubMed]
- Gale, C.R.; Robinson, S.M.; Harvey, N.C.; Javaid, M.K.; Jiang, B.; Martyn, C.N.; Godfrey, K.M.; Cooper, C.; Princess Anne Hospital Study Group. Maternal vitamin D status during pregnancy and child outcomes. Eur. J. Clin. Nutr. 2008, 62, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Thorne-Lyman, A.L.; Fawzi, W.W. Vitamin A and Carotenoids during Pregnancy and Maternal, Neonatal and Infant Health Outcomes: A Systematic Review and Meta-Analysis. Paediatr. Perinat. Epidemiol. 2012, 26, 36–54. [Google Scholar] [CrossRef] [PubMed]
- Bodnar, L.M.; Catov, J.M.; Zmuda, J.M.; Cooper, M.E.; Parrott, M.S.; Roberts, J.M.; Marazita, M.L.; Simhan, H.N. Maternal serum 25-hydroxyvitamin D concentrations are associated with small-for-gestational age births in white women. J. Nutr. 2010, 140, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Bowyer, L.; Catling-Paull, C.; Diamond, T.; Homer, C.; Davis, G.; Craig, M.E. Vitamin D, PTH and calcium levels in pregnant women and their neonates. Clin. Endocrinol. 2009, 70, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Mannion, C.A.; Gray-Donald, K.; Koski, K.G. Association of low intake of milk and vitamin D during pregnancy with decreased birth weight. CMAJ 2006, 174, 1273–1277. [Google Scholar] [CrossRef] [PubMed]
- Scholl, T.O.; Chen, X. Vitamin D intake during pregnancy: Association with maternal characteristics and infant birth weight. Early Hum. Dev. 2009, 85, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Lagiou, P.; Mucci, L.; Tamimi, R.; Kuper, H.; Lagiou, A.; Hsieh, C.-C.; Trichopoulos, D. Micronutrient intake during pregnancy in relation to birth size. Eur. J. Nutr. 2005, 44, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Milanés Ojea, M.R.; Cruz Manzano, E.F.; Cruz Jorge, M.S.; León Moreno, M.; Postigo, O.E.; Valdés Ramos, E.A. Influencia del estado nutricional sobre el peso al nacer en el tercer trimestre de la gestación. Rev. Cubana Obstet. Ginecol. 2013, 39, 226–235. [Google Scholar]
- Scholl, T.O.; Chen, X.; Sims, M.; Stein, T.P. Vitamin E: Maternal concentrations are associated with fetal growth. Am. J. Clin. Nutr. 2006, 84, 1442–1448. [Google Scholar] [PubMed]
- Mathews, F.; Yudkin, P.; Neil, A. Influence of maternal nutrition on outcome of pregnancy: Prospective cohort study. BMJ 1999, 319, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Haggarty, P.; Campbell, D.M.; Duthie, S.; Andrews, K.; Hoad, G.; Piyathilake, C.; McNeill, G. Diet and deprivation in pregnancy. Br. J. Nutr. 2009, 102, 1487–1497. [Google Scholar] [CrossRef] [PubMed]
- Krishnaveni, G.V.; Veena, S.R.; Karat, S.C.; Yajnik, C.S.; Fall, C.H. Association between maternal folate concentrations during pregnancy and insulin resistance in Indian children. Diabetologia 2014, 57, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Pannia, E.; Cho, C.E.; Kubant, R.; Sanchez-Hernandez, D.; Huot, P.S.; Harvey Anderson, G. Role of maternal vitamins in programming health and chronic disease. Nutr. Rev. 2016, 74, 166–180. [Google Scholar] [CrossRef] [PubMed]
