Crosstalk between Zinc Status and Giardia Infection: A New Approach
Abstract
:1. Introduction
2. Zinc
2.1. Zinc Biology
2.2. Zinc Deficiency
2.3. Zinc and Immune Function
2.4. Zinc and Intestinal Parasitic Infections
3. Giardiasis and Zinc Status
3.1. Giardia Lamblia Infection
3.2. Giardiasis and Zinc Deficiency
3.3. Zinc Treatment and Giardiasis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Scrimshaw, N.S.; Taylor, C.E.; Gordon, J.E. Interactions of nutrition and infection. Monogr. Ser. Wrols. Health Organ. 1968, 57, 3–329. [Google Scholar]
- Chandra, R.K. Nutrition, immunity and infection: From basic knowledge of dietary manipulation of immune response to practical application of ameliorating suffering and improving survival. Proc. Natl. Acad. Sci. 1996, 93, 14304–14307. [Google Scholar] [CrossRef] [PubMed]
- United Nations Children’s Fund and World Health Organization. WHO/UNICEF Joint Statement: Clinical Management of Acute Diarrhea; UNICEF: New York, NY, USA, 2004; Available online: http://www.afro.who.int/cah/documents/intervention/acute_diarrhoea_joint_statement.pdf (accessed on 29 October 2014).
- Bhutta, Z.A.; Black, R.E.; Brown, K.H.; Gardner, J.M.; Gore, S.; Hidayat, A.; Khatun, F.; Martorell, R.; Ninh, N.X.; Penny, M.E.; et al. Prevention of diarrhea and pneumonia by zinc supplementation in children in developing countries: Pooled analysis of randomized controlled trials. Zinc Investigators’ Collaborative Group. J. Pediatr. 1999, 135, 689–697. [Google Scholar] [CrossRef]
- Lukacik, M.; Thomas, R.L.; Aranda, J.V. A meta-analysis of the effects of oral zinc in the treatment of acute and persistent diarrhea. Pediatrics 2008, 121, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Patro, B.; Golicki, D.; Szajewska, H. Meta-analysis: Zinc supplementation for acute gastroenteritis in children. Aliment. Pharmacol. Ther. 2008, 28, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Dibley, M.; Mamtani, M.; Badhoniya, N.; Kulkarni, H. Influence of zinc supplementation in acute diarrhea differs by the isolated organism. Int. J. Pediatr. 2010. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.K.; Behrens, R.H.; Haider, R.; Akramuzzaman, S.M.; Mahalanabis, D.; Wahed, M.A.; Tomkins, A.M. Impact of zinc supplementation on intestinal permeability in Bangladeshi children with acute diarrhoea and persistent diarrhoea syndrome. J. Pediatr. Gastroenterol. Nutr. 1992, 15, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Canani, R.B.; Cirillo, P.; Buccigrossi, V.; Ruotolo, S.; Passariello, A.; de Luca, P.; Porcaro, F.; de Marco, G.; Guarino, A. Zinc inhibits cholera toxin-induced, but not E. coli heat-stable enterotoxin-induced, ion secretion in human enterocytes. J. Infect. Dis. 2005, 191, 1072–1077. [Google Scholar] [CrossRef] [PubMed]
- Surjawidjaja, J.E.; Hidayat, A.; Lesmana, M. Growth inhibition of enteric pathogens by zinc sulfate: An in vitro study. Med. Princ. Pract. 2004, 13, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Long, K.Z.; Rosado, J.L.; Montoya, Y.; de Lourdes Solano, M.; Hertzmark, E.; DuPont, H.L.; Santos, J.I. Effect of vitamin A and zinc supplementation on gastrointestinal parasitic infections among Mexican children. Pediatrics 2007, 120, e846–e855. [Google Scholar] [CrossRef] [PubMed]
- Cotton, J.A.; Beatty, J.K.; Buret, A.G. Host parasite interactions and pathophysiology in Giardia infections. Int. J. Parasitol. 2011, 41, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Jendryczko, A.; Sodowska, H.; Drozdz, M. Zinc deficiency in children infected with Giardia lamblia. Wiad. Lek. 1993, 46, 32–35. [Google Scholar] [PubMed]
- Quihui, L.; Morales, G.G.; Méndez, R.O.; Leyva, J.G.; Esparza, J.; Valencia, M.E. Could giardiasis be a risk factor for low zinc status in schoolchildren from northwestern Mexico? A cross-sectional study with longitudinal follow-up. BMC Public Health 2010, 10, 85. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S. Impact of the discovery of human zinc deficiency on health. J. Trace Elem. Med. Biol. 2014, 28, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Fischer, W.C.; Black, R.E. Zinc and the risk of infectious disease. Annu. Rev. Nutr. 2004, 24, 255–275. [Google Scholar]
- Tuerk, M.J.; Fazel, N. Zinc deficiency. Curr. Opin. Gastroenterol. 2009, 25, 136–143. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, R.S. The role of zinc in growth and cell proliferation. J. Nutr. 2000, 130, 1500S–1508S. [Google Scholar] [PubMed]
- Stefanidou, M.; Maravelias, C.; Dona, A.; Spiliopoulou, C. Zinc: A multipurpose trace element. Arch. Toxicol. 2006, 80, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Basnet, S.; Mathisen, M.; Strand, T.A. Oral zinc and common childhood infections––An update. J. Trace Elem. Med. Biol. 2014, 31, 163–166. [Google Scholar] [CrossRef] [PubMed]
- International Zinc Nutrition Consultative Group (IZiNCG); Brown, K.H.; Rivera, J.A.; Bhutta, Z.; Gibson, R.S.; King, J.C.; Lönnerdal, B.; Ruel, M.T.; Sandtröm, B.; Wasantwisut, E.; et al. International Zinc Nutrition Consultative Group (IZiNCG) Technical Document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 2004, 25, S99–S203. [Google Scholar] [PubMed]
- King, J.C.; Keen, C.L. Zinc. In Modern Nutrition in Health and Disease, 9th ed.; Shils, M.E., Olsen, J.A., Shike, M., Ross, A.C., Eds.; Williams & Wilkins: Baltimore, MD, USA, 1999; pp. 223–239. [Google Scholar]
- Wessells, K.R.; Brown, K.H. Estimating the global prevalence of Zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting. PLoS ONE 2012, 7, e50568. [Google Scholar] [CrossRef] [PubMed]
- Stammers, A.L.; Lowe, M.N.; Medina, M.W.; Patel, S.; Dykes, F.; Pérez-Rodrigo, C.; Serra-Majam, L.; Nissensohn, M.; Moran, V.H. The relationship between zinc intake and growth in children aged 1–8 years: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2015, 69, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Dewey, K.G.; Brown, K.H. Update on technical issues concerning complementary feeding of young children in developing countries and implications for intervention programs. Food Nutr. Bull. 2003, 24, 5–28. [Google Scholar] [PubMed]
- Krebs, N.F.; Westcott, J.E.; Butler, N.; Robinson, C.; Bell, M.; Hambidge, K.M. Meat as a first complementary food for breastfed infants: Feasibility and impact on zinc intake and status. J. Pediatr. Gastroenterol. Nutr. 2006, 42, 207–214. [Google Scholar] [PubMed]
- Allen, L.H. Interventions for micronutrient deficiency control in developing countries: Past, present and future. J. Nutr. 2003, 133, 3875S–3878S. [Google Scholar] [PubMed]
- Lutter, C.K.; Rivera, J.A. Nutritional status of infants and young children and characteristics of their diets. J. Nutr. 2003, 133, 2941–2949. [Google Scholar]
- World Health Organization. Complementary Feeding of Young Children in Developing Countries: A Review of Current Scientific Knowledge; World Health Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Hesham, M.S.; Edariah, A.B.; Norhayati, M. Intestinal parasitic infections and micronutrient deficiency: A review. Med. J. Malaysia 2004, 59, 284–293. [Google Scholar] [PubMed]