- Mariscal-Arcas, M.; Romaguera, D.; Rivas, A.; Feriche, B.; Pons, A.; Tur, J.A.; Olea-Serrano, F. Diet quality of young people in southern Spain evaluated by a Mediterranean adaptation of the Diet Quality Index-International (DQI-I). Br. J. Nutr. 2007, 98, 1267–1273. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, N.; Upadhyay, R.P.; Bhilwar, M.; Choy, N.; Green, T. The Role of Maternal Diet and Iron-folic Acid Supplements in Influencing Birth Weight: Evidence from India’s National Family Health Survey. J. Trop. Pediatr. 2014, 60, 454–460. [Google Scholar] [CrossRef] [PubMed]
- De la Fuente-Arrillaga, C.; Ruiz, Z.V.; Bes-Rastrollo, M.; Sampson, L.; Martinez-Gonzalez, M.A. Reproducibility of an FFQ validated in Spain. Public Health Nutr. 2010, 13, 1364–1372. [Google Scholar] [CrossRef] [PubMed]
- Olmedo-Requena, R.; Amezcua-Prieto, C.; de Dios Luna-Del-Castillo, J.; Lewis-Mikhael, A.-M.; Mozas-Moreno, J.; Bueno-Cavanillas, A.; Jiménez-Moleón, J.J. Association between Low Dairy Intake during Pregnancy and Risk of Small-for-Gestational-Age Infants. Matern. Child Health J. 2016, 20, 1296–1304. [Google Scholar] [CrossRef] [PubMed]
Cases(SGA) | Controls (AGA) | p Value | |||
518 | 518 | ||||
n | (%) | n | (%) | ||
Marital status | 0.036 | ||||
Single | 37 | (7.1) | 42 | (8.1) | |
Living with partner | 161 | (31.1) | 124 | (23.9) | |
Married | 320 | (61.8) | 352 | (68.0) | |
Education level | 0.084 | ||||
Primary | 112 | (21.6) | 93 | (17.9) | |
High school—not finished | 42 | (8.1) | 28 | (5.4) | |
High school | 185 | (35.7) | 190 | (36.7) | |
University | 179 | (34.6) | 207 | (40.0) | |
Antecedent of preterm/Low Birth Weight (LBW) newborn | 64 | (12.4) | 26 | (5.0) | <0.001 |
Smoking during current pregnancy | 149 | (28.8) | 80 | (15.4) | <0.001 |
Preeclampsia | 46 | (8.9) | 11 | (2.1) | <0.001 |
Intrauterine growth retardation | 141 | (27.2) | 8 | (1.5) | <0.001 |
Kessner index (prenatal care) | 0.737 | ||||
Adequate | 259 | (50.0) | 253 | (48.8) | |
Intermediate | 185 | (35.7) | 182 | (35.2) | |
Inadequate | 74 | (14.3) | 83 | (16.0) | |
Cases (SGA) | Controls (AGA) | p Value | |||
518 | 518 | ||||
Mean | (SD) | Mean | (SD) | ||
Weight gain during pregnancy (g/week) mean (SD) | 278 | (121) | 310 | (114) | <0.001 |
Pre-pregnancy BMI mean (SD) | 23.1 | (4.5) | 23.9 | (4.1) | <0.001 |
Alcohol intake (g/week) mean (SD) | 4.2 | (18.5) | 3.1 | (15.2) | 0.312 |
Cases (n = 518) | Controls (n = 518) | SGA a | ||||||
---|---|---|---|---|---|---|---|---|
n | (%) | n | (%) | cOR b | 95% CI | aOR c | 95% CI | |
Vitamin A (mg/day) (retinol) | ||||||||
Q1 (≤1.236) | 135 | (26.1) | 104 | (20.1) | 1 (reference) | 1 (reference) | ||
Q2 (1.237–1.545) | 80 | (15.4) | 104 | (20.1) | 0.59 * | 0.40–0.87 | 0.58 * | 0.37–0.90 |
Q3 (1.546–1.979) | 106 | (20.5) | 103 | (19.9) | 0.81 | 0.55–1.18 | 0.89 | 0.58–1.37 |