- Lazarte, C.E.; Soto, A.; Alvarez, L.; Bergenståhl, B.; Medrano, N.; Granfeldt, Y. Nutritional status of children with intestinal parasites from a tropical area of Bolivia, emphasis on zinc and iron status. Food Nutr. Sci. 2015, 6, 399–411. [Google Scholar] [CrossRef]
- Salazar-Lindo, E.; Allen, S.; Brewster, D.R.; Elliott, E.J.; Fasano, A.; Phillips, A.D.; Sanderson, I.R.; Tarr, P.I. Intestinal infections and environmental enteropathy: Working group report of the Second World Congress of Pediatric Gastroenterology, Hepatology, and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2004, 39, S662–S669. [Google Scholar] [CrossRef] [PubMed]
- McKay, S.; Gaudier, E.; Campbell, D.I.; Prentice, A.M.; Albers, R. Environmental enteropathy: New targets for nutritional interventions. Int. Health 2010, 2, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Wapnir, R.A. Zinc deficiency, malnutrition and the gastrointestinal tract. J. Nutr. 2004, 59, 284–293. [Google Scholar]
- Haase, H.; Rink, L. Functional significance of zinc-related signaling pathways in immune cells. Annu. Rev. Nutr. 2009, 29, 133–152. [Google Scholar] [CrossRef] [PubMed]
- Bonaventura, P.; Benedetti, G.; Albarède, F.; Miossec, P. Zinc and its role in immunity and inflammation. Autoimmun. Rev. 2015, 14, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Haase, H.; Rink, L. Zinc signals and immune function. Biofactors 2014, 40, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Overbeck, S.; Rink, L.; Haase, H. Modulating the immune response by oral zinc supplementation: A single approach for multiple diseases. Arch. Immunol. Ther. Exp. 2008, 56, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Ibs, K.H.; Rink, L. Zinc-altered immune function. J. Nutr. 2003, 133, 1452S–1456S. [Google Scholar] [PubMed]
- Prasad, A.S. Zinc in human health: Effect of zinc on immune cells. Mol. Med. 2008, 14, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Fraker, P.J.; King, L.E.; Laakko, T.; Vollmer, T.L. The dynamic link between the integrity of the immune system and zinc status. J. Nutr. 2000, 130, 1399S–1406S. [Google Scholar] [PubMed]
- Fraker, P.J.; King, L.E. Reprogramming of the immune system during zinc deficiency. Annu. Rev. Nutr. 2004, 24, 277–298. [Google Scholar] [CrossRef] [PubMed]
- Shankar, A.H.; Prasad, A.S. Zinc and immune function: The biological basis of altered resistance to infection. Am. J. Clin. Nutr. 1998, 68, 447S–463S. [Google Scholar] [PubMed]
- World Health Organization. Public health significance of intestinal parasitic infections. Bull. World Health Organ. 1987, 65, 575–588. [Google Scholar]
- Hughes, S.; Kelly, P. Interactions of malnutrition and immune impairment, with specific reference to immunity against parasites. Parasite Immunol. 2006, 28, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Daly, E.R.; Roy, S.J.; Blaney, D.D.; Manning, J.S.; Hill, V.R.; Xiao, L.; Stull, J.W. Outbreak of giardiasis associated with a community drinking-water source. Epidemiol. Infect. 2010, 138, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Robertson, L.; Gjerde, B.; Hansen, E.F.; Stachurska-Hagen, T. A water contamination incident in Oslo, Norway during October 2007; A basis for discussion of boil-water notices and the potential for post-treatment contamination of drinking water supplies. J. Water Health 2009, 7, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Eisenstein, L.; Bodager, D.; Ginzl, D. Outbreak of giardiasis and cryptosporidiosis associated with a neighborhood interactive water fountain––Florida, 2006. J. Environ. Health 2008, 71, 18–22. [Google Scholar] [PubMed]
- Nishi, L.; Baesso, M.L.; Santana, R.G.; Fregadolli, P.; Falavigna, D.L.; Falavigna-Guilherme, A.L. Investigation of Cryptosporidium spp. and Giardia spp. in a public water-treatment system. Zoonoses. Public Health 2009, 56, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Halliez, C.M.; Buret, A.G. Extra-intestinal and long term consequences of Giardia duodenalis infections. World J. Gastroenterol. 2013, 19, 8974–8985. [Google Scholar] [CrossRef] [PubMed]
- Adam, R.D. The biology of Giardia spp. Microbiol. Rev. 1991, 55, 706–732. [Google Scholar] [PubMed]
- Roxström-Lindquist, K.; Palm, D.; Reiner, D.; Ringqvist, E.; Svärd, S.G. Giardia immunity––An update. Trends Parasitol. 2006, 22, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Eckmann, L. Mucosal defences against Giardia. Parasite Immunol. 2003, 25, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Solaymani-Mohammadi, S.; Singer, S.M. Giardia duodenalis: The double-edged sword of immune responses in giardiasis. Exp. Parasitol. 2010, 126, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Hanevik, K.; Wensaas, K.A.; Rortveit, G.; Eide, G.E.; Morch, K.; Langeland, N. Irritable bowel syndrome and chronic fatigue 6 years after Giardia infection: A controlled prospective cohort study. Clin. Infect. Dis. 2014, 59, 1394–1400. [Google Scholar] [CrossRef] [PubMed]
- Berkman, D.S.; Lescano, A.G.; Gilman, R.H.; Lopez, S.L.; Black, M.M. Effects of stunting, diarrhoeal disease, and parasitic infection during infancy on cognition in late childhood: A follow-up study. Lancet 2002, 359, 564–571. [Google Scholar] [CrossRef]
- Savioli, L.; Smith, H.; Thompson, A. Giardia and Cryptosporidium join the ‘Neglected Diseases Initiative’. Trends Parasitol. 2006, 22, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.C. Giardiasis as a re-emerging infectious disease and its zoonotic potential. Int. J. Parasitol. 2000, 30, 1259–1267. [Google Scholar] [CrossRef]
- Farthing, M.J. The molecular pathogenesis of giardiasis. J. Pediatr. Gastroenterol. 1997, 24, 79–88. [Google Scholar] [CrossRef]
- Scott, K.G.; Yu, L.C.; Buret, A.G. Role of CD8+ and CD4+ T lymphocytes in jejunal mucosal injury during murine giardiasis. Infect. Immun. 2004, 72, 3536–3542. [Google Scholar] [CrossRef] [PubMed]
- Buret, A.G.; Gall, D.G.; Olson, M.E. Growth, activities of enzymes in the small intestine, and ultrastructure of microvillous border in gerbils infected with Giardia duodenalis. Parasitol. Res. 1991, 77, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Buret, A.G. Pathophysiology of enteric infections with Giardia duodenalius. Parasite 2008, 15, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Chin, A.C.; Teoh, D.A.; Scott, K.G.; Meddings, J.B.; Macnaughton, W.K.; Buret, A.G. Strain-dependent induction of enterocyte apoptosis by Giardia lamblia disrupts epithelial barrier function in a caspase-3-dependent manner. Infect. Immun. 2002, 70, 3673–3680. [Google Scholar] [CrossRef] [PubMed]