Q4 (1.979–2.604) | 103 | (19.9) | 104 | (20.1) | 0.75 | 0.51–1.11 | 0.77 | 0.50–1.19 |
Q5 (>2.604) | 94 | (18.2) | 103 | (19.9) | 0.69 | 0.47–1.01 | 0.67 | 0.43–1.05 |
Vitamin D (µg/day) (calciferol) | ||||||||
Q1 (≤3.793) | 112 | (21.6) | 104 | (20.1) | 1 (reference) | 1 (reference) | ||
Q2 (3.794–5.168) | 124 | (23.9) | 104 | (20.1) | 1.11 | 0.76–1.61 | 1.12 | 0.73–1.72 |
Q3 (5.168–6.228) | 105 | (20.3) | 103 | (19.9) | 0.95 | 0.64–1.41 | 0.94 | 0.61–1.47 |
Q4 (6.229–7.981) | 97 | (18.7) | 104 | (20.1) | 0.89 | 0.61–1.31 | 0.84 | 0.54–1.30 |
Q5 (>7.981) | 80 | (15.4) | 103 | (19.9) | 0.73 | 0.49–1.08 | 0.62 * | 0.40–0.98 |
Vitamin E (mg/day) (α-tocopherol) | ||||||||
Q1 (≤3.793) | 103 | (19.9) | 104 | (20.1) | 1 (reference) | 1 (reference) | ||
Q2 (3.794–5.168) | 103 | (19.9) | 104 | (20.1) | 1 | 0.67–1.49 | 1.03 | 0.66–1.63 |
Q3 (5.168–6.228) | 101 | (19.5) | 103 | (19.9) | 0.99 | 0.66–1.47 | 1.18 | 0.75–1.84 |
Q4 (6.229–7.981) | 85 | (16.4) | 104 | (20.1) | 0.81 | 0.54–1.23 | 0.85 | 0.54–1.35 |
Q5 (>7.981) | 126 | (24.3) | 103 | (19.9) | 1.26 | 0.85–1.87 | 1.36 | 0.87–2.13 |
Cases (n = 518) | Controls (n = 518) | SGA a | ||||||
n | (%) | n | (%) | cOR b | 95% CI | aOR c | 95% CI | |
Vitamin C (mg/day) (ascorbic acid) | ||||||||
Q1 (≤151.84) | 121 | (24.4) | 104 | (20.1) | 1 (reference) | 1 (reference) | ||
Q2 (151.85–201.05) | 98 | (18.9) | 104 | (20.1) | 0.79 | 0.54–1.17 | 0.81 | 0.53–1.26 |
Q3 (201.06–253.52) | 110 | (21.2) | 103 | (19.9) | 0.92 | 0.63–1.38 | 0.84 | 0.55–1.29 |
Q4 (253.53–322.23) | 96 | (18.5) | 104 | (20.1) | 0.78 | 0.52–1.15 | 0.89 | 0.57–1.40 |
Q5 (>322.23) | 93 | (18.0) | 103 | (19.9) | 0.76 | 0.51–1.13 | 0.83 | 0.53–1.31 |
Vitamin B1 (thiamine) (mg/day) | ||||||||
Q1 (≤1.746) | 138 | (26.6) | 104 | (20.1) | 1 (reference) | 1 (reference) | ||
Q2 (1.747–1.970) | 94 | (18.2) | 104 | (20.1) | 0.68 * | 0.47–0.99 | 0.66 | 0.43–1.02 |
Q3 (1.971–2.226) | 106 | (20.5) | 103 | (19.9) | 0.78 | 0.53–1.13 | 0.69 | 0.45–1.05 |
Q4 (2.227–2.589) | 90 | (17.4) | 104 | (20.1) | 0.64 * | 0.44–0.95 | 0.70 | 0.45–1.08 |
Q5 (>2.589) | 90 | (17.4) | 103 | (19.9) | 0.64 * | 0.43–0.95 | 0.64 | 0.41–1.01 |
Vitamin B2 (riboflavine) (mg/day) | ||||||||
Q1 (≤1.895) | 120 | (22.2) | 104 | (20.1) | 1 (reference) | 1 (reference) | ||
Q2 (1.896–2.161) | 101 | (19.5) | 104 | (20.1) | 0.84 | 0.57–1.23 | 0.76 | 0.49–1.16 |
Q3 (2.161–2.447) | 101 | (19.5) | 103 | (19.9) | 0.85 | 0.59–1.24 | 0.80 | 0.52–1.23 |
Q4 (2.448–2.746) | 95 | (18.3) | 104 | (20.1) | 0.79 | 0.54–1.16 | 0.80 | 0.52–1.24 |
Q5 (>2.746) | 101 | (19.5) | 103 | (19.9) | 0.85 | 0.58–1.24 | 0.85 | 0.57–1.36 |
Vitamin B3 (niacin) (mg/day) | ||||||||
Q1 (≤34.790) | 137 | (26.5) | 104 | (20.1) | 1 (reference) | 1 (reference) | ||
Q2 (34.791–39.035) | 127 | (24.5) | 104 | (20.1) | 0.96 | 0.67–1.37 | 0.88 | 0.58–1.32 |
Q3 (39.036–42.430) | 74 | (14.3) | 103 | (19.9) | 0.53 * | 0.35–0.79 | 0.46 * | 0.29–0.73 |
Q4 (42.431–47.830) | 100 | (19.3) | 104 | (20.1) | 0.73 | 0.49–1.07 | 0.74 | 0.48–1.16 |