- Troeger, H.; Epple, H.J.; Schneider, T.; Wahnschaffe, U.; Ullrich, R.; Burchard, G.D.; Jelinek, T.; Zeitz, M.; Fromm, M.; Schulzke, J.D. Effect of chronic Giardia lamblia infection on epithelial transport and barrier function in human duodenum. Gut 2007, 56, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Koot, B.G.; Kate, F.J.; Juffrie, M.R.; Taminiau, J.J.; Benninga, M.A. Does Giardia lamblia cause villous atrophy in children?: A retrospective cohort study of the histological abnormalities in giardiasis. J. Pediatr. Gastroenterol. Nutr. 2009, 49, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Ankarklev, J.; Jerlström-Hultqvist, J.; Ringqvist, E.; Troell, K.; Svärd, S.G. Behind the smile: Cell biology and disease mechanisms of Giardia species. Nat. Rev. Microbiol. 2010, 8, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Buret, A.G.; Bhargava, A. Modulatory mechanisms of enterocyte apoptosis by viral, bacterial and parasitic pathogens. Crit. Rev. Microbiol. 2014, 40, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Astiazarán-García, H.; López-Teros, V.; Valencia, M.E.; Vazquez-Ortiz, F.; Sotelo-Cruz, N.; Quihui-Cota, L. Giardia lamblia infection and its implications for vitamin A liver stores in school children. Ann. Nutr. Metal. 2010, 57, 228–233. [Google Scholar] [CrossRef] [PubMed]
- McDonald, V. Parasites in the gastrointestinal tract. Parasite Immunol. 2003, 25, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Khandait, D.W.; Vasudeo, N.D.; Zodpey, S.P.; Kumbhalkar, D.T. Risk factors for subclinical vitamin a deficiency in children under the age of 6 years. J. Trop. Pediatr. 2000, 46, 239–241. [Google Scholar] [PubMed]
- Culha, G.; Sangun, M.K. Serum levels of zinc, copper, iron, cobalt, magnesium and selenium elements in children diagnosed with Giardia intestinalis and Enterobiosis Vermicularis in Hatay, Turkey. Biol. Trace Elem. Res. 2007, 118, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Yones, D.A.; Gala, L.A.; Abdallah, A.M.; Zaghlol, K.S. Effect of enteric parasitic infection on serum trace elements and nutritional status in upper Egyptian children. Trop. Parasitol. 2015, 5, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Abou-Shady, O.; El Raziky, M.S.; Zaki, M.M.; Mohamed, R.K. Impact of Giardia lamblia on growth, serum levels of zinc, copper, and iron in Egyptian children. Biol. Trace Elem. Res. 2011, 140, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ertan, P.; Yereli, K.; Kurt, O.; Balcioglu, I.C.; Onag, A. Serological levels of zinc,copper and iron elements among Giardia lamblia infected children in Turkey. Pediatr. Int. 2002, 44, 286–288. [Google Scholar] [CrossRef] [PubMed]
- Demirci, M.; Delibas, N.; Altuntas, I.; Oktem, F.; Yonden, Z. Serum iron, zinc and copper levels and lipid peroxidation in children with chronic giardiasis. J. Health Popul. Nutr. 2003, 21, 72–75. [Google Scholar] [PubMed]
- Zarebavani, M.; Dargahi, D.; Einollahi, N.; Dashti, N.; Mohebali, M.; Rezaeian, M. Serum levels of zinc, copper, vitamin B12, folate and immunoglobulins in individuals with giardiasis. Iran. J. Public Health 2012, 41, 47–53. [Google Scholar] [PubMed]
- Karakas, Z.; Demirel, N.; Tarakcioglu, M.; Mete, N. Serum zinc and copper levels in southeastern Turkish children with giardiasis or amebiasis. Biol. Trace Elem. Res. 2001, 84, 11–18. [Google Scholar] [CrossRef]
- Buret, A.G.; Hardin, J.; Olson, M.; Gall, D. Pathophysiology of small intestinal malabsorption in gerbils infected with Giardia lamblia. Gastroenterology 1992, 103, 506–513. [Google Scholar] [PubMed]
- Cuevas, L.E.; Kovanagi, A. Zinc and infection: A review. Ann. Trop Paediatr. 2005, 25, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, J.J.; Cousins, R.J. Interleukin 6 Regulates Metallothionein Gene Expression and Zinc Metabolism in Hepatocyte Monolayer Cultures. Proc. Natl. Acad. Sci. USA 1990, 87, 3137–3141. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Z.; Jellbauer, S.; Poe, A.J.; Ton, V.; Pesciaroli, M.; Kehl-Fie, T.E.; Restrepo, N.A.; Hosking, M.P.; Edwards, R.A.; Battistoni, A.; et al. Zinc sequestration by the neutrophil protein calprotectin enhances Salmonella growth in the inflamed gut. Cell. Host Microbe 2012, 11, 227–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nash, T.E.; Conrad, J.T.; Merritt, J.T. Variant specific epitopes of Giardia lamblia. Mol. Biochem. Parasitol. 1990, 42, 125–132. [Google Scholar] [CrossRef]
- Pimenta, P.F.; da Silva, P.P.; Nash, T.E. Variant surface antigens of Giardia lamblia are associated with the presence of a thick cell coat: Thin section and label fracture immunocytochemistry survey. Infect. Immun. 1991, 59, 3889–3996. [Google Scholar]
- Adam, R.D.; Aggarwal, A.; Lal, A.A.; de la Cruz, V.F.; McCutchan, T.; Nash, T.E. Antigenic variation of a cysteine-rich protein in Giardia lamblia. J. Exp. Med. 1988, 167, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Nash, T.E.; Merrit, J.W.; Conrad, W.T. Isolate and epitope variability in susceptibility of Giardia lamblia to intestinal proteases. Infect. Immun. 1991, 59, 1334–1340. [Google Scholar] [PubMed]
- Nash, T.E. Surface antigen variability and variation in Giardia lamblia. Parasitol. Today 1992, 8, 229–234. [Google Scholar] [CrossRef]
- Nash, T.E.; Mowatt, M.R. Variant-specific surface proteins of Giardia lamblia are zinc-binding proteins. Proc. Natl. Acad. Sci. 1993, 90, 5489–5493. [Google Scholar] [CrossRef] [PubMed]
- Nash, T.E.; Rice, W.G. Efficacies of Zinc-Finger-Active Drugs against Giardia lamblia. Antimicrob. Agents Chemother. 1998, 42, 1488–1492. [Google Scholar] [PubMed]
- Zhang, Y.; Aley, S.B.; Stanley, S.L.; Guillin, F.D. Cysteine-Dependent Zinc Binding by Membrane Proteins of Giardia lamblia. Infect. Immun. 1993, 61, 520–524. [Google Scholar] [PubMed]
- Quihui-Cota, L.; Morales-Figueroa, G.G. Persistence of intestinal parasitic infections during the national de-worming campaign in schoolchildren of northwestern Mexico: A cross-sectional study. Ann. Gastroenterol. 2012, 25, 57–60. [Google Scholar] [PubMed]
- Fallah, M. Rapid reinfection by Giardia lamblia after treatment in a hyperendemic community, during one year follow up. J. Res. Health Sci. 2011, 3, 29–32. [Google Scholar]
- Watkins, R.R.; Eckmann, L. Treatment of giardiasis: Current status and future directions. Curr. Infect. Dis. Rep. 2014, 16, 396. [Google Scholar] [CrossRef] [PubMed]
- Upcroft, P.; Upcroft, J.A. Drug targets and mechanisms of resistance in anaerobic protozoa. Clin. Microbiol. Rev. 2001, 14, 150–164. [Google Scholar] [CrossRef] [PubMed]
- Tejman-Yarden, N.; Millman, M.; Lauwaet, T.; Davids, B.J.; Gillin, F.D.; Dunn, L.; Upcroft, J.A.; Miyamoto, Y.; Eckmann, L. Impaired parasite attachment as fitness cost of metronidazole resistance in Giardia lamblia. Antimicrob. Agents Chemother. 2011, 55, 4643–4651. [Google Scholar] [CrossRef] [PubMed]
- Abboud, P.; Lemée, V.; Gargala, G.; Brasseur, P.; Ballet, J.J.; Borsa-Lebas, F.; Caron, F.; Favennec, L. Successful treatment of metronidazole-and albendazole-resistant giardiasis with nitazoxanide in a patient with acquired immunodeficiency syndrome. Clin. Infect. Dis. 2001, 32, 1792–1794. [Google Scholar] [CrossRef] [PubMed]