Q5 (>47.830) | 80 | (15.4) | 103 | (19.9) | 0.58 * | 0.39–0.86 | 0.59 * | 0.37–0.86 |
Vitamin B6 (pyridoxine) (mg/day) | ||||||||
Q1 (≤1.949) | 134 | (25.9) | 104 | (20.1) | 1 (reference) | 1 (reference) | ||
Q2 (1.950–2.257) | 116 | (23.4) | 104 | (20.1) | 0.85 | 0.58–1.23 | 0.80 | 0.52–1.22 |
Q3 (2.258–2.508) | 80 | (15.4) | 103 | (19.9) | 0.62 * | 0.42–0.91 | 0.62 * | 0.40–0.96 |
Q4 (2.509–2.858) | 105 | (20.3) | 104 | (20.1) | 0.76 | 0.52–1.12 | 0.70 | 0.45–1.08 |
Q5 (>2.858) | 83 | (16) | 103 | (19.9) | 0.62 * | 0.42–0.93 | 0.69 | 0.43–1.08 |
Vitamin B9 (folic) (µg/day) | ||||||||
Q1 (≤297.45) | 138 | (26.6) | 104 | (20.1) | 1 (reference) | 1 (reference) | ||
Q2 (297.46–348.78) | 97 | (18.7) | 104 | (20.1) | 0.68 * | 0.46–0.99 | 0.71 | 0.46–1.09 |
Q3 (348.79–412.94) | 86 | (16.6) | 103 | (19.9) | 0.61 * | 0.41–0.90 | 0.64 | 0.41–1.00 |
Q4 (412.95–491.91) | 77 | (14.9) | 104 | (20.1) | 0.54 * | 0.36–0.81 | 0.58 * | 0.37–0.91 |
Q5 (>491.91) | 120 | (23.2) | 103 | (19.9) | 0.87 | 0.59–1.27 | 0.88 | 0.57–1.35 |
Continued | ||||||||
Cases (n 518) | Controls (n 518) | SGA | ||||||
Vitamin B12 (cyanocobalamin) (µg/day) | n | (%) | n | (%) | cOR | 95% CI | aOR * | 95% CI |
Q1 (≤6.633) | 133 | (25.7) | 104 | (20.1) | 1 (reference) | 1 (reference) | ||
Q2 (6.634–8.067) | 109 | (21) | 104 | (20.1) | 0.81 | 0.56–1.18 | 0.91 | 0.59–1.39 |
Q3 (8.068–10.314) | 102 | (19.7) | 103 | (19.9) | 0.79 | 0.54–1.15 | 0.80 | 0.52–1.24 |
Q4 (10.315–13.562) | 83 | (16) | 104 | (20.1) | 0.61 * | 0.41–0.91 | 0.61 * | 0.39–0.95 |
Q5 (>13.562) | 91 | (17.6) | 103 | (19.9) | 0.70 | 0.48–1.03 | 0.68 | 0.43–1.04 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salcedo-Bellido, I.; Martínez-Galiano, J.M.; Olmedo-Requena, R.; Mozas-Moreno, J.; Bueno-Cavanillas, A.; Jimenez-Moleon, J.J.; Delgado-Rodríguez, M. Association between Vitamin Intake during Pregnancy and Risk of Small for Gestational Age. Nutrients 2017, 9, 1277. https://doi.org/10.3390/nu9121277
Salcedo-Bellido I, Martínez-Galiano JM, Olmedo-Requena R, Mozas-Moreno J, Bueno-Cavanillas A, Jimenez-Moleon JJ, Delgado-Rodríguez M. Association between Vitamin Intake during Pregnancy and Risk of Small for Gestational Age. Nutrients. 2017; 9(12):1277. https://doi.org/10.3390/nu9121277
Chicago/Turabian StyleSalcedo-Bellido, Inmaculada, Juan Miguel Martínez-Galiano, Rocío Olmedo-Requena, Juan Mozas-Moreno, Aurora Bueno-Cavanillas, Jose J. Jimenez-Moleon, and Miguel Delgado-Rodríguez. 2017. "Association between Vitamin Intake during Pregnancy and Risk of Small for Gestational Age" Nutrients 9, no. 12: 1277. https://doi.org/10.3390/nu9121277
APA StyleSalcedo-Bellido, I., Martínez-Galiano, J. M., Olmedo-Requena, R., Mozas-Moreno, J., Bueno-Cavanillas, A., Jimenez-Moleon, J. J., & Delgado-Rodríguez, M. (2017). Association between Vitamin Intake during Pregnancy and Risk of Small for Gestational Age. Nutrients, 9(12), 1277. https://doi.org/10.3390/nu9121277