- Escobedo, A.A.; Cimerman, S. Giardiasis: A pharmacotherapy review. Expert. Opin. Pharmacother. 2007, 8, 1885–1902. [Google Scholar] [CrossRef] [PubMed]
- Andrews, B.J.; Mylvaganam, H.; Yule, A. Sensitivity of Trichomonas vaginalis, Tritrichomonas foetus and Giardia intestinalis to bacitracin and its zinc salt in vitro. Trans. R. Soc. Trop. Med. Hyg. 1994, 88, 704–706. [Google Scholar] [CrossRef]
- Andrews, B.J.; Panitescu, D.; Jipa, G.H.; Vasile-Bugarin, A.C.; Vasiliu, R.P.; Ronnevig, J.R. Chemotherapy for giardiasis: Randomized clinical trial of bacitracin, bacitracin zinc, and a combination of bacitracin zinc with neomycin. Am. J. Trop. Med. Hyg. 1995, 52, 318–321. [Google Scholar] [PubMed]
- Veenemans, J.; Schouten, L.R.; Ottenhof, M.J.; Mank, T.G.; Uges, D.R.; Mbugi, E.V.; Demir, A.Y.; Kraaijenhagen, R.J.; Savelkoul, H.F.; Verhoef, H. Effect of Preventive Supplementation with Zinc and Other Micronutrients on Non-Malarial Morbidity in Tanzanian Pre-School Children: A Randomized Trial. PLoS ONE 2012, 7, e41630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penny, M.E.; Marin, R.M.; Duran, A.; Peerson, J.M.; Lanata, C.F.; Lönnerdal, B.; Black, R.E.; Brown, K.H. Randomized controlled trial of the effect of daily supplementation with zinc or multiple micronutrients on the morbidity, growth, and micronutrient status of young Peruvian children. Am. J. Clin. Nutr. 2004, 79, 457–465. [Google Scholar] [PubMed]
- Chhagan, M.K.; van den Broeck, J.; Luabeya, K.K.A.; Mpontshane, N.; Tucker, K.L.; Bennish, M.L. Effect of micronutrient supplementation on diarrhoeal disease among stunted children in rural South Africa. Eur. J. Clin. Nutr. 2009, 63, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Luabeya, K.K.A.; Mpontshane, N.; Mackay, M.; Ward, H.; Elson, I.; Chhagan, M.; Tomkins, A.; van den Broeck, J.; Bennish, M.L. Zinc or multiple micronutrient supplementation to reduce diarrhea and respiratory disease in South African children: A randomized controlled trial. PLoS ONE 2007, 2, e541. [Google Scholar] [CrossRef] [PubMed]
- Haase, H.; Rink, L. Multiple impacts of zinc on immune function. Metallomics 2014, 6, 1175–1180. [Google Scholar] [CrossRef] [PubMed]
- Iñigo-Figueroa, G.; Méndez-Estrada, R.O.; Quihui-Cota, L.; Velásquez-Contreras, C.A.; Garibay-Escobar, A.; Canett-Romero, R.; Astiazarán-García, H. Effects of dietary zinc manipulation on growth performance, zinc status and immune response during Giardia lamblia infection: A study in CD-1 mice. Nutrients 2013, 5, 3447–3460. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Astiazarán-García, H.; Iñigo-Figueroa, G.; Quihui-Cota, L.; Anduro-Corona, I. Crosstalk between Zinc Status and Giardia Infection: A New Approach. Nutrients 2015, 7, 4438-4452. https://doi.org/10.3390/nu7064438
Astiazarán-García H, Iñigo-Figueroa G, Quihui-Cota L, Anduro-Corona I. Crosstalk between Zinc Status and Giardia Infection: A New Approach. Nutrients. 2015; 7(6):4438-4452. https://doi.org/10.3390/nu7064438
Chicago/Turabian StyleAstiazarán-García, Humberto, Gemma Iñigo-Figueroa, Luis Quihui-Cota, and Iván Anduro-Corona. 2015. "Crosstalk between Zinc Status and Giardia Infection: A New Approach" Nutrients 7, no. 6: 4438-4452. https://doi.org/10.3390/nu7064438
APA StyleAstiazarán-García, H., Iñigo-Figueroa, G., Quihui-Cota, L., & Anduro-Corona, I. (2015). Crosstalk between Zinc Status and Giardia Infection: A New Approach. Nutrients, 7(6), 4438-4452. https://doi.org/10.3390/nu7064